Genetics of Diabetes and Diabetic Complications

  • Rashmi B. Prasad
  • Emma Ahlqvist
  • Leif GroopEmail author
Reference work entry
Part of the Endocrinology book series (ENDOCR)


Diabetes is a collection of diseases characterized by defective glucose homeostasis. Different diabetes types have different etiologies and their genetic architecture ranges from highly penetrant monogenetic diseases, such as MODY and neonatal diabetes, to polygenic diseases, such as type 1 and type 2 diabetes that are caused by numerous genetic variants adding up to the individual risk. While both diabetes and diabetic complications have been known to be partly heritable for a long time, identification of risk variants was originally limited to a few variants with relatively modest effect sizes. This changed with the advent of genome-wide association studies (GWAS), which has led to the identification of hundreds of common risk variants for diabetes. Still, these variants only explain part of the heritability of complex diabetes types. Further technical development in the field, such as next-generation sequencing, has recently enabled identification of rare variants. Epigenetics, epistasis, gene-environment interactions, parent-of-origin effects, and noncoding RNAs are current research areas that provide additional layers to the genetic architecture and might reveal some of the missing heritability. In this chapter, we review the genetic basis of different diabetes types and diabetic complications and the major methodological milestones that have enabled the many success stories of the last decade.


Type 2 diabetes (T2D) Heterogeneity of T2D Heritability Genetic association Linkage studies Candidate studies Genome-wide association studies (GWAS) Next generation sequencing (NGS) Whole genome sequencing (WGS) Whole exome sequencing (WES) Rare variants Protective variants Parent-origin Epigenetics Gene expression Gene-gene interactions Epistasis Non-coding RNA Gene-environment interactions Complications 


  1. Abhary S, Hewitt AW, Burdon KP, Craig JE. A systematic meta-analysis of genetic association studies for diabetic retinopathy. Diabetes. 2009;58(9):2137–47. Epub 2009/07/10PubMedCentralCrossRefPubMedGoogle Scholar
  2. Abhary S, Burdon KP, Laurie KJ, Thorpe S, Landers J, Goold L, et al. Aldose reductase gene polymorphisms and diabetic retinopathy susceptibility. Diabetes Care. 2010;33(8):1834–6. Epub 2010/04/29PubMedCentralCrossRefPubMedGoogle Scholar
  3. Agarwala V, Flannick J, Sunyaev S, Go TDC, Altshuler D. Evaluating empirical bounds on complex disease genetic architecture. Nat Genet. 2013;45(12):1418–27. Epub 2013/10/22PubMedCentralCrossRefPubMedGoogle Scholar
  4. Ahlqvist E, van Zuydam NR, Groop LC, McCarthy MI. The genetics of diabetic complications. Nat Rev Nephrol. 2015;11(5):277–87. Epub 2015/04/01CrossRefGoogle Scholar
  5. Ahlqvist E, Storm P, Käräjämäki A, Martinell M, Dorkhan M, Carlsson A, Vikman P, Prasad RB, Aly DM, Almgren P, Wessman Y, Shaat N, Spégel P, Mulder H, Lindholm E, Melander O, Hansson O, Malmqvist U, Lernmark Å, Lahti K, Forsén T, Tuomi T, Rosengren AH, Groop L (2018) Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. The Lancet Diabetes & Endocrinology.Google Scholar
  6. Ajjan RA, Owen KR. Glucokinase MODY and implications for treatment goals of common forms of diabetes. Curr Diab Rep. 2014;14(12):559. Epub 2014/10/27CrossRefGoogle Scholar
  7. Alberti KG, Zimmet P. Global burden of disease – where does diabetes mellitus fit in? Nat Rev Endocrinol. 2013;9(5):258–60. Epub 2013/03/13CrossRefGoogle Scholar
  8. Albrechtsen A, et al. Exome sequencing-driven discovery of coding polymorphisms associated with common metabolic phenotypes. Diabetologia. 2013;56(2):298–310.CrossRefGoogle Scholar
  9. American DA. Economic costs of diabetes in the U.S. in 2007. Diabetes Care. 2008;31(3):596–615. Epub 2008/03/01CrossRefGoogle Scholar
  10. Andersen MK, Sterner M, Forsen T, Karajamaki A, Rolandsson O, Forsblom C, et al. Type 2 diabetes susceptibility gene variants predispose to adult-onset autoimmune diabetes. Diabetologia. 2014;57(9):1859–68. Epub 2014/06/08CrossRefGoogle Scholar
  11. Andreasen CH, Stender-Petersen KL, Mogensen MS, Torekov SS, Wegner L, Andersen G, et al. Low physical activity accentuates the effect of the FTO rs9939609 polymorphism on body fat accumulation. Diabetes. 2008;57(1):95–101.CrossRefGoogle Scholar
  12. Arar NH, Freedman BI, Adler SG, Iyengar SK, Chew EY, Davis MD, et al. Heritability of the severity of diabetic retinopathy: the FIND-Eye study. Investig Ophthalmol Vis Sci. 2008;49(9):3839–45. Epub 2008/09/04CrossRefGoogle Scholar
  13. Arima T, Drewell RA, Arney KL, Inoue J, Makita Y, Hata A, et al. A conserved imprinting control region at the HYMAI/ZAC domain is implicated in transient neonatal diabetes mellitus. Hum Mol Genet. 2001;10(14):1475–83.CrossRefGoogle Scholar
  14. Asahara S, Etoh H, Inoue H, Teruyama K, Shibutani Y, Ihara Y, et al. Paternal allelic mutation at the Kcnq1 locus reduces pancreatic beta-cell mass by epigenetic modification of Cdkn1c. Proc Natl Acad Sci U S A. 2015;112(27):8332–7.PubMedCentralCrossRefPubMedGoogle Scholar
  15. Babenko AP, Polak M, Cave H, Busiah K, Czernichow P, Scharfmann R, et al. Activating mutations in the ABCC8 gene in neonatal diabetes mellitus. N Engl J Med. 2006;355(5):456–66.CrossRefGoogle Scholar
  16. Bacos K, Gillberg L, Volkov P, Olsson AH, Hansen T, Pedersen O, et al. Blood-based biomarkers of age-associated epigenetic changes in human islets associate with insulin secretion and diabetes. Nat Commun. 2016;7:11089.PubMedCentralCrossRefPubMedGoogle Scholar
  17. Barker DJ. The origins of the developmental origins theory. J Intern Med. 2007;261(5):412–7.CrossRefGoogle Scholar
  18. Beckman JA, Creager MA, Libby P. Diabetes and atherosclerosis: epidemiology, pathophysiology, and management. JAMA. 2002;287(19):2570–81.CrossRefGoogle Scholar
  19. Bell GI, Horita S, Karam JH. A polymorphic locus near the human insulin gene is associated with insulin-dependent diabetes mellitus. Diabetes. 1984;33(2):176–83. Epub 1984/02/01CrossRefGoogle Scholar
