Skip to main content

Translation and Applications of Biofabrication

  • Reference work entry
  • First Online:

Part of the book series: Reference Series in Biomedical Engineering ((TIENRE))

Abstract

Three-dimensional (3D) bioprinting is an emerging field that holds promise for creating functional living tissues and organs. Bioprinting enables to fabricate structurally complex 3D tissue constructs by precise positioning and spatially separated patterns of multiple types of cells, biomaterials, and bioactive molecules within a single construct. With recent advances in bioprinting strategies, 3D bioprinting has been applied in various research areas, including tissue engineering and regenerative medicine, biology, physiology, drug discovery, and cancer/stem cell research. In tissue engineering and regenerative medicine, many types of 3D tissue constructs have been bioprinted to generate functional tissues for implantation, with the ultimate goal of clinical use. In addition, 3D bioprinting has been used as a tool to create in vitro tissue/organ models for drug discovery and cancer research, enabling deeper understanding of physiological phenomena of specific tissues/organs and more accurate prediction of drug or toxicity responses. In this chapter, we discuss recent applications of 3D bioprinting; first to create tissues and organs for the purposes of tissue engineering and regenerative medicine and then as platforms for in vitro tissue/organ models in drug discovery/toxicity testing and cancer research. We also discuss current challenges and future perspectives for practical applications of 3D bioprinting.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Amini AR, Laurencin CT, Nukavarapu SP (2012) Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng 40:363–408

    Article  PubMed  PubMed Central  Google Scholar 

  • Arslan-Yildiz A, Assal RE, Chen P, Guven S, Inci F, Demirci U (2016) Towards artificial tissue models: past, present, and future of 3D bioprinting. Biofabrication 8:014103

    Article  PubMed  CAS  Google Scholar 

  • Atala A, Yoo J (2015) Essentials of 3D biofabrication and translation. Elsevier, London

    Google Scholar 

  • Bajaj P, Schweller RM, Khademhosseini A, West JL, Bashir R (2014) 3D biofabrication strategies for tissue engineering and regenerative medicine. Annu Rev Biomed Eng 16:247–276

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ballyns JJ, Gleghorn JP, Niebrzydowski V, Rawlinson JJ, Potter HG, Maher SA, Wright TM, Bonassar LJ (2008) Image-guided tissue engineering of anatomically shaped implants via MRI and micro-CT using injection molding. Tissue Eng Part A 14:1195–1202

    Article  PubMed  Google Scholar 

  • Bernal W, Wendon J (2013) Acute liver failure. N Engl J Med 369:2525–2534

    Article  PubMed  CAS  Google Scholar 

  • Bhatia SN, Ingber DE (2014) Microfluidic organs-on-chips. Nat Biotechnol 32:760–772

    Article  PubMed  CAS  Google Scholar 

  • Bouwstra JA, Honeywell-Nguyen PL, Gooris GS, Ponec M (2003) Structure of the skin barrier and its modulation by vesicular formulations. Prog Lipid Res 42:1–36

    Article  PubMed  CAS  Google Scholar 

  • Buikema JW, Van Der Meer P, Sluijter JP, Domian IJ (2013) Concise review: engineering myocardial tissue: the convergence of stem cells biology and tissue engineering technology. Stem Cells 31:2587–2598

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Campbell PG, Miller ED, Fisher GW, Walker LM, Weiss LE (2005) Engineered spatial patterns of FGF-2 immobilized on fibrin direct cell organization. Biomaterials 26:6762–6770

    Article  PubMed  CAS  Google Scholar 

  • Cancedda R, Giannoni P, Mastrogiacomo M (2007) A tissue engineering approach to bone repair in large animal models and in clinical practice. Biomaterials 28:4240–4250

    Article  PubMed  CAS  Google Scholar 

  • Chang R, Nam J, Sun W (2008) Direct cell writing of 3D microorgan for in vitro pharmacokinetic model. Tissue Eng Part C Methods 14:157–166

    Article  PubMed  CAS  Google Scholar 

  • Chang R, Emami K, Wu H, Sun W (2010) Biofabrication of a three-dimensional liver micro-organ as an in vitro drug metabolism model. Biofabrication 2:045004

    Article  PubMed  CAS  Google Scholar 

  • Chang CC, Boland ED, Williams SK, Hoying JB (2011) Direct-write bioprinting three-dimensional biohybrid systems for future regenerative therapies. J Biomed Mater Res B Appl Biomater 98:160–170

