Skip to main content

Commercial 3D Bioprinters

  • Reference work entry
  • First Online:

Part of the book series: Reference Series in Biomedical Engineering ((TIENRE))

Abstract

The bioprinters are robotic devices, which enable 3D bioprinting. In this chapter, we provide classification of already existing commercially available 3D bioprinters and outline basic principles of their construction and functionalities. The emerging trends in the design and development of 3D bioprinters, perspectives of creation of new types of commercial 3D bioprinters based on new physical principles, including in situ bioprinters, as well as completely integrated organ biofabrication lines or “human organ factories” will be also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Albrecht DR, Sah RL, Bhatia SN (2004) Geometric and material determinants of patterning efficiency by dielectrophoresis. Biophys J 87(4):2131–2147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arai K, Iwanaga S, Toda H, Genci C, Nishiyama Y, Nakamura M (2011) Three-dimensional inkjet biofabrication based on designed images. Biofabrication 3(3):034113

    Article  CAS  PubMed  Google Scholar 

  • Atala A, Yoo JJ (eds) (2015) Essentials of 3D Biofabrication and translation. Academic Press, Boston. 440 pages

    Google Scholar 

  • Basu S, Rodionov V, Terasaki M, Campagnola PJ (2005) Multiphoton-excited microfabrication in live cells via rose Bengal cross-linking of cytoplasmic proteins. Opt Lett 30(2):159–161

    Article  PubMed  Google Scholar 

  • Boland T, Xu T, Damon B, Cui X (2006) Application of inkjet printing to tissue engineering. Biotechnol J 1(9):910–917

    Article  CAS  PubMed  Google Scholar 

  • Bouyer C, Chen P, Güven S, Demirtaş TT, Nieland TJ, Padilla F, Demirci U (2016) A bio-acoustic Levitational (BAL) assembly method for engineering of multilayered, 3D brain-like constructs, using human embryonic stem cell derived neuro-progenitors. Adv Mater 28(1):161–167

    Article  CAS  PubMed  Google Scholar 

  • Bulanova EA, Koudan EV, Degosserie J, Heymans C, Pereira FD, Parfenov VA, Sun Y, Wang Q, Akhmedova SA, Sviridova IK, Sergeeva NS, Frank GA, Khesuani YD, Pierreux CE, Mironov VA (2017) Bioprinting of a functional vascularized mouse thyroid gland construct. Biofabrication 9(3):034105

    Article  PubMed  Google Scholar 

  • Chan V, Zorlutuna P, Jeong JH, Kong H, Bashir R (2010) Three-dimensional photopatterning of hydrogels using stereolithography for long-term cell encapsulation. Lab Chip 10(16):2062–2070

    Article  CAS  PubMed  Google Scholar 

  • Chua CK, Yeong WY (2015) Bioprinting: principles and applications. World Scientific Publishing, Singapore. 296 pages

    Book  Google Scholar 

  • Cooke MN, Fisher JP, Dean D, Rimnac C, Mikos AG (2003) Use of stereolithography to manufacture critical-sized 3D biodegradable scaffolds for bone ingrowth. J Biomed Mater Res B Appl Biomater 64(2):65–69

    Article  CAS  PubMed  Google Scholar 

  • Derby B (2012) Printing and prototyping of tissues and scaffolds. Science 338(6109):921–926

    Article  CAS  PubMed  Google Scholar 

  • Durmus NG, Tekin HC, Guven S, Sridhar K, Arslan Yildiz A, Calibasi G, Ghiran I, Davis RW, Steinmetz LM, Demirci U (2015) Magnetic levitation of single cells. Proc Natl Acad Sci USA 112(28):E3661–E3668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutzweiler L, Kartmann S, Troendle K, Benning L, Finkenzeller G, Zengerle R, Koltay P, Stark GB, Zimmermann S (2017) Large scale production and controlled deposition of single HUVEC spheroids for bioprinting applications. Biofabrication 9(2):025027

    Article  PubMed  Google Scholar 

  • Kang HW, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala A (2016) A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol 34(3):312–319

    Article  CAS  PubMed  Google Scholar 

  • Klebe RJ (1987) Apparatus for the precise positioning of cells. US patent 5,108,926 A, 8 Sept 1987

    Google Scholar 

  • Klebe RJ (1988) Cytoscribing: a method for micropositioning cells and the construction of two- and three-dimensional synthetic tissues. Exp Cell Res 179(2):362–373