  20. Belot MP, Fradin D, Mai N, Le Fur S, Zelenika D, Kerr-Conte J, et al. CpG methylation changes within the IL2RA promoter in type 1 diabetes of childhood onset. PLoS One. 2013;8(7):e68093.PubMedCentralCrossRefPubMedGoogle Scholar
  21. Bergholdt R, Brorsson C, Palleja A, Berchtold LA, Floyel T, Bang-Berthelsen CH, et al. Identification of novel type 1 diabetes candidate genes by integrating genome-wide association data, protein-protein interactions, and human pancreatic islet gene expression. Diabetes. 2012;61(4):954–62. Epub 2012/02/22PubMedCentralCrossRefPubMedGoogle Scholar
  22. Bird A. Perceptions of epigenetics. Nature. 2007;447(7143):396–8. Epub 2007/05/25CrossRefGoogle Scholar
  23. Blodgett DM, Nowosielska A, Afik S, Pechhold S, Cura AJ, Kennedy NJ, et al. Novel observations from next-generation RNA sequencing of highly purified human adult and fetal islet cell subsets. Diabetes. 2015;64(9):3172–81.PubMedCentralCrossRefPubMedGoogle Scholar
  24. Boger CA, Sedor JR. GWAS of diabetic nephropathy: is the GENIE out of the bottle? PLoS Genet. 2012;8(9):e1002989. Epub 2012/10/03PubMedCentralCrossRefPubMedGoogle Scholar
  25. Bouchard L, Hivert MF, Guay SP, St-Pierre J, Perron P, Brisson D. Placental adiponectin gene DNA methylation levels are associated with mothers’ blood glucose concentration. Diabetes. 2012;61(5):1272–80.PubMedCentralCrossRefPubMedGoogle Scholar
  26. Brito EC, Lyssenko V, Renstrom F, Berglund G, Nilsson PM, Groop L, et al. Previously associated type 2 diabetes variants may interact with physical activity to modify the risk of impaired glucose regulation and type 2 diabetes: a study of 16,003 Swedish adults. Diabetes. 2009;58(6):1411–8.PubMedCentralCrossRefPubMedGoogle Scholar
  27. Broadbent HM, Peden JF, Lorkowski S, Goel A, Ongen H, Green F, et al. Susceptibility to coronary artery disease and diabetes is encoded by distinct, tightly linked SNPs in the ANRIL locus on chromosome 9p. Hum Mol Genet. 2008;17(6):806–14. Epub 2007/12/01CrossRefGoogle Scholar
  28. Buchanan TA, Xiang AH. Gestational diabetes mellitus. J Clin Invest. 2005;115(3):485–91.PubMedCentralCrossRefPubMedGoogle Scholar
  29. Carlson CS, Eberle MA, Kruglyak L, Nickerson DA. Mapping complex disease loci in whole-genome association studies. Nature. 2004;429(6990):446–52. Epub 2004/05/28CrossRefGoogle Scholar
  30. Carlsson S, Midthjell K, Grill V. Influence of family history of diabetes on incidence and prevalence of latent autoimmune diabetes of the adult: results from the Nord-Trondelag Health Study. Diabetes Care. 2007;30(12):3040–5. Epub 2007/09/20CrossRefGoogle Scholar
  31. Catalano PM, Tyzbir ED, Sims EA. Incidence and significance of islet cell antibodies in women with previous gestational diabetes. Diabetes Care. 1990;13(5):478–82.CrossRefGoogle Scholar
  32. Centers for Disease Control and Prevention. National diabetes fact sheet: national estimates and general information on diabetes and prediabetes in the United States, 2011. Atlanta: U.S. Department of Health and Human; 2011.Google Scholar
  33. Cervin C, Lyssenko V, Bakhtadze E, Lindholm E, Nilsson P, Tuomi T, et al. Genetic similarities between latent autoimmune diabetes in adults, type 1 diabetes, and type 2 diabetes. Diabetes. 2008;57(5):1433–7. Epub 2008/03/04CrossRefGoogle Scholar
  34. Chambers JC, et al. Common genetic variation near MC4R is associated with waist circumference and insulin resistance. Nat Genet. 2008;40(6):716–8.CrossRefGoogle Scholar
  35. Chambers JC, Loh M, Lehne B, Drong A, Kriebel J, Motta V, et al. Epigenome-wide association of DNA methylation markers in peripheral blood from Indian Asians and Europeans with incident type 2 diabetes: a nested case-control study. Lancet Diabetes Endocrinol. 2015;3(7):526–34. Epub 2015/06/23PubMedCentralCrossRefPubMedGoogle Scholar
  36. Chen G, et al. Genome-wide association study identifies novel loci association with fasting insulin and insulin resistance in African Americans. Hum Mol Genet. 2012;21(20):4530–6.PubMedCentralCrossRefPubMedGoogle Scholar
  37. Cho YS, et al. Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in east Asians. Nat Genet. 2012a;44(1):67–72.CrossRefGoogle Scholar
  38. Cho YS, et al. Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in east Asians. Nat Genet. 2012b;44(1):67–72.CrossRefGoogle Scholar
  39. Cho H, Sobrin L. Genetics of diabetic retinopathy. Curr Diab Rep. 2014;14(8):515.PubMedCentralCrossRefPubMedGoogle Scholar
  40. Cho YM, Kim TH, Lim S, Choi SH, Shin HD, Lee HK, et al. Type 2 diabetes-associated genetic variants discovered in the recent genome-wide association studies are related to gestational diabetes mellitus in the Korean population. Diabetologia. 2009;52(2):253–61.CrossRefGoogle Scholar
  41. Cho YS, Chen CH, Hu C, Long J, Ong RT, Sim X, et al. Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in east Asians. Nat Genet. 2012;44(1):67–72. Epub 2011/12/14CrossRefGoogle Scholar
  42. Chong S, Whitelaw E. Epigenetic germline inheritance. Curr Opin Genet Dev. 2004;14(6):692–6.CrossRefGoogle Scholar
  43. Chong S, Youngson NA, Whitelaw E. Heritable germline epimutation is not the same as transgenerational epigenetic inheritance. Nat Genet. 2007;39(5):574–5; author reply 5–6CrossRefGoogle Scholar
  44. Collins FS, Green ED, Guttmacher AE, Guyer MS. A vision for the future of genomics research. Nature. 2003;422(6934):835–47. Epub 2003/04/16CrossRefGoogle Scholar
  45. Cote S, Gagne-Ouellet V, Guay SP, Allard C, Houde AA, Perron P, et al. PPARGC1alpha gene DNA methylation variations in human placenta mediate the link between maternal hyperglycemia and leptin levels in newborns. Clin Epigenetics. 2016;8:72.PubMedCentralCrossRefPubMedGoogle Scholar
  46. Cui B, et al. A genome-wide association study confirms previously reported loci for type 2 diabetes in Han Chinese. PLoS One. 2011;6(7):e22353.PubMedCentralCrossRefPubMedGoogle Scholar
  47. Dahlquist G, Blom L, Tuvemo T, Nystrom L, Sandstrom A, Wall S. The Swedish childhood diabetes study–results from a nine year case register and a one year case-referent study indicating that type 1 (insulin-dependent) diabetes mellitus is associated with both type 2 (non-insulin-dependent) diabetes mellitus and autoimmune disorders. Diabetologia. 1989;32(1):2–6. Epub 1989/01/01CrossRefGoogle Scholar