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cohen MM Jr (2006) The new bone biology: pathologic, molecular, and clinical correlates. Am J Med Genet A 140:2646–2706

    Article  PubMed  CAS  Google Scholar 

  • Cui XF, Breitenkamp K, Finn MG, Lotz M, D’Lima DD (2012) Direct human cartilage repair using three-dimensional bioprinting technology. Tissue Eng Part A 18:1304–1312

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Demirci U, Montesano G (2007) Single cell epitaxy by acoustic picolitre droplets. Lab Chip 7:1139–1145

    Article  PubMed  CAS  Google Scholar 

  • Duan B (2016) State-of-the-art review of 3D bioprinting for cardiovascular tissue engineering. Ann Biomed Eng. https://doi.org/10.1007/s10439-016-1607-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Duan B, Hockaday LA, Kang KH, Butcher JT (2013) 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J Biomed Mater Res A 101:1255–1264

    Article  PubMed  CAS  Google Scholar 

  • Duan B, Kapetanovic E, Hockaday LA, Butcher JT (2014) Three-dimensional printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells. Acta Biomater 10:1836–1846

    Article  PubMed  CAS  Google Scholar 

  • Faulkner-Jones A, Fyfe C, Cornelissen DJ, Gardner J, King J, Courtney A, Shu W (2015) Bioprinting of human pluripotent stem cells and their directed differentiation into hepatocyte-like cells for the generation of mini-livers in 3D. Biofabrication 7:044102

    Article  PubMed  Google Scholar 

  • Fedorovich NE, Wijnberg HM, Dhert WJ, Alblas J (2011) Distinct tissue formation by heterogeneous printing of osteo- and endothelial progenitor cells. Tissue Eng Part A 17:2113–2121

    Article  PubMed  Google Scholar 

  • Fedorovich NE, Schuurman W, Wijnberg HM, Prins HJ, van Weeren PR, Malda J, Alblas J, Dhert WJ (2012) Biofabrication of osteochondral tissue equivalents by printing topologically defined, cell-laden hydrogel scaffolds. Tissue Eng Part C Methods 18:33–44

    Article  PubMed  CAS  Google Scholar 

  • Friedrich J, Ebner R, Kunz-Schughart LA (2007) Experimental anti-tumor therapy in 3-D: spheroids – old hat or new challenge? Int J Radiat Biol 83:849–871

    Article  PubMed  CAS  Google Scholar 

  • Gaebel R, Ma N, Liu J, Guan J, Koch L, Klopsch C, Gruene M, Toelk A, Wang W, Mark P et al (2011) Patterning human stem cells and endothelial cells with laser printing for cardiac regeneration. Biomaterials 32:9218–9230

    Article  PubMed  CAS  Google Scholar 

  • Gaetani R, Doevendans PA, Metz CH, Alblas J, Messina E, Giacomello A, Sluijter JP (2012) Cardiac tissue engineering using tissue printing technology and human cardiac progenitor cells. Biomaterials 33:1782–1790

    Article  PubMed  CAS  Google Scholar 

  • Gerlach JC, Johnen C, McCoy E, Brautigam K, Plettig J, Corcos A (2011) Autologous skin cell spray-transplantation for a deep dermal burn patient in an ambulant treatment room setting. Burns 37:e19–e23

    Article  PubMed  Google Scholar 

  • Gibbs DM, Vaezi M, Yang S, Oreffo RO (2014) Hope versus hype: what can additive manufacturing realistically offer trauma and orthopedic surgery? Regen Med 9:535–549

    Article  PubMed  CAS  Google Scholar 

  • Griffith LG, Swartz MA (2006) Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Biol 7:211–224

    Article  PubMed  CAS  Google Scholar 

  • Gruene M, Pflaum M, Hess C, Diamantouros S, Schlie S, Deiwick A, Koch L, Wilhelmi M, Jockenhoevel S, Haverich A et al (2011) Laser printing of three-dimensional multicellular arrays for studies of cell-cell and cell-environment interactions. Tissue Eng Part C Methods 17:973–982

    Article  PubMed  PubMed Central  Google Scholar 

  • Gu X, Ding F, Williams DF (2014) Neural tissue engineering options for peripheral nerve regeneration. Biomaterials 35:6143–6156

    Article  PubMed  CAS  Google Scholar 

  • Guillemot F, Souquet A, Catros S, Guillotin B, Lopez J, Faucon M, Pippenger B, Bareille R, Remy M, Bellance S et al (2010) High-throughput laser printing of cells and biomaterials for tissue engineering. Acta Biomater 6:2494–2500

