Skip to main content

Medical Imaging for Three-Dimensional Computer-Aided Models

  • Reference work entry
  • First Online:

Part of the book series: Reference Series in Biomedical Engineering ((TIENRE))

Abstract

Technological advances in medical imaging have provided healthcare professionals with powerful resources for storing, analyzing, and visualizing three-dimensional images in a variety of diagnostic tasks. Equipments for acquiring high-quality images and computer-aided tools for image interpretation play an important role in surgical planning, disease assessment, and therapy response monitoring. This chapter presents an overview of relevant aspects related to image processing and computer graphics techniques for the construction of three-dimensional models for visualization and biofabrication.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • 3MF Consortium (2016a) 3MF materials and properties extension specification and reference guide. https://github.com/3mfconsortium/. Accessed May 2016

  • 3MF Consortium (2016b) 3MF materials and properties extension specification and reference guide. http://3mf.io/wp-content/uploads/2015/04/3MFmaterialsSpec_1.0.1.pdf. Accessed May 2016

  • 3MF Consortium (2016c) 3MF materials and properties extension specification and reference guide. http://3mf.io/wp-content/uploads/2015/04/3MFcoreSpec_1.0.1.pdf. Accessed May 2016

  • Adams R, Bischof L (1994) Seeded region growing. IEEE Trans Pattern Anal Mach Intell 16(6):641–647

    Article  Google Scholar 

  • Akio D, Koide A (1991) An efficient method of triangulating equi-valued surfaces by using tetrahedral cells. IEICE Trans Inf Syst 74(1):214–224

    Google Scholar 

  • Amorim P, Moraes T, Silva J, Pedrini H (2015) InVesalius: an interactive rendering framework for health care support. In: Bebis G, Boyle R, Parvin B, Koracin D, Pavlidis I, Feris R, McGraw T, Elendt M, Kopper R, Ragan E, Ye Z, Weber G (eds) Lecture notes in computer science, vol 9474. Springer International Publishing, Switzerland, pp 45–54

    Google Scholar 

  • Andria G, Attivissimo F, Cavone G, Giaquinto N, Lanzolla A (2012) Linear filtering of 2-D wavelet coefficients for denoising ultrasound medical images. Measurement 45(7):1792–1800

    Article  Google Scholar 

  • Atala A, Yoo JJ (2015) Essentials of 3D biofabrication and translation. Academic, London

    Google Scholar 

  • Beucher S (1994) Watershed, hierarchical segmentation and waterfall algorithm. In: Mathematical morphology and its applications to image processing. Springer, Dordrecht, Netherlands, pp 69–76

    Google Scholar 

  • Brown LG (1992) A survey of image registration techniques. ACM Comput Surv 24(4):325–376

    Article  Google Scholar 

  • Bruckner S, Gröller ME (2009) Instant volume visualization using maximum intensity difference accumulation. Comput Graphics Forum 28(3):775–782

    Article  Google Scholar 

  • Buhmann MD (2000) Radial basis functions. Acta Numerica 2000(9):1–38

    Article  Google Scholar 

  • Canny J (1986) A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell 6:679–698

    Article  Google Scholar 

  • Chua CK, Yeong WY (2014) Bioprinting: principles and applications, vol 1. World Scientific Publishing Co Inc., Singapore

    Google Scholar 

  • Crum WR, Hartkens T, Hill D (2014) Non-rigid image registration: theory and practice. Br J Radiol 77:S140–S153

    Article  Google Scholar 

  • Csèbfalvi B, Mroz L, Hauser H, König A, Gröller ME (2001) Fast visualization of object contours by non-photorealistic volume rendering. Comput Graphics Forum 20:452–460

    Article  Google Scholar 

  • Danilevicius P, Rezende RA, Pereira FD, Selimis A, Kasyanov V, Noritomi PY, Silva JV, Chatzinikolaidou M, Farsari M, Mironov V (2015) Burr-like, laser-made 3D microscaffolds for tissue spheroid encagement. Biointerphases 10(2):021011

    Article  PubMed  Google Scholar 

  • de Moraes TF, Amorim PH, Silva JV, Pedrini H, Meurer MI (2015) Medical vlume rendering based on gradient information. In: Computational vision and medical image processing V: 5th eccomas thematic conference on computational vision and medical image processing, p 181, Tenerife, Spain. CRC Press

    Google Scholar 

  • Derby B (2012) Printing and prototyping of tissues and scaffolds. Science 338(6109):921–926

    Article  CAS  PubMed  Google Scholar 

  • Dowsett D, Kenny PA, Johnston RE (2006) The physics of diagnostic imaging. A Hodder Arnold Publication. Taylor & Francis