  48. Davidson BL, McCray PB Jr. Current prospects for RNA interference-based therapies. Nat Rev Genet. 2011;12(5):329–40. Epub 2011/04/19CrossRefGoogle Scholar
  49. Dayeh T, Volkov P, Salo S, Hall E, Nilsson E, Olsson AH, et al. Genome-wide DNA methylation analysis of human pancreatic islets from type 2 diabetic and non-diabetic donors identifies candidate genes that influence insulin secretion. PLoS Genet. 2014;10(3):e1004160.PubMedCentralCrossRefPubMedGoogle Scholar
  50. DCCT. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group. N Engl J Med. 1993;329(14):977–86.CrossRefGoogle Scholar
  51. De Marinis Y, Cai M, Bompada P, Atac D, Kotova O, Johansson ME, et al. Epigenetic regulation of the thioredoxin-interacting protein (TXNIP) gene by hyperglycemia in kidney. Kidney Int. 2016;89(2):342–53.CrossRefGoogle Scholar
  52. Deeb SS, Fajas L, Nemoto M, Pihlajamaki J, Mykkanen L, Kuusisto J, et al. A Pro12Ala substitution in PPARgamma2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity. Nat Genet. 1998;20(3):284–7.CrossRefGoogle Scholar
  53. Diabetes Genetics Initiative of Broad Institute of Harvard and MIT, et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science. 2007;316(5829):1331–6.Google Scholar
  54. DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) Consortium, et al. Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nat Genet. 2014;46(3):234–44.CrossRefGoogle Scholar
  55. Diamond J. The double puzzle of diabetes. Nature. 2003;423(6940):599–602. Epub 2003/06/06CrossRefGoogle Scholar
  56. Drury PL, Ting R, Zannino D, Ehnholm C, Flack J, Whiting M, et al. Estimated glomerular filtration rate and albuminuria are independent predictors of cardiovascular events and death in type 2 diabetes mellitus: the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study. Diabetologia. 2011;54(1):32–43. Epub 2010/07/30PubMedCentralCrossRefPubMedGoogle Scholar
  57. Duggirala R, Blangero J, Almasy L, Dyer TD, Williams KL, Leach RJ, et al. Linkage of type 2 diabetes mellitus and of age at onset to a genetic location on chromosome 10q in Mexican Americans. Am J Hum Genet. 1999;64(4):1127–40. Epub 1999/03/26PubMedCentralCrossRefPubMedGoogle Scholar
  58. Dupuis J, et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet. 2010;42(2):105–16.PubMedCentralCrossRefPubMedGoogle Scholar
  59. Ekelund M, Shaat N, Almgren P, Anderberg E, Landin-Olsson M, Lyssenko V, et al. Genetic prediction of postpartum diabetes in women with gestational diabetes mellitus. Diabetes Res Clin Pract. 2012;97(3):394–8.CrossRefGoogle Scholar
  60. Ellard S, Beards F, Allen LI, Shepherd M, Ballantyne E, Harvey R, et al. A high prevalence of glucokinase mutations in gestational diabetic subjects selected by clinical criteria. Diabetologia. 2000;43(2):250–3.CrossRefGoogle Scholar
  61. Ellis JW, Chen MH, Foster MC, Liu CT, Larson MG, de Boer I, et al. Validated SNPs for eGFR and their associations with albuminuria. Hum Mol Genet. 2012;21(14):3293–8. Epub 2012/04/12PubMedCentralCrossRefPubMedGoogle Scholar
  62. Enquobahrie DA, Moore A, Muhie S, Tadesse MG, Lin S, Williams MA. Early pregnancy maternal blood DNA methylation in repeat pregnancies and change in gestational diabetes mellitus status – a pilot study. Reprod Sci. 2015;22(7):904–10.PubMedCentralCrossRefPubMedGoogle Scholar
  63. Erlich H, Valdes AM, Noble J, Carlson JA, Varney M, Concannon P, et al. HLA DR-DQ haplotypes and genotypes and type 1 diabetes risk. Analysis of the type 1 diabetes genetics consortium families. Diabetes. 2008;57(4):1084–92.PubMedCentralCrossRefPubMedGoogle Scholar
  64. Evans DM, Marchini J, Morris AP, Cardon LR. Two-stage two-locus models in genome-wide association. PLoS Genet. 2006;2(9):e157. Epub 2006/09/28PubMedCentralCrossRefPubMedGoogle Scholar
  65. Fadista J, Vikman P, Laakso EO, Mollet IG, Esguerra JL, Taneera J, et al. Global genomic and transcriptomic analysis of human pancreatic islets reveals novel genes influencing glucose metabolism. Proc Natl Acad Sci U S A. 2014;111(38):13924–9.PubMedCentralCrossRefPubMedGoogle Scholar
  66. Fernandez-Valverde SL, Taft RJ, Mattick JS. MicroRNAs in beta-cell biology, insulin resistance, diabetes and its complications. Diabetes. 2011;60(7):1825–31. Epub 2011/06/29PubMedCentralCrossRefPubMedGoogle Scholar
  67. Finer S, Mathews C, Lowe R, Smart M, Hillman S, Foo L, et al. Maternal gestational diabetes is associated with genome-wide DNA methylation variation in placenta and cord blood of exposed offspring. Hum Mol Genet. 2015;24(11):3021–9.CrossRefGoogle Scholar
  68. Flannick J, Thorleifsson G, Beer NL, Jacobs SB, Grarup N, Burtt NP, et al. Loss-of-function mutations in SLC30A8 protect against type 2 diabetes. Nat Genet. 2014;46(4):357–63.PubMedCentralCrossRefPubMedGoogle Scholar
  69. Florath I, Butterbach K, Heiss J, Bewerunge-Hudler M, Zhang Y, Schottker B, et al. Type 2 diabetes and leucocyte DNA methylation: an epigenome-wide association study in over 1,500 older adults. Diabetologia. 2016;59(1):130–8. Epub 2015/10/05CrossRefGoogle Scholar
  70. Forbes JM, Cooper ME. Mechanisms of diabetic complications. Physiol Rev. 2013;93(1):137–88. Epub 2013/01/11CrossRefGoogle Scholar
  71. Forsblom CM, Kanninen T, Lehtovirta M, Saloranta C, Groop LC. Heritability of albumin excretion rate in families of patients with type II diabetes. Diabetologia. 1999;42(11):1359–66. Epub 1999/11/07CrossRefGoogle Scholar
  72. Fradin D, Le Fur S, Mille C, Naoui N, Groves C, Zelenika D, et al. Association of the CpG methylation pattern of the proximal insulin gene promoter with type 1 diabetes. PLoS One. 2012;7(5):e36278.PubMedCentralCrossRefPubMedGoogle Scholar
  73. Franks PW, Jablonski KA, Delahanty LM, McAteer JB, Kahn SE, Knowler WC, et al. Assessing gene-treatment interactions at the FTO and INSIG2 loci on obesity-related traits in the Diabetes Prevention Program. Diabetologia. 2008;51(12):2214–23.PubMedCentralCrossRefPubMedGoogle Scholar
  74. Frayling TM, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science. 2007;316(5826):889–94.PubMedCentralCrossRefPubMedGoogle Scholar