    Article  CAS  PubMed  Google Scholar 

  • Klopsch C, Gäbel R, Kaminski A, Mark P, Wang W, Toelk A, Delyagina E, Kleiner G, Koch L, Chichkov B, Mela P, Jockenhoevel S, Ma N, Steinhoff G (2015) Spray- and laser-assisted biomaterial processing for fast and efficient autologous cell-plus-matrix tissue engineering. J Tissue Eng Regen Med 9(12):E177–E190

    Article  CAS  PubMed  Google Scholar 

  • Landers R, Hübner U, Schmelzeisen R, Mülhaupt R (2002) Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering. Biomaterials 23(23):4437–4447

    Article  CAS  PubMed  Google Scholar 

  • Lee J-S, Pati F, Jung JW (2015) Organ printing. Morgan & Claypool, San Rafael. 92 pages

    Google Scholar 

  • Lin RZ, Ho CT, Liu CH, Chang HY (2006) Dielectrophoresis based-cell patterning for tissue engineering. Biotechnol J 1(9):949–957

    Article  CAS  PubMed  Google Scholar 

  • Linnenberger A, Bodine MI, Fiedler C, Roberts JJ, Skaalure SC, Quinn JP, Bryant SJ, Cole M, McLeod RR (2013) Three dimensional live cell lithography. Opt Express 21(8):10269–10277

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Qu X, Zhu W, Li YS, Yuan S, Zhang H, Liu J, Wang P, Lai CS, Zanella F, Feng GS, Sheikh F, Chien S, Chen S (2016) Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting. Proc Natl Acad Sci U S A 113(8):2206–2211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandrycky C, Wang Z, Kim K, Kim DH (2016) 3D bioprinting for engineering complex tissues. Biotechnol Adv 34(4):422–434

    Article  CAS  PubMed  Google Scholar 

  • Mekhileri NV, Lim K, Brown GCJ, Mutreja I, Schon BS, Hooper GJ, Woodfield TBF (2018) Automated 3D bioassembly of micro-tissues for biofabrication of hybrid tissue engineered constructs. Biofabrication. 10(2):024103. https://doi.org/10.1088/1758-5090/aa9ef1. PubMed PMID: 29199637

    Article  CAS  PubMed  Google Scholar 

  • Melchels FPW, Domingos MAN, Klein TJ, Malda J, Bartolo P, Hutmacher D (2012) Additive manufacturing of tissues and organs. Prog Polym Sci 37(31):1079–1104

    Article  CAS  Google Scholar 

  • Mironov V, Boland T, Trusk T, Forgacs G, Markwald RR (2003) Organ printing: computer-aided jet-based 3D tissue engineering. Trends Biotechnol 21(4):157–161

    Article  CAS  PubMed  Google Scholar 

  • Mironov V, Kasyanov V, Drake C, Markwald RR (2008) Organ printing: promises and challenges. Regen Med 3(1):93–103

    Article  CAS  PubMed  Google Scholar 

  • Mironov V, Trusk T, Kasyanov V, Little S, Swaja R, Markwald R (2009a) Biofabrication: a 21st century manufacturing paradigm. Biofabrication 1(2):022001. https://doi.org/10.1088/1758-5082/1/2/022001

    Article  PubMed  CAS  Google Scholar 

  • Mironov V, Visconti RP, Kasyanov V, Forgacs G, Drake CJ, Markwald RR (2009b) Organ printing: tissue spheroids as building blocks. Biomaterials 30(12):2164–2174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mironov V, Kasyanov V, Markwald RR (2011) Organ printing: from bioprinter to organ biofabrication line. Curr Opin Biotechnol 22(5):667–673

    Article  CAS  PubMed  Google Scholar 

  • Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32(8):773–785

    Article  CAS  PubMed  Google Scholar 

  • O'Connell CD, Di Bella C, Thompson F, Augustine C, Beirne S, Cornock R, Richards CJ, Chung J, Gambhir S, Yue Z, Bourke J, Zhang B, Taylor A, Quigley A, Kapsa R, Choong P, Wallace GG (2016) Development of the Biopen: a handheld device for surgical printing of adipose stem cells at a chondral wound site. Biofabrication 8(1):015019

    Article  PubMed  Google Scholar 

  • Odde DJ, Renn MJ (1999) Laser-guided direct writing for applications in biotechnology. Trends Biotechnol 17(10):385–389