    Article  PubMed  CAS  Google Scholar 

  • Guillotin B, Guillemot F (2011) Cell patterning technologies for organotypic tissue fabrication. Trends Biotechnol 29:183–190

    Article  PubMed  CAS  Google Scholar 

  • Guillotin B, Souquet A, Catros S, Duocastella M, Pippenger B, Bellance S, Bareille R, Remy M, Bordenave L, Amedee J et al (2010) Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials 31:7250–7256

    Article  PubMed  CAS  Google Scholar 

  • Hoch E, Tovar GE, Borchers K (2014) Bioprinting of artificial blood vessels: current approaches towards a demanding goal. Eur J Cardiothorac Surg 46:767–778

    Article  PubMed  Google Scholar 

  • Horvath L, Umehara Y, Jud C, Blank F, Petri-Fink A, Rothen-Rutishauser B (2015) Engineering an in vitro air-blood barrier by 3D bioprinting. Sci Rep 5:7974

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Itoh M, Nakayama K, Noguchi R, Kamohara K, Furukawa K, Uchihashi K, Toda S, Oyama J, Node K, Morita S (2015) Correction: scaffold-free tubular tissues created by a bio-3D printer undergo remodeling and endothelialization when implanted in rat aortae. PLoS One 10:e0145971

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jana S, Lerman A (2015) Bioprinting a cardiac valve. Biotechnol Adv 33:1503–1521

    Article  PubMed  Google Scholar 

  • Jawad H, Lyon AR, Harding SE, Ali NN, Boccaccini AR (2008) Myocardial tissue engineering. Br Med Bull 87:31–47

    Article  PubMed  CAS  Google Scholar 

  • Jeong CG, Atala A (2015) 3D printing and biofabrication for load bearing tissue engineering. Adv Exp Med Biol 881:3–14

    Article  PubMed  CAS  Google Scholar 

  • Jiao A, Trosper NE, Yang HS, Kim J, Tsui JH, Frankel SD, Murry CE, Kim DH (2014) Thermoresponsive nanofabricated substratum for the engineering of three-dimensional tissues with layer-by-layer architectural control. ACS Nano 8:4430–4439

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jones N (2012) Science in three dimensions: the print revolution. Nature 487:22–23

    Article  PubMed  CAS  Google Scholar 

  • Kang HW, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala A (2016) A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol 34:312–319

    Article  PubMed  CAS  Google Scholar 

  • Kenny HA, Krausz T, Yamada SD, Lengyel E (2007) Use of a novel 3D culture model to elucidate the role of mesothelial cells, fibroblasts and extra-cellular matrices on adhesion and invasion of ovarian cancer cells to the omentum. Int J Cancer 121:1463–1472

    Article  PubMed  CAS  Google Scholar 

  • Kim JB (2005) Three-dimensional tissue culture models in cancer biology. Semin Cancer Biol 15:365–377

    Article  PubMed  Google Scholar 

  • Kim JD, Choi JS, Kim BS, Choi YC, Cho YW (2010) Piezoelectric inkjet printing of polymers: stem cell patterning on polymer substrates. Polymer 51:2147–2154

    Article  CAS  Google Scholar 

  • King SM, Presnell SC, Nguyen DG (2014) Development of 3D bioprinted human breast cancer for in vitro drug screening. Cancer Res 74:2034

    Article  Google Scholar 

  • Knowlton S, Onal S, Yu CH, Zhao JJ, Tasoglu S (2015) Bioprinting for cancer research. Trends Biotechnol 33:504–513

    Article  PubMed  CAS  Google Scholar 

  • Koch L, Kuhn S, Sorg H, Gruene M, Schlie S, Gaebel R, Polchow B, Reimers K, Stoelting S, Ma N et al (2010) Laser printing of skin cells and human stem cells. Tissue Eng Part C Methods 16:847–854

    Article  PubMed  CAS  Google Scholar 

  • Koch L, Deiwick A, Schlie S, Michael S, Gruene M, Coger V, Zychlinski D, Schambach A, Reimers K, Vogt PM (2012) Skin tissue generation by laser cell printing. Biotechnol Bioeng 109:1855–1863

    Article  PubMed  CAS  Google Scholar 

  • Kolesky DB, Truby RL, Gladman AS, Busbee TA, Homan KA, Lewis JA (2014) 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv Mater 26:3124–3130