  75. Fuchsberger C, et al. The genetic architecture of type 2 diabetes. Nature. 2016;536(7614):41–7.PubMedCentralCrossRefPubMedGoogle Scholar
  76. Gilg J, Rao A, Fogarty D. UK Renal Registry 16th annual report: chapter 1 UK renal replacement therapy incidence in 2012: national and centre-specific analyses. Nephron Clin Pract. 2013;125(1–4):1–27. Epub 2013/01/01Google Scholar
  77. Gloyn AL. Glucokinase (GCK) mutations in hyper- and hypoglycemia: maturity-onset diabetes of the young, permanent neonatal diabetes, and hyperinsulinemia of infancy. Hum Mutat. 2003;22(5):353–62.CrossRefGoogle Scholar
  78. Gloyn AL, Weedon MN, Owen KR, Turner MJ, Knight BA, Hitman G, et al. Large-scale association studies of variants in genes encoding the pancreatic beta-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with type 2 diabetes. Diabetes. 2003;52(2):568–72. Epub 2003/01/24CrossRefGoogle Scholar
  79. Gloyn AL, Pearson ER, Antcliff JF, Proks P, Bruining GJ, Slingerland AS, et al. Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes. N Engl J Med. 2004;350(18):1838–49. Epub 2004/04/30CrossRefGoogle Scholar
  80. Go MJ, et al. New susceptibility loci in MYL2, C12orf51 and OAS1 associated with 1-h plasma glucose as predisposing risk factors for type 2 diabetes in the Korean population. J Hum Genet. 2013;58(6):362–5.CrossRefGoogle Scholar
  81. Grant SF, Thorleifsson G, Reynisdottir I, Benediktsson R, Manolescu A, Sainz J, et al. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet. 2006;38(3):320–3.CrossRefGoogle Scholar
  82. Grassi MA, Tikhomirov A, Ramalingam S, Below JE, Cox NJ, Nicolae DL. Genome-wide meta-analysis for severe diabetic retinopathy. Hum Mol Genet. 2011;20(12):2472–81. Epub 2011/03/29PubMedCentralCrossRefPubMedGoogle Scholar
  83. Greeley SA, Tucker SE, Naylor RN, Bell GI, Philipson LH. Neonatal diabetes mellitus: a model for personalized medicine. Trends Endocrinol Metab. 2010;21(8):464–72.PubMedCentralCrossRefPubMedGoogle Scholar
  84. Groop L, Pociot F. Genetics of diabetes–are we missing the genes or the disease? Mol Cell Endocrinol. 2014;382(1):726–39. Epub 2013/04/17CrossRefGoogle Scholar
  85. Groop L, Forsblom C, Lehtovirta M, Tuomi T, Karanko S, Nissen M, et al. Metabolic consequences of a family history of NIDDM (the Botnia study): evidence for sex-specific parental effects. Diabetes. 1996;45(11):1585–93. Epub 1996/11/01CrossRefGoogle Scholar
  86. Groop L, Tuomi T, Rowley M, Zimmet P, Mackay IR. Latent autoimmune diabetes in adults (LADA)–more than a name. Diabetologia. 2006;49(9):1996–8. Epub 2006/07/05CrossRefGoogle Scholar
  87. Groop PH, Thomas MC, Moran JL, Waden J, Thorn LM, Makinen VP, et al. The presence and severity of chronic kidney disease predicts all-cause mortality in type 1 diabetes. Diabetes. 2009;58(7):1651–8. Epub 2009/04/30PubMedCentralCrossRefPubMedGoogle Scholar
  88. Group HSCR, Metzger BE, Lowe LP, Dyer AR, Trimble ER, Chaovarindr U, et al. Hyperglycemia and adverse pregnancy outcomes. N Engl J Med. 2008;358(19):1991–2002.CrossRefGoogle Scholar
  89. Guariguata L, Linnenkamp U, Beagley J, Whiting DR, Cho NH. Global estimates of the prevalence of hyperglycaemia in pregnancy. Diabetes Res Clin Pract. 2014;103(2):176–85.CrossRefGoogle Scholar
  90. Gudmundsson J, Sulem P, Steinthorsdottir V, Bergthorsson JT, Thorleifsson G, Manolescu A, et al. Two variants on chromosome 17 confer prostate cancer risk, and the one in TCF2 protects against type 2 diabetes. Nat Genet. 2007;39(8):977–83.CrossRefGoogle Scholar
  91. Hales CN, Barker DJ. The thrifty phenotype hypothesis. Br Med Bull. 2001;60:5–20.CrossRefGoogle Scholar
  92. Hani EH, Boutin P, Durand E, Inoue H, Permutt MA, Velho G, et al. Missense mutations in the pancreatic islet beta cell inwardly rectifying K+ channel gene (KIR6.2/BIR): a meta-analysis suggests a role in the polygenic basis of type II diabetes mellitus in Caucasians. Diabetologia. 1998;41(12):1511–5.CrossRefGoogle Scholar
  93. Hansen SK, Nielsen EM, Ek J, Andersen G, Glumer C, Carstensen B, et al. Analysis of separate and combined effects of common variation in KCNJ11 and PPARG on risk of type 2 diabetes. J Clin Endocrinol Metab. 2005;90(6):3629–37.CrossRefGoogle Scholar
  94. Hanson RL, Guo T, Muller YL, Fleming J, Knowler WC, Kobes S, et al. Strong parent-of-origin effects in the association of KCNQ1 variants with type 2 diabetes in American Indians. Diabetes. 2013;62(8):2984–91.PubMedCentralCrossRefPubMedGoogle Scholar
  95. Hanson RL, et al. A genome-wide association study in American Indians implicates DNER as a susceptibility locus for type 2 diabetes. Diabetes. 2014;63(1):369–76.CrossRefGoogle Scholar
  96. Hara K, et al. Genome-wide association study identifies three novel loci for type 2 diabetes. Hum Mol Genet. 2014;23(1):239–46.CrossRefGoogle Scholar
  97. Harder T, Franke K, Kohlhoff R, Plagemann A. Maternal and paternal family history of diabetes in women with gestational diabetes or insulin-dependent diabetes mellitus type I. Gynecol Obstet Investig. 2001;51(3):160–4.CrossRefGoogle Scholar
  98. Harder T, Rodekamp E, Schellong K, Dudenhausen JW, Plagemann A. Birth weight and subsequent risk of type 2 diabetes: a meta-analysis. Am J Epidemiol. 2007;165(8):849–57.CrossRefGoogle Scholar
  99. Hariharan M, Scaria V, Brahmachari SK. dbSMR: a novel resource of genome-wide SNPs affecting microRNA mediated regulation. BMC Bioinf. 2009;10:108. Epub 2009/04/18CrossRefGoogle Scholar
  100. Harjutsalo V, Katoh S, Sarti C, Tajima N, Tuomilehto J. Population-based assessment of familial clustering of diabetic nephropathy in type 1 diabetes. Diabetes. 2004;53(9):2449–54. Epub 2004/08/28CrossRefGoogle Scholar
  101. Hemminki K, Li X, Sundquist K, Sundquist J. Familial risks for type 2 diabetes in Sweden. Diabetes Care. 2010;33(2):293–7. Epub 2009/11/12CrossRefGoogle Scholar
  102. Hietala K, Forsblom C, Summanen P, Groop PH, FinnDiane Study G. Heritability of proliferative diabetic retinopathy. Diabetes. 2008;57(8):2176–80. Epub 2008/04/30PubMedCentralCrossRefPubMedGoogle Scholar
  103. Hoggart CJ, Venturini G, Mangino M, Gomez F, Ascari G, Zhao JH, et al. Novel approach identifies SNPs in SLC2A10 and KCNK9 with evidence for parent-of-origin effect on body mass index. PLoS Genet. 2014;10(7):e1004508.PubMedCentralCrossRefPubMedGoogle Scholar