    Article  CAS  PubMed  Google Scholar 

  • Ovsianikov A, Mironov V, Stampf J, Liska R (2012) Engineering 3D cell-culture matrices: multiphoton processing technologies for biological and tissue engineering applications. Expert Rev Med Devices 9(6):613–633

    Article  CAS  PubMed  Google Scholar 

  • Owens CM, Marga F, Forgacs G, Biofabrication HCM (2013) Testing of a fully cellular nerve graft. Biofabrication 5(4):045007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ozbolat IT (2016) 3D Bioprinting: fundamentals, principles and applications. Academic Press, Boston. 356 pages

    Google Scholar 

  • Pereira RF, Barrias CC, Granja PL, Bartolo PJ (2013) Advanced biofabrication strategies for skin regeneration and repair. Nanomedicine (Lond) 8(4):603–621

    Article  CAS  Google Scholar 

  • Qin XH, Aleksandr Ovsianikov A, Stampfl J, Liska R (2014) Additive manufacturing of photosensitive hydrogels for tissue engineering applications. BioNanoMat 15(3-4):49–70

    Article  Google Scholar 

  • Ringeisen BR, Spargo BJ, Wu PK (eds) (2010) Cell and organ printing. Springer, Dordrecht. 260 pages

    Google Scholar 

  • Saunders RE, Gough JE, Derby B (2008) Delivery of human fibroblast cells by piezoelectric drop-on-demand inkjet printing. Biomaterials 29(2):193–203

    Article  CAS  PubMed  Google Scholar 

  • Schuurman W, Khristov V, Pot MW, van Weeren PR, Dhert WJ, Malda J (2011) Bioprinting of hybrid tissue constructs with tailorable mechanical properties. Biofabrication 3(2):021001

    Article  CAS  PubMed  Google Scholar 

  • Tarassoli SP, Jessop ZM, Al-Sabah A, Gao N, Whitaker S, Doak S, Whitaker IS (2017) Skin tissue engineering using 3D bioprinting: an evolving research field. J Plast Reconstr Aesthet Surg. pii: S1748-6815(17)30505-3. https://doi.org/10.1016/j.bjps.2017.12.006. [Epub ahead of print] Review. PubMed PMID: 29306639

  • Tasoglu S, Yu CH, Liaudanskaya V, Guven S, Migliaresi C, Demirci U (2015) Magnetic Levitational assembly for living material fabrication. Adv Healthc Mater 4(10):1469–1476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tocchio A, Durmus NG, Sridhar K, Mani V, Coskun B, El Assal R, Demirci U (2018) Magnetically guided self-assembly and coding of 3D living architectures. Adv Mater 30(4):1705034

    Article  CAS  Google Scholar 

  • Tromayer M, Gruber P, Markovic M, Rosspeintner A, Vauthey E, Redl H, Ovsianikov A, Liska RA (2017) Biocompatible macromolecular two-photon initiator based on hyaluronan. Polym Chem 8(2):451–460

    Article  CAS  PubMed  Google Scholar 

  • Wilson WC Jr, Boland T (2003) Cell and organ printing 1: protein and cell printers. Anat Rec A Discov Mol Cell Evol Biol 272(2):491–496

    Article  PubMed  Google Scholar 

  • Yanagi Y, Nakayama K, Taguchi T, Enosawa S, Tamura T, Yoshimaru K, Matsuura T, Hayashida M, Kohashi K, Oda Y, Yamaza T, Kobayashi E (2017) In vivo and ex vivo methods of growing a liver bud through tissue connection. Sci Rep 7(1):14085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zein I, Hutmacher DW, Tan KC, Teoh SH (2002) Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials 23(4):1169–1185

    Article  CAS  PubMed  Google Scholar 

  • Zhang LG, Fisher JP, Leong K (eds) (2015) 3D Bioprinting and nanotechnology in tissue engineering and regenerative medicine. Academic Press, Boston. 392 pages

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Mironov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Pereira, F.D.A.S., Parfenov, V., Khesuani, Y.D., Ovsianikov, A., Mironov, V. (2018). Commercial 3D Bioprinters. In: Ovsianikov, A., Yoo, J., Mironov, V. (eds) 3D Printing and Biofabrication. Reference Series in Biomedical Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-45444-3_12

Download citation

Publish with us

Policies and ethics