    Article  PubMed  CAS  Google Scholar 

  • Kolesky DB, Homan KA, Skylar-Scott MA, Lewis JA (2016) Three-dimensional bioprinting of thick vascularized tissues. Proc Natl Acad Sci U S A 113:3179–3184

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee W, Debasitis JC, Lee VK, Lee JH, Fischer K, Edminster K, Park JK, Yoo SS (2009) Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication. Biomaterials 30:1587–1595

    Article  PubMed  CAS  Google Scholar 

  • Lee VK, Kim DY, Ngo H, Lee Y, Seo L, Yoo SS, Vincent PA, Dai G (2014) Creating perfused functional vascular channels using 3D bio-printing technology. Biomaterials 35:8092–8102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li Y, Wei X, Zhou J, Wei L (2013) The age-related changes in cartilage and osteoarthritis. Biomed Res Int 2013:916530

    PubMed  PubMed Central  Google Scholar 

  • Liu Y, Lim J, Teoh SH (2013) Review: development of clinically relevant scaffolds for vascularised bone tissue engineering. Biotechnol Adv 31:688–705

    Article  PubMed  CAS  Google Scholar 

  • Lu T, Li Y, Chen T (2013) Techniques for fabrication and construction of three-dimensional scaffolds for tissue engineering. Int J Nanomedicine 8:337–350

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mandrycky C, Wang Z, Kim K, Kim DH (2015) 3D bioprinting for engineering complex tissues. Biotechnol Adv 34:422

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marga F, Jakab K, Khatiwala C, Shepherd B, Dorfman S, Hubbard B, Colbert S, Gabor F (2012) Toward engineering functional organ modules by additive manufacturing. Biofabrication 4:022001

    Article  PubMed  Google Scholar 

  • Markin CA (2016) News: recognitions, societies, and academia. Regen Eng Transl Med 2:51–52

    Article  Google Scholar 

  • Merceron TK, Burt M, Seol YJ, Kang HW, Lee SJ, Yoo JJ, Atala A (2015) A 3D bioprinted complex structure for engineering the muscle-tendon unit. Biofabrication 7:035003

    Article  PubMed  CAS  Google Scholar 

  • Michael S, Sorg H, Peck CT, Koch L, Deiwick A, Chichkov B, Vogt PM, Reimers K (2013) Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice. PLoS One 8:e57741

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mironov V, Kasyanov V, Markwald RR (2011) Organ printing: from bioprinter to organ biofabrication line. Curr Opin Biotechnol 22:667–673

    Article  PubMed  CAS  Google Scholar 

  • Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32:773–785

    Article  PubMed  CAS  Google Scholar 

  • Murphy SV, Skardal A, Atala A (2013) Evaluation of hydrogels for bio-printing applications. J Biomed Mater Res A 101:272–284

    Article  PubMed  CAS  Google Scholar 

  • Nair K, Gandhi M, Khalil S, Yan KC, Marcolongo M, Barbee K, Sun W (2009) Characterization of cell viability during bioprinting processes. Biotechnol J 4:1168–1177

    Article  PubMed  CAS  Google Scholar 

  • Nooeaid P, Salih V, Beier JP, Boccaccini AR (2012) Osteochondral tissue engineering: scaffolds, stem cells and applications. J Cell Mol Med 16:2247–2270

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Norotte C, Marga FS, Niklason LE, Forgacs G (2009) Scaffold-free vascular tissue engineering using bioprinting. Biomaterials 30:5910–5917

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Novosel EC, Kleinhans C, Kluger PJ (2011) Vascularization is the key challenge in tissue engineering. Adv Drug Deliv Rev 63:300–311

    Article  PubMed  CAS  Google Scholar 

  • Owens CM, Marga F, Forgacs G, Heesch CM (2013) Biofabrication and testing of a fully cellular nerve graft. Biofabrication 5:045007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ozbolat IT (2015) Bioprinting scale-up tissue and organ constructs for transplantation. Trends Biotechnol 33:395–400

    Article  PubMed  CAS  Google Scholar 

  • Ozbolat IT, Yu Y (2013) Bioprinting toward organ fabrication: challenges and future trends. IEEE Trans Biomed Eng 60:691–699

    Article  PubMed  Google Scholar 

  • Ozbolat IT, Peng W, Ozbolat V (2016) Application areas of 3D bioprinting. Drug Discov Today 21:1257