  104. Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HA. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med. 2008;359(15):1577–89. Epub 2008/09/12CrossRefGoogle Scholar
  105. Horikawa Y, Oda N, Cox NJ, Li X, Orho-Melander M, Hara M, et al. Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus. Nat Genet. 2000;26(2):163–75.PubMedCentralCrossRefPubMedGoogle Scholar
  106. Horton V, Stratton I, Bottazzo GF, Shattock M, Mackay I, Zimmet P, et al. Genetic heterogeneity of autoimmune diabetes: age of presentation in adults is influenced by HLA DRB1 and DQB1 genotypes (UKPDS 43). UK Prospective Diabetes Study (UKPDS) Group. Diabetologia. 1999;42(5):608–16. Epub 1999/05/20CrossRefGoogle Scholar
  107. Houde AA, Guay SP, Desgagne V, Hivert MF, Baillargeon JP, St-Pierre J, et al. Adaptations of placental and cord blood ABCA1 DNA methylation profile to maternal metabolic status. Epigenetics. 2013;8(12):1289–302.PubMedCentralCrossRefPubMedGoogle Scholar
  108. Howson JM, Rosinger S, Smyth DJ, Boehm BO, Todd JA. Genetic analysis of adult-onset autoimmune diabetes. Diabetes. 2011;60(10):2645–53. Epub 2011/08/30PubMedCentralCrossRefPubMedGoogle Scholar
  109. Huang YC, Lin JM, Lin HJ, Chen CC, Chen SY, Tsai CH, et al. Genome-wide association study of diabetic retinopathy in a Taiwanese population. Ophthalmology. 2011;118(4):642–8. Epub 2011/02/12CrossRefGoogle Scholar
  110. Huopio H, Cederberg H, Vangipurapu J, Hakkarainen H, Paakkonen M, Kuulasmaa T, et al. Association of risk variants for type 2 diabetes and hyperglycemia with gestational diabetes. Eur J Endocrinol. 2013;169(3):291–7.CrossRefGoogle Scholar
  111. Huyghe JR, et al. Exome array analysis identifies new loci and low-frequency variants influencing insulin processing and secretion. Nat Genet. 2013;45(2):197–201.CrossRefGoogle Scholar
  112. Hyttinen V, Kaprio J, Kinnunen L, Koskenvuo M, Tuomilehto J. Genetic liability of type 1 diabetes and the onset age among 22,650 young Finnish twin pairs: a nationwide follow-up study. Diabetes. 2003;52(4):1052–5.CrossRefGoogle Scholar
  113. Ilonen J, Hammais A, Laine A-P, Lempainen J, Vaarala O, Veijola R, et al. Patterns of β-cell autoantibody appearance and genetic associations during the first years of life. Diabetes. 2013;62(10):3636–40.PubMedCentralCrossRefPubMedGoogle Scholar
  114. Imamura M, Maeda S, Yamauchi T, Hara K, Yasuda K, Morizono T, et al. A single-nucleotide polymorphism in ANK1 is associated with susceptibility to type 2 diabetes in Japanese populations. Hum Mol Genet. 2012;21(13):3042–9.CrossRefGoogle Scholar
  115. International HapMap Consortium. The International HapMap Project. Nature. 2003;426(6968):789–96. Epub 2003/12/20CrossRefGoogle Scholar
  116. Kahara T, Takamura T, Hayakawa T, Nagai Y, Yamaguchi H, Katsuki T, et al. PPARgamma gene polymorphism is associated with exercise-mediated changes of insulin resistance in healthy men. Metabolism. 2003;52(2):209–12.CrossRefGoogle Scholar
  117. Kaprio J, Tuomilehto J, Koskenvuo M, Romanov K, Reunanen A, Eriksson J, et al. Concordance for type 1 (insulin-dependent) and type 2 (non-insulin-dependent) diabetes mellitus in a population-based cohort of twins in Finland. Diabetologia. 1992;35(11):1060–7. Epub 1992/11/01CrossRefGoogle Scholar
  118. Karvonen M, Viik-Kajander M, Moltchanova E, Libman I, LaPorte R, Tuomilehto J. Incidence of childhood type 1 diabetes worldwide. Diabetes Mondiale (DiaMond) Project Group. Diabetes Care. 2000;23(10):1516–26. Epub 2000/10/07CrossRefGoogle Scholar
  119. Khera AV, Kathiresan S. Genetics of coronary artery disease: discovery, biology and clinical translation. Nat Rev Genet. 2017;18(6):331–44. Epub 2017/03/14PubMedCentralCrossRefPubMedGoogle Scholar
  120. Kim C, Newton KM, Knopp RH. Gestational diabetes and the incidence of type 2 diabetes: a systematic review. Diabetes Care. 2002;25(10):1862–8.CrossRefGoogle Scholar
  121. Kleinberger JW, Pollin TI. Undiagnosed MODY: time for action. Curr Diab Rep. 2015;15(12):110.PubMedCentralCrossRefPubMedGoogle Scholar
  122. Köbberling J, Tillil H. Empirical risk figures for first-degree relatives of non-insulin dependent diabetics. In: Köbberling J, Tattersall R, editors. The genetics of diabetes mellitus. London: Academic; 1982. p. 201–9.Google Scholar
  123. Kong A, Steinthorsdottir V, Masson G, Thorleifsson G, Sulem P, Besenbacher S, et al. Parental origin of sequence variants associated with complex diseases. Nature. 2009;462(7275):868–74.PubMedCentralCrossRefPubMedGoogle Scholar
  124. Kooner JS, Saleheen D, Sim X, Sehmi J, Zhang W, Frossard P, et al. Genome-wide association study in individuals of south Asian ancestry identifies six new type 2 diabetes susceptibility loci. Nat Genet. 2011;43(10):984–9.PubMedCentralCrossRefPubMedGoogle Scholar
  125. Krolewski AS, Warram JH, Christlieb AR, Busick EJ, Kahn CR. The changing natural history of nephropathy in type I diabetes. Am J Med. 1985;78(5):785–94. Epub 1985/05/01CrossRefGoogle Scholar
  126. Krolewski AS, Poznik GD, Placha G, Canani L, Dunn J, Walker W, et al. A genome-wide linkage scan for genes controlling variation in urinary albumin excretion in type II diabetes. Kidney Int. 2006;69(1):129–36. Epub 2005/12/24CrossRefGoogle Scholar
  127. Kuhl C. Glucose metabolism during and after pregnancy in normal and gestational diabetic women. 1. Influence of normal pregnancy on serum glucose and insulin concentration during basal fasting conditions and after a challenge with glucose. Acta Endocrinol. 1975;79(4):709–19.CrossRefGoogle Scholar
  128. Kulkarni H, Kos MZ, Neary J, Dyer TD, Kent JW Jr, Goring HH, et al. Novel epigenetic determinants of type 2 diabetes in Mexican-American families. Hum Mol Genet. 2015;24(18):5330–44. Epub 2015/06/24PubMedCentralCrossRefPubMedGoogle Scholar
  129. Kwak SH, Kim SH, Cho YM, Go MJ, Cho YS, Choi SH, et al. A genome-wide association study of gestational diabetes mellitus in Korean women. Diabetes. 2012;61(2):531–41.PubMedCentralCrossRefPubMedGoogle Scholar