    Google Scholar 

  • Fernando R (2004) GPU gems: programming techniques, tips and tricks for real-time graphics. Pearson Higher Education, London

    Google Scholar 

  • Giacomo G, Silva J, Martines R, Ajzen S (2014) Computer-designed selective laser sintering surgical guide and immediate loading dental implants with definitive prosthesis in edentulous patient: a preliminary method. European Journal of Dentistry 8(1):100–106

    Article  PubMed  PubMed Central  Google Scholar 

  • Gibson SFF (1999) Constrained elastic surfacenets: generating smooth models from binary segmented data. TR99 24. Mitsubishi Electric Research Laboratories, Inc., Cambridge

    Google Scholar 

  • Gonzalez RC, Woods RE (2002) Digital image processing. Prentice Hall, Inc., Upper Saddle River

    Google Scholar 

  • Groll J, Boland T, Blunk T, Burdick JA, Cho D-W, Dalton PD, Derby B, Forgacs G, Li Q, Mironov VA et al (2016) Biofabrication: reappraising the definition of an evolving field. Biofabrication 8(1)

    Article  PubMed  Google Scholar 

  • Guillemot F, Souquet A, Catros S, Guillotin B (2010) Laser-assisted cell printing: principle, physical parameters versus cell fate and perspectives in tissue engineering. Nanomedicine 5(3):507–515

    Article  PubMed  Google Scholar 

  • Haralick RM, Shapiro LG (1985) Image segmentation techniques. Comput Vis Graphics Image Process 29(1):100–132

    Article  Google Scholar 

  • Hickethier T, Kröger JR, Von Spiczak J, Baessler B, Pfister R, Maintz D, Bunck AC, Michels G (2016) Non-invasive imaging of bioresorbable coronary scaffolds using CT and MRI: first in vitro experience. Int J Cardiol 206:101–106

    Article  PubMed  Google Scholar 

  • Hill DL, Batchelor PG, Holden M, Hawkes DJ (2001) Medical image registration. Phys Med Biol 46(3)

    Article  PubMed  CAS  Google Scholar 

  • Hsieh J (2003) Computed tomography: principles, design, artifacts, and recent advances. SPIE Press

    Google Scholar 

  • ISO/ASTM 52915 (2013) Standard specification for additive manufacturing file format (AMF). ASTM International, West Conshohocken

    Google Scholar 

  • Jakab K, Norotte C, Damon B, Marga F, Neagu A, Besch-Williford CL, Kachurin A, Church KH, Park H, Mironov V (2008) Tissue engineering by self-assembly of cells printed into topologically defined structures. Tissue Eng A 14(3):413–421

    Article  CAS  Google Scholar 

  • Kapila S (2014) Cone beam computed tomography in orthodontics: indications, insights, and innovations. Wiley, New York

    Google Scholar 

  • Kelsey CA, Heintz PH, Chambers GD, Sandoval DJ, Paffett NLAKS (2013) Radiation biology of medical imaging. Wiley, Hoboken

    Google Scholar 

  • Kemmoku D, Noritomi P, Toland F, Silva J (2010) Use of BioCAD in the development of a growth compliant prosthetic device for cranioplasty of growing patients. In: Innovative developments in design and manufacturing. Taylor & Francis, London, pp 127–130

    Google Scholar 

  • Kim TK, Paik JK, Kang BS (1998) Contrast enhancement system using spatially adaptive histogram equalization with temporal filtering. IEEE Trans Consum Electron 44(1):82–87

    Article  Google Scholar 

  • Kłodowski K, Nowicka K, Tarasiuk J, Wroński S, Świketek M, B-lazewicz M, Figiel H, Turek K, Szponder T (2014) Micro-imaging of implanted scaffolds using combined MRI and micro-CT. Comput Med Imaging Graph 38(6):458–468

    Article  PubMed  Google Scholar 

  • Lantada AD (2016) Microsystems for enhanced control of cell behavior. In: Lantada AD (ed) Studies in mechanobiology, tissue engineering and biomaterials, vol 18. Springer International Publishing, Berlin

    Google Scholar 

  • Leondes CT (2005) Medical imaging systems technology: modalities, Medical imaging systems technology. World Scientific, Hackensack

    Google Scholar 

  • Lester H, Arridge SR (1999) A survey of hierarchical non-linear medical image registration. Pattern Recogn 32(1):129–149

    Article  Google Scholar 

  • Levoy M (1990) Efficient ray tracing of volume data. ACM Trans Graph 9(3):245–261

    Article  Google Scholar 

  • Lorensen WE, Cline HE (1987) Marching cubes: a high resolution 3D surface construction algorithm. Comput Graph 21(4):163–169