    Article  PubMed  CAS  Google Scholar 

  • Padron JM, van der Wilt CL, Smid K, Smitskamp-Wilms E, Backus HH, Pizao PE, Giaccone G, Peters GJ (2000) The multilayered postconfluent cell culture as a model for drug screening. Crit Rev Oncol Hematol 36:141–157

    Article  PubMed  CAS  Google Scholar 

  • Pampaloni F, Reynaud EG, Stelzer EH (2007) The third dimension bridges the gap between cell culture and live tissue. Nat Rev Mol Cell Biol 8:839–845

    Article  PubMed  CAS  Google Scholar 

  • Pati F, Gantelius J, Svahn HA (2016) 3D bioprinting of tissue/organ models. Angew Chem Int Ed Engl 55:4650–4665

    Article  PubMed  CAS  Google Scholar 

  • Pereira C, Gold W, Herndon D (2007) Review paper: burn coverage technologies: current concepts and future directions. J Biomater Appl 22:101–121

    Article  PubMed  CAS  Google Scholar 

  • Pham C, Greenwood J, Cleland H, Woodruff P, Maddern G (2007) Bioengineered skin substitutes for the management of burns: a systematic review. Burns 33:946–957

    Article  PubMed  Google Scholar 

  • Phillippi JA, Miller E, Weiss L, Huard J, Waggoner A, Campbell P (2008) Microenvironments engineered by inkjet bioprinting spatially direct adult stem cells toward muscle- and bone-like subpopulations. Stem Cells 26:127–134

    Article  PubMed  CAS  Google Scholar 

  • Schaefer D, Martin I, Shastri P, Padera RF, Langer R, Freed LE, Vunjak-Novakovic G (2000) In vitro generation of osteochondral composites. Biomaterials 21:2599–2606

    Article  PubMed  CAS  Google Scholar 

  • Schuurman W, Khristov V, Pot MW, van Weeren PR, Dhert WJ, Malda J (2011) Bioprinting of hybrid tissue constructs with tailorable mechanical properties. Biofabrication 3:021001

    Article  PubMed  CAS  Google Scholar 

  • Schuurman W, Klein TJ, Dhert WJ, van Weeren PR, Hutmacher DW, Malda J (2015) Cartilage regeneration using zonal chondrocyte subpopulations: a promising approach or an overcomplicated strategy? J Tissue Eng Regen Med 9:669–678

    Article  PubMed  CAS  Google Scholar 

  • Sears NA, Seshadri DR, Dhavalikar PS, Cosgriff-Hernandez E (2016) A review of three-dimensional printing in tissue engineering. Tissue Eng Part B Rev 22:298

    Article  PubMed  CAS  Google Scholar 

  • Seol YJ, Kang HW, Lee SJ, Atala A, Yoo JJ (2014) Bioprinting technology and its applications. Eur J Cardiothorac Surg 46:342–348

    Article  PubMed  Google Scholar 

  • Shafiee A, Atala A (2016) Printing technologies for medical applications. Trends Mol Med 22:254–265

    Article  PubMed  Google Scholar 

  • Sheridan RL, Greenhalgh D (2014) Special problems in burns. Surg Clin North Am 94:781–791

    Article  PubMed  Google Scholar 

  • Skardal A, Atala A (2015) Biomaterials for integration with 3-D bioprinting. Ann Biomed Eng 43:730–746

    Article  PubMed  Google Scholar 

  • Skardal A, Mack D, Kapetanovic E, Atala A, Jackson JD, Yoo J, Soker S (2012) Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds. Stem Cells Transl Med 1:792–802

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Smith CM, Stone AL, Parkhill RL, Stewart RL, Simpkins MW, Kachurin AM, Warren WL, Williams SK (2004) Three-dimensional bioassembly tool for generating viable tissue-engineered constructs. Tissue Eng 10:1566–1576

    Article  PubMed  CAS  Google Scholar 

  • Smith CM, Christian JJ, Warren WL, Williams SK (2007) Characterizing environmental factors that impact the viability of tissue-engineered constructs fabricated by a direct-write bioassembly tool. Tissue Eng 13:373–383

    Article  PubMed  CAS  Google Scholar 

  • Snyder JE, Hamid Q, Wang C, Chang R, Emami K, Wu H, Sun W (2011) Bioprinting cell-laden matrigel for radioprotection study of liver by pro-drug conversion in a dual-tissue microfluidic chip. Biofabrication 3:034112