  130. Kyvik KO, Green A, Beck-Nielsen H. Concordance rates of insulin dependent diabetes mellitus: a population based study of young Danish twins. BMJ. 1995;311(7010):913–7. Epub 1995/10/07PubMedCentralCrossRefPubMedGoogle Scholar
  131. Langefeld CD, Beck SR, Bowden DW, Rich SS, Wagenknecht LE, Freedman BI. Heritability of GFR and albuminuria in Caucasians with type 2 diabetes mellitus. Am J Kidney Dis. 2004;43(5):796–800. Epub 2004/04/28CrossRefGoogle Scholar
  132. Lauenborg J, Grarup N, Damm P, Borch-Johnsen K, Jorgensen T, Pedersen O, et al. Common type 2 diabetes risk gene variants associate with gestational diabetes. J Clin Endocrinol Metab. 2009;94(1):145–50.CrossRefGoogle Scholar
  133. Laugesen E, Ostergaard JA, Leslie RD, Danish Diabetes Academy Workshop and Workshop Speakers. Latent autoimmune diabetes of the adult: current knowledge and uncertainty. Diabet Med. 2015;32(7):843–52. Epub 2015/01/21PubMedCentralCrossRefPubMedGoogle Scholar
  134. Lesseur C, Armstrong DA, Paquette AG, Li Z, Padbury JF, Marsit CJ. Maternal obesity and gestational diabetes are associated with placental leptin DNA methylation. Am J Obstet Gynecol. 2014;211(6):654 e1–9.CrossRefGoogle Scholar
  135. Li H, Gan W, Lu L, Dong X, Han X, Hu C, et al. A genome-wide association study identifies GRK5 and RASGRP1 as type 2 diabetes loci in Chinese Hans. Diabetes. 2013;62(1):291–8.CrossRefGoogle Scholar
  136. Looker HC, Nelson RG, Chew E, Klein R, Klein BE, Knowler WC, et al. Genome-wide linkage analyses to identify Loci for diabetic retinopathy. Diabetes. 2007;56(4):1160–6. Epub 2007/03/31CrossRefGoogle Scholar
  137. Luan J, Browne PO, Harding AH, Halsall DJ, O’Rahilly S, Chatterjee VK, et al. Evidence for gene-nutrient interaction at the PPARgamma locus. Diabetes. 2001;50(3):686–9.CrossRefGoogle Scholar
  138. Lupski JR, Belmont JW, Boerwinkle E, Gibbs RA. Clan genomics and the complex architecture of human disease. Cell. 2011;147(1):32–43. Epub 2011/10/04PubMedCentralCrossRefPubMedGoogle Scholar
  139. Lyssenko V, et al. Clinical risk factors, DNA variants, and the development of type 2 diabetes. N Engl J Med. 2008;359(21):2220–32.CrossRefGoogle Scholar
  140. Ma RC, et al. Genome-wide association study in a Chinese population identifies a susceptibility locus for type 2 diabetes at 7q32 near PAX4. Diabetologia. 2013;56(6):1291–305.PubMedCentralCrossRefPubMedGoogle Scholar
  141. Manning AK, et al. A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance. Nat Genet. 2012;44(6):659–69.PubMedCentralCrossRefPubMedGoogle Scholar
  142. Martin AO, Simpson JL, Ober C, Freinkel N. Frequency of diabetes mellitus in mothers of probands with gestational diabetes: possible maternal influence on the predisposition to gestational diabetes. Am J Obstet Gynecol. 1985;151(4):471–5.CrossRefGoogle Scholar
  143. Medici F, Hawa M, Ianari A, Pyke DA, Leslie RD. Concordance rate for type II diabetes mellitus in monozygotic twins: actuarial analysis. Diabetologia. 1999;42(2):146–50. Epub 1999/03/04CrossRefGoogle Scholar
  144. Meigs JB, Cupples LA, Wilson PW. Parental transmission of type 2 diabetes: the Framingham Offspring Study. Diabetes. 2000;49(12):2201–7. Epub 2000/12/16CrossRefGoogle Scholar
  145. Miao F, Smith DD, Zhang L, Min A, Feng W, Natarajan R. Lymphocytes from patients with type 1 diabetes display a distinct profile of chromatin histone H3 lysine 9 dimethylation: an epigenetic study in diabetes. Diabetes. 2008;57(12):3189–98.PubMedCentralCrossRefPubMedGoogle Scholar
  146. Miao F, Chen Z, Zhang L, Liu Z, Wu X, Yuan YC, et al. Profiles of epigenetic histone post-translational modifications at type 1 diabetes susceptible genes. J Biol Chem. 2012;287(20):16335–45.PubMedCentralCrossRefPubMedGoogle Scholar
  147. Michalczyk AA, Dunbar JA, Janus ED, Best JD, Ebeling PR, Ackland MJ, et al. Epigenetic markers to predict conversion from gestational diabetes to type 2 diabetes. J Clin Endocrinol Metab. 2016;101(6):2396–404.CrossRefGoogle Scholar
  148. Minton JA, et al. Association studies of genetic variation in the WFS1 gene and type 2 diabetes in U.K. populations. Diabetes. 2002;51(4):1287–90.CrossRefGoogle Scholar
  149. Moltke I, Grarup N, Jorgensen ME, Bjerregaard P, Treebak JT, Fumagalli M, et al. A common Greenlandic TBC1D4 variant confers muscle insulin resistance and type 2 diabetes. Nature. 2014;512(7513):190–3.CrossRefGoogle Scholar
  150. Moore T, Haig D. Genomic imprinting in mammalian development: a parental tug-of-war. Trends Genet. 1991;7(2):45–9.CrossRefGoogle Scholar
  151. Moran VA, Perera RJ, Khalil AM. Emerging functional and mechanistic paradigms of mammalian long non-coding RNAs. Nucleic Acids Res. 2012;40(14):6391–400.PubMedCentralCrossRefPubMedGoogle Scholar
  152. Morris AP, et al. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat Genet. 2012a;44(9):981–90.PubMedCentralCrossRefPubMedGoogle Scholar
  153. Morris AP, et al. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat Genet. 2012b;44(9):981–90.PubMedCentralCrossRefPubMedGoogle Scholar
  154. Murphy R, Turnbull DM, Walker M, Hattersley AT. Clinical features, diagnosis and management of maternally inherited diabetes and deafness (MIDD) associated with the 3243A>G mitochondrial point mutation. Diabet Med. 2008a;25(4):383–99.CrossRefGoogle Scholar
  155. Murphy R, Ellard S, Hattersley AT. Clinical implications of a molecular genetic classification of monogenic beta-cell diabetes. Nat Clin Pract Endocrinol Metab. 2008b;4(4):200–13. Epub 2008/02/28CrossRefGoogle Scholar
  156. Nerup J, Platz P, Andersen OO, Christy M, Lyngse J, Poulsen JE, et al. HL-A antigens and diabetes mellitus. Lancet. 1974;304(7885):864–6.CrossRefGoogle Scholar
  157. Newman B, Selby JV, King MC, Slemenda C, Fabsitz R, Friedman GD. Concordance for type 2 (non-insulin-dependent) diabetes mellitus in male twins. Diabetologia. 1987;30(10):763–8. Epub 1987/10/01CrossRefGoogle Scholar
  158. Ng MC, et al. Meta-analysis of genome-wide association studies in African Americans provides insights into the genetic architecture of type 2 diabetes. PLoS Genet. 2014;10(8):e1004517.PubMedCentralCrossRefPubMedGoogle Scholar