    Article  Google Scholar 

  • Lutz H, Buscarini E, W. H. Organization (2011) Manual of diagnostic ultrasound, vol 1. World Health Organization, Geneva

    Google Scholar 

  • Macovski A (1983) Medical imaging systems. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Maintz JA, Viergever MA (1998) A survey of medical image registration. Med Image Anal 2(1):1–36

    Article  PubMed  CAS  Google Scholar 

  • Manjón JV, Carbonell-Caballero J, Lull JJ, García-Martí G, Martí-Bonmatí L, Robles M (2008) MRI denoising using non-local means. Med Image Anal 12(4):514–523

    Article  PubMed  Google Scholar 

  • Melchels FP, Domingos MA, Klein TJ, Malda J, Bartolo PJ, Hutmacher DW (2012) Additive manufacturing of tissues and organs. Prog Polym Sci 37(8):1079–1104

    Article  CAS  Google Scholar 

  • Michailovich OV, Tannenbaum A (2006) Despeckling of medical ultrasound images. IEEE Trans Ultrason Ferroelectr Freq Control 53(1):64–78

    Article  PubMed  PubMed Central  Google Scholar 

  • Mironov V, Kasyanov V, Drake C, Markwald RR (2008) Organ printing: promises and challenges. Regen Med 3(1):93–103

    Article  CAS  PubMed  Google Scholar 

  • Mironov V, Kasyanov V, Markwald RR (2011) Organ printing: from bioprinter to organ biofabrication line. Curr Opin Biotechnol 22(5):667–673

    Article  CAS  PubMed  Google Scholar 

  • Mistelbauer G, Morar A, Varchola A, Schernthaner R, Baclija I, Köchl A, Kanitsar A, Bruckner S, Gröller E (2013) Vessel visualization using curvicircular feature aggregation. Comput Graphics Forum 32(3):231–240

    Article  Google Scholar 

  • Moench T, Gasteiger R, Janiga G, Theisel H, Preim B (2011) Context-aware mesh smoothing for biomedical applications. Comput Graph 35(4):755–767

    Article  Google Scholar 

  • Mohebi MM, Evans JR (2002) A drop-on-demand ink-jet printer for combinatorial libraries and functionally graded ceramics. J Comb Chem 4(4):267–274

    Article  PubMed  CAS  Google Scholar 

  • Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32(8):773–785

    Article  PubMed  CAS  Google Scholar 

  • Naganuma T, Ishiguro H, Takagi K, Fujino Y, Mitomo S, Nakamura S, Nakamura S, Colombo A (2015) Provisional T-stenting with bioresorbable vascular scaffolds in vivo: insights from optical frequency domain imaging. J Am Coll Cardiol Intv 8(4):635–637

    Article  Google Scholar 

  • Oliveira AT, Camilo AA, Bahia PRV, Carvalho ACP, Santos MF, Silva JVL, Monteiro AA (2014) A novel method for intraoral access to the superior head of the human lateral pterygoid muscle. Biomed Res Int 2014:1–8

    Google Scholar 

  • Oosterwijk H, Gihring P (2002) Dicom basics. OTech Inc, Aubrey

    Google Scholar 

  • Ozbolat I, Gudapati H (2016) A review on design for bioprinting. Bioprinting 3:1–14

    Article  Google Scholar 

  • Ozbolat IT, Peng W, Ozbolat V (2016) Application areas of 3D bioprinting. Drug Discov Today 21(8):1257–1271

    Article  CAS  PubMed  Google Scholar 

  • Pal NR, Pal SK (1993) A review on image segmentation techniques. Pattern Recogn 26(9):1277–1294

    Article  Google Scholar 

  • Parker JR (2010) Algorithms for image processing and computer vision. Wiley, Indianapolis

    Google Scholar 

  • Passamai V, Dernowsek J, Nogueira J, Lara V, Vilalba F, Mironov V, Rezende R, Silva J (2016) From 3D bioprinters to a fully integrated organ biofabrication line. J Phys Conf Ser 705:012010

    Article  Google Scholar 

  • Pianykh OS (2009) Digital imaging and communications in medicine (DICOM): a practical introduction and survival Guide. Springer, Berlin/Heidelberg

    Google Scholar 

  • Rezende RA, Pereira FD, Kasyanov V, Ovsianikov A, Torgensen J, Gruber P, Stampfl J, Brakke K, Nogueira JA, Mironov V, Silva JV (2012) Design, physical prototyping and initial characterisation of ‘lockyballs’. Virtual Phys Prototyping 7(4):287–301

    Article  Google Scholar 

  • Rezende RA, Kasyanov V, Mironov V, Silva JVL (2015) Organ printing as an information technology. Procedia Eng 110:151–158