    Article  PubMed  CAS  Google Scholar 

  • Stanton MM, Samitier J, Sanchez S (2015) Bioprinting of 3D hydrogels. Lab Chip 15:3111–3115

    Article  PubMed  CAS  Google Scholar 

  • Tang D, Tare RS, Yang LY, Williams DF, Ou KL, Oreffo RO (2016) Biofabrication of bone tissue: approaches, challenges and translation for bone regeneration. Biomaterials 83:363–382

    Article  PubMed  CAS  Google Scholar 

  • Vaidya M (2015) Startups tout commercially 3D-printed tissue for drug screening. Nat Med 21:2

    Article  PubMed  CAS  Google Scholar 

  • Visser J, Melchels FP, Jeon JE, van Bussel EM, Kimpton LS, Byrne HM, Dhert WJ, Dalton PD, Hutmacher DW, Malda J (2015) Reinforcement of hydrogels using three-dimensionally printed microfibres. Nat Commun 6:6933

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Abdulla R, Parker B, Samanipour R, Ghosh S, Kim K (2015) A simple and high-resolution stereolithography-based 3D bioprinting system using visible light crosslinkable bioinks. Biofabrication 7:045009

    Article  PubMed  Google Scholar 

  • Watson J, Hatamleh MM (2014) Complete integration of technology for improved reproduction of auricular prostheses. J Prosthet Dent 111:430–436

    Article  PubMed  Google Scholar 

  • Wolford LM, Stevao EL (2003) Considerations in nerve repair. Proc (Bayl Univ Med Cent) 16:152–156

    Article  Google Scholar 

  • Xu T, Jin J, Gregory C, Hickman JJ, Boland T (2005) Inkjet printing of viable mammalian cells. Biomaterials 26:93–99

    Article  PubMed  CAS  Google Scholar 

  • Xu F, Celli J, Rizvi I, Moon S, Hasan T, Demirci U (2011) A three-dimensional in vitro ovarian cancer coculture model using a high-throughput cell patterning platform. Biotechnol J 6:204–212

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu T, Binder KW, Albanna MZ, Dice D, Zhao W, Yoo JJ, Atala A (2013a) Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Biofabrication 5:015001

    Article  PubMed  CAS  Google Scholar 

  • Xu T, Zhao W, Zhu JM, Albanna MZ, Yoo JJ, Atala A (2013b) Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology. Biomaterials 34:130–139

    Article  PubMed  CAS  Google Scholar 

  • Yanez M, Rincon J, Dones A, De Maria C, Gonzales R, Boland T (2015) In vivo assessment of printed microvasculature in a bilayer skin graft to treat full-thickness wounds. Tissue Eng Part A 21:224–233

    Article  PubMed  CAS  Google Scholar 

  • Yoon H, Lee JS, Yim H, Kim G, Chun W (2016) Development of cell-laden 3D scaffolds for efficient engineered skin substitutes by collagen gelation. Rsc Adv 6:21439–21447

    Article  CAS  Google Scholar 

  • Yoshida Y, Yamanaka S (2010) Recent stem cell advances: induced pluripotent stem cells for disease modeling and stem cell-based regeneration. Circulation 122:80–87

    Article  PubMed  Google Scholar 

  • Zhao Y, Yao R, Ouyang L, Ding H, Zhang T, Zhang K, Cheng S, Sun W (2014) Three-dimensional printing of Hela cells for cervical tumor model in vitro. Biofabrication 6:035001

    Article  PubMed  CAS  Google Scholar 

  • Zheng Y, Chen J, Craven M, Choi NW, Totorica S, Diaz-Santana A, Kermani P, Hempstead B, Fischbach-Teschl C, Lopez JA et al (2012) In vitro microvessels for the study of angiogenesis and thrombosis. Proc Natl Acad Sci U S A 109:9342–9347

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was supported, in part, by the Basic Science Research Program through the Research Foundation of Korea (NRF), funded by the Ministry of Education, Science and Technology (NRF-2012R1A6A3A03040684). The authors thank Karen Klein, MA, at the Wake Forest Clinical and Translational Science Institute (UL1 TR001420; PI: Li) for editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Yoo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kim, J.H., Atala, A., Yoo, J. (2018). Translation and Applications of Biofabrication. In: Ovsianikov, A., Yoo, J., Mironov, V. (eds) 3D Printing and Biofabrication. Reference Series in Biomedical Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-45444-3_17

Download citation

Publish with us

Policies and ethics