  159. Nikzamir A, Nakhjavani M, Esteghamati A, Rashidi A. Correlates of ACE activity in macroalbuminuric type 2 diabetic patients treated with chronic ACE inhibition. Nephrol Dial Transplant. 2008;23(4):1274–7.CrossRefGoogle Scholar
  160. Njolstad PR, Sagen JV, Bjorkhaug L, Odili S, Shehadeh N, Bakry D, et al. Permanent neonatal diabetes caused by glucokinase deficiency: inborn error of the glucose-insulin signaling pathway. Diabetes. 2003;52(11):2854–60.CrossRefGoogle Scholar
  161. Noble JA. Immunogenetics of type 1 diabetes: a comprehensive review. J Autoimmun. 2015;64:101–12.CrossRefGoogle Scholar
  162. O’Sullivan JB. Diabetes mellitus after GDM. Diabetes. 1991;40(Suppl 2):131–5.CrossRefGoogle Scholar
  163. Palmer ND, McDonough CW, Hicks PJ, Roh BH, Wing MR, An SS, et al. A genome-wide association search for type 2 diabetes genes in African Americans. PLoS One. 2012;7(1):e29202.PubMedCentralCrossRefPubMedGoogle Scholar
  164. Parra EJ, Below JE, Krithika S, Valladares A, Barta JL, Cox NJ, et al. Genome-wide association study of type 2 diabetes in a sample from Mexico City and a meta-analysis of a Mexican-American sample from Starr County, Texas. Diabetologia. 2011;54(8):2038–46.CrossRefGoogle Scholar
  165. Pasquali L, Gaulton KJ, Rodriguez-Segui SA, Mularoni L, Miguel-Escalada I, Akerman I, et al. Pancreatic islet enhancer clusters enriched in type 2 diabetes risk-associated variants. Nat Genet. 2014;46(2):136–43.PubMedCentralCrossRefPubMedGoogle Scholar
  166. Patterson CC, Dahlquist GG, Gyurus E, Green A, Soltesz G, Group ES. Incidence trends for childhood type 1 diabetes in Europe during 1989–2003 and predicted new cases 2005–20: a multicentre prospective registration study. Lancet. 2009;373(9680):2027–33. Epub 2009/06/02CrossRefPubMedGoogle Scholar
  167. Pearson ER, Starkey BJ, Powell RJ, Gribble FM, Clark PM, Hattersley AT. Genetic cause of hyperglycaemia and response to treatment in diabetes. Lancet. 2003;362(9392):1275–81.CrossRefGoogle Scholar
  168. Perkins BA, Ficociello LH, Roshan B, Warram JH, Krolewski AS. In patients with type 1 diabetes and new-onset microalbuminuria the development of advanced chronic kidney disease may not require progression to proteinuria. Kidney Int. 2010;77(1):57–64. Epub 2009/10/23PubMedCentralCrossRefPubMedGoogle Scholar
  169. Perry JR, et al. Stratifying type 2 diabetes cases by BMI identifies genetic risk variants in LAMA1 and enrichment for risk variants in lean compared to obese cases. PLoS Genet. 2012a;8(5):e1002741.PubMedCentralCrossRefPubMedGoogle Scholar
  170. Perry JR, et al. Stratifying type 2 diabetes cases by BMI identifies genetic risk variants in LAMA1 and enrichment for risk variants in lean compared to obese cases. PLoS Genet. 2012b;8(5):e1002741.PubMedCentralCrossRefPubMedGoogle Scholar
  171. Pettitt DJ, Nelson RG, Saad MF, Bennett PH, Knowler WC. Diabetes and obesity in the offspring of Pima Indian women with diabetes during pregnancy. Diabetes Care. 1993;16(1):310–4.CrossRefGoogle Scholar
  172. Plomin R, Haworth CM, Davis OS. Common disorders are quantitative traits. Nat Rev Genet. 2009;10(12):872–8.CrossRefGoogle Scholar
  173. Pociot F, Lernmark A. Genetic risk factors for type 1 diabetes. Lancet. 2016;387(10035):2331–9. Epub 2016/06/16CrossRefPubMedGoogle Scholar
  174. Pociot F, Norgaard K, Hobolth N, Andersen O, Nerup J. A nationwide population-based study of the familial aggregation of type 1 (insulin-dependent) diabetes mellitus in Denmark. Danish Study Group of Diabetes in Childhood. Diabetologia. 1993;36(9):870–5. Epub 1993/09/01CrossRefGoogle Scholar
  175. Pociot F, Akolkar B, Concannon P, Erlich HA, Julier C, Morahan G, et al. Genetics of type 1 diabetes: what’s next? Diabetes. 2010;59(7):1561–71. Epub 2010/07/01PubMedCentralCrossRefPubMedGoogle Scholar
  176. Polak M, Cave H. Neonatal diabetes mellitus: a disease linked to multiple mechanisms. Orphanet J Rare Dis. 2007;2:12. Epub 2007/03/14PubMedCentralCrossRefPubMedGoogle Scholar
  177. Poulsen P, Kyvik KO, Vaag A, Beck-Nielsen H. Heritability of type II (non-insulin-dependent) diabetes mellitus and abnormal glucose tolerance–a population-based twin study. Diabetologia. 1999;42(2):139–45. Epub 1999/03/04CrossRefGoogle Scholar
  178. Prasad RB, Lessmark A, Almgren P, Kovacs G, Hansson O, Oskolkov N, et al. Excess maternal transmission of variants in the THADA gene to offspring with type 2 diabetes. Diabetologia. 2016a;59(8):1702–13. Epub 2016/05/09CrossRefGoogle Scholar
  179. Prasad RB, Lessmark A, Almgren A, Kovacs G, Oskolkov, N, Vitai M, Ladenvall C, Kovacs P, Fadista J, Lachmann M, Zhou Y, Hansson O, Sonestedt E, Poon W, Wolheim C, Orho-Melander M, Stumvoll M, Tuomi T, Pääbo S, Koranyi L, Groop L. Genetics of type 2 diabetes—Pitfalls and possibilities. Genes (Basel). 2015;6(1):87–123.Google Scholar
  180. Prokopenko I, et al. Variants in MTNR1B influence fasting glucose levels. Nat Genet. 2009;41(1):77–81.CrossRefGoogle Scholar
  181. Pugliese A. The insulin gene in type 1 diabetes. IUBMB Life. 2005;57(7):463–8. Epub 2005/08/06CrossRefGoogle Scholar
  182. Qi L, et al. Genetic variants at 2q24 are associated with susceptibility to type 2 diabetes. Hum Mol Genet. 2010;19(13):2706–15.PubMedCentralCrossRefPubMedGoogle Scholar
  183. Qi L, Qi Q, Prudente S, Mendonca C, Andreozzi F, di Pietro N, et al. Association between a genetic variant related to glutamic acid metabolism and coronary heart disease in individuals with type 2 diabetes. JAMA. 2013;310(8):821–8.CrossRefGoogle Scholar
  184. Qiu M, Xiong W, Liao H, Li F. VEGF -634G>C polymorphism and diabetic retinopathy risk: a meta-analysis. Gene. 2013;518(2):310–5. Epub 2013/01/29CrossRefGoogle Scholar
  185. Rani PK, Raman R, Gupta A, Pal SS, Kulothungan V, Sharma T. Albuminuria and diabetic retinopathy in type 2 diabetes mellitus sankara nethralaya diabetic retinopathy epidemiology and molecular genetic study (SN-DREAMS, report 12). Diabetol Metab Syndr. 2011;3(1):9. Epub 2011/05/27PubMedCentralCrossRefPubMedGoogle Scholar
  186. Replication DIG, Meta-analysis C, Asian Genetic Epidemiology Network Type 2 Diabetes C, South Asian Type 2 Diabetes C, Mexican American Type 2 Diabetes C, Type 2 Diabetes Genetic Exploration by Nex-generation sequencing in muylti-Ethnic Samples C, et al. Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nat Genet. 2014;46(3):234–44. Epub 2014/02/11CrossRefGoogle Scholar
  187. Reynisdottir I, Thorleifsson G, Benediktsson R, Sigurdsson G, Emilsson V, Einarsdottir AS, et al. Localization of a susceptibility gene for type 2 diabetes to chromosome 5q34-q35.2. Am J Hum Genet. 2003;73(2):323–35. Epub 2003/07/10PubMedCentralCrossRefPubMedGoogle Scholar
  188. Rigat B, Hubert C, Alhenc-Gelas F, Cambien F, Corvol P, Soubrier F. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest. 1990;86(4):1343–6.PubMedCentralCrossRefPubMedGoogle Scholar
  189. Ritz E, Zeng XX, Rychlik I. Clinical manifestation and natural history of diabetic nephropathy. Contrib Nephrol. 2011;170:19–27. Epub 2011/06/11CrossRefGoogle Scholar
  190. Robitaille J, Grant AM. The genetics of gestational diabetes mellitus: evidence for relationship with type 2 diabetes mellitus. Genet Med. 2008;10(4):240–50.CrossRefGoogle Scholar
  191. Rosengren AH, et al. Overexpression of alpha2A-adrenergic receptors contributes to type 2 diabetes. Science. 2010;327(5962):217–20.CrossRefGoogle Scholar
  192. Ruggenenti P, Remuzzi G. Nephropathy of type 1 and type 2 diabetes: diverse pathophysiology, same treatment? Nephrol Dial Transplant. 2000;15(12):1900–2. Epub 2000/11/30CrossRefGoogle Scholar
  193. Rung J, et al. Genetic variant near IRS1 is associated with type 2 diabetes, insulin resistance and hyperinsulinemia. Nat Genet. 2009;41(10):1110–5.CrossRefGoogle Scholar
  194. Sackton TB, Hartl DL. Genotypic context and epistasis in individuals and populations. Cell. 2016;166(2):279–87. Epub 2016/07/16PubMedCentralCrossRefPubMedGoogle Scholar
  195. Said G. Diabetic neuropathy – a review. Nat Clin Pract Neurol. 2007;3(6):331–40.CrossRefGoogle Scholar
  196. Salonen JT, et al. Type 2 diabetes whole-genome association study in four populations: the DiaGen consortium. Am J Hum Genet. 2007;81(2):338–45.PubMedCentralCrossRefPubMedGoogle Scholar
  197. Sandholm N, Salem RM, McKnight AJ, Brennan EP, Forsblom C, Isakova T, et al. New susceptibility Loci associated with kidney disease in type 1 diabetes. PLoS Genet. 2012;8(9):e1002921. Epub 2012/10/03PubMedCentralCrossRefPubMedGoogle Scholar
  198. Sandholm N, McKnight AJ, Salem RM, Brennan EP, Forsblom C, Harjutsalo V, et al. Chromosome 2q31.1 associates with ESRD in women with type 1 diabetes. J Am Soc Nephrol. 2013;24(10):1537–43. Epub 2013/09/14PubMedCentralCrossRefPubMedGoogle Scholar
  199. Sandhu MS, et al. Common variants in WFS1 confer risk of type 2 diabetes. Nat Genet. 2007;39(8):951–3.PubMedCentralCrossRefPubMedGoogle Scholar
  200. Sanjeevi CB, Lybrand TP, DeWeese C, Landin-Olsson M, Kockum I, Dahlquist G, et al. Polymorphic amino acid variations in HLA-DQ are associated with systematic physical property changes and occurrence of IDDM. Members of the Swedish Childhood Diabetes Study. Diabetes. 1995;44(1):125–31. Epub 1995/01/01CrossRefGoogle Scholar
  201. Saxena R, et al. Common single nucleotide polymorphisms in TCF7L2 are reproducibly associated with type 2 diabetes and reduce the insulin response to glucose in nondiabetic individuals. Diabetes. 2006;55(10):2890–5.CrossRefGoogle Scholar
  202. Saxena R, et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science. 2007;316(5829):1331–6.CrossRefGoogle Scholar
  203. Saxena R, et al. Genetic variation in GIPR influences the glucose and insulin responses to an oral glucose challenge. Nat Genet. 2010;42(2):142–8.PubMedCentralCrossRefPubMedGoogle Scholar
  204. Saxena R, et al. Large-scale gene-centric meta-analysis across 39 studies identifies type 2 diabetes loci. Am J Hum Genet. 2012;90(3):410–25.PubMedCentralCrossRefPubMedGoogle Scholar
  205. Saxena R, et al. Genome-wide association study identifies a novel locus contributing to type 2 diabetes susceptibility in Sikhs of Punjabi origin from India. Diabetes. 2013;62(5):1746–55.PubMedCentralCrossRefPubMedGoogle Scholar
  206. Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, Li Y, Duren WL, et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science. 2007;316(5829):1341–5.PubMedCentralCrossRefPubMedGoogle Scholar
  207. Scott RA, Lagou V, Welch RP, Wheeler E, Montasser ME, Luan J, et al. Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways. Nat Genet. 2012;44(9):991–1005.PubMedCentralCrossRefPubMedGoogle Scholar
  208. Scott RA, et al. An expanded genome-wide association study of type 2 diabetes in Europeans. Diabetes. 2017;66(11):2888–902.PubMedCentralCrossRefPubMedGoogle Scholar
  209. Segerstolpe A, Palasantza A, Eliasson P, Andersson EM, Andreasson AC, Sun X, et al. Single-cell transcriptome profiling of human pancreatic islets in health and type 2 diabetes. Cell Metab. 2016;24(4):593–607.PubMedCentralCrossRefPubMedGoogle Scholar
  210. Shaat N, Ekelund M, Lernmark A, Ivarsson S, Nilsson A, Perfekt R, et al. Genotypic and phenotypic differences between Arabian and Scandinavian women with gestational diabetes mellitus. Diabetologia. 2004;47(5):878–84.CrossRefGoogle Scholar
  211. Shepherd M, Shields B, Ellard S, Rubio-Cabezas O, Hattersley AT. A genetic diagnosis of HNF1A diabetes alters treatment and improves glycaemic control in the majority of insulin-treated patients. Diabet Med. 2009;26(4):437–41. Epub 2009/04/25CrossRefGoogle Scholar
  212. Sheu WH, Kuo JZ, Lee IT, Hung YJ, Lee WJ, Tsai HY, et al. Genome-wide association study in a Chinese population with diabetic retinopathy. Hum Mol Genet. 2013;22(15):3165–73.PubMedCentralCrossRefPubMedGoogle Scholar
  213. Shields BM, Hicks S, Shepherd MH, Colclough K, Hattersley AT, Ellard S. Maturity-onset diabetes of the young (MODY): how many cases are we missing? Diabetologia. 2010;53(12):2504–8. Epub 2010/05/26CrossRefGoogle Scholar
  214. Shu XO, Long J, Cai Q, Qi L, Xiang YB, Cho YS, et al. Identification of new genetic risk variants for type 2 diabetes. PLoS Genet. 2010;6(9):e1001127.PubMedCentralCrossRefPubMedGoogle Scholar
  215. SIGMA Type 2 Diabetes Consortium, et al. Sequence variants in SLC16A11 are a common risk factor for type 2 diabetes in Mexico. Nature. 2014a;506(7486):97–101.CrossRefGoogle Scholar
  216. SIGMA Type 2 Diabetes Consortium, et al. Association of a