    Article  Google Scholar 

  • Roth SD (1982) Ray casting for modeling solids. Comput Graphics Image Process 18(2):109–144

    Article  Google Scholar 

  • Russ JC (2015) The image processing handbook. CRC Press, New York

    Google Scholar 

  • Salinas HM, Fernández DC (2007) Comparison of PDE-based nonlinear diffusion approaches for image enhancement and denoising in optical coherence tomography. IEEE Trans Med Imaging 26(6):761–771

    Article  PubMed  Google Scholar 

  • Sankur B, Sezgin M (2001) Image thresholding techniques: a Survey over categories. Pattern Recogn 34(2):1573–1583

    Google Scholar 

  • Sannomiya EK, Silva JVL, Brito AA, Saez DM, Angelieri F, Silva Dalben G (2008) Surgical planning for resection of an ameloblastoma and reconstruction of the mandible using a selective laser sintering 3D biomodel. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 106(1):36–40

    Article  Google Scholar 

  • Silva J, Almeida A, Raposo do Amaral C, Ferreira D, Hotta L, Raposo do Amaral CA, Guidi M, Buzzo CL (2009) Three-dimensional virtual and physical technologies in the treatment of craniofacial anomalies. In: 11th international congress on cleft lip and palate related craniofacial anomalies, vol 1, pp 5–10, Bologna, Medmond Italy

    Google Scholar 

  • Singh S, Bovis K (2005) An evaluation of contrast enhancement techniques for mammographic breast masses. IEEE Trans Inf Technol Biomed 9(1):109–119

    Article  PubMed  Google Scholar 

  • Sistrom CL, McKay NL (2005) Costs, charges, and revenues for hospital diagnostic imaging procedures: differences by modality and hospital characteristics. J Am Coll Radiol 2(6):511–519

    Article  PubMed  Google Scholar 

  • Skardal A, Zhang J, McCoard L, Xu X, Oottamasathien S, Prestwich GD (2010) Photocrosslinkable hyaluronan-gelatin hydrogels for two-step bioprinting. Tissue Eng A 16(8):2675–2685

    Article  CAS  Google Scholar 

  • Stallings W (2005) Data and computer communications. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Stark JA (2000) Adaptive image contrast enhancement using generalizations of histogram equalization. IEEE Trans Image Process 9(5):889–896

    Article  PubMed  CAS  Google Scholar 

  • Tomasi C, Manduchi R (1998) Bilateral filtering for gray and color images. In: Sixth international conference on computer vision, IEEE, pp 839–846

    Google Scholar 

  • Wahl RL, Wagner HN (2009) Principles and practice of PET and PET/CT. Lippincott Williams & Wilkins

    Google Scholar 

  • Whitaker RT (2000) Reducing aliasing artifacts in iso-surfaces of binary volumes. In: IEEE symposium on volume visualization, IEEE, pp 23–32

    Google Scholar 

  • Wu Q, Merchant F, Castleman KR (2008) Microscope image processing, 1st edn. Academic, Boston

    Google Scholar 

  • Wu C, Wang B, Zhang C, Wysk RA, Chen Y-W (2017) Bioprinting: an assessment based on manufacturing readiness levels. Crit Rev Biotechnol 37(3):333–354

    Article  PubMed  Google Scholar 

  • Zhang YJ (1996) A survey on evaluation methods for image segmentation. Pattern Recogn 29(8):1335–1346

    Article  Google Scholar 

  • Zitova B, Flusser J (2003) Image registration methods: a Survey. Image Vis Comput 21(11):977–1000

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to São Paulo Research Foundation (FAPESP) for the Brazilian Research Institute for Neuroscience and Neurotechnology BRAINN (CEPID process 2013/07559-3) and for the Thematic Projects (Grants 2011/22749-8 and 2014/12236-1). We are thankful to Brazilian Council for Scientific and Technological Development (CNPq) for the Brazilian Institute of Biofabrication (INCT-BIOFABRIS process 2008/57860-3) and for the Regenerative Medicine grant (process 467643/2014-8) for the financial support. We also thank Otávio Henrique Junqueira Amorim for creating some of the illustrations and pictures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Henrique Junqueira Amorim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Amorim, P.H.J., de Moraes, T.F., Rezende, R.A., da Silva, J.V.L., Pedrini, H. (2018). Medical Imaging for Three-Dimensional Computer-Aided Models. In: Ovsianikov, A., Yoo, J., Mironov, V. (eds) 3D Printing and Biofabrication. Reference Series in Biomedical Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-45444-3_6

Download citation

Publish with us

Policies and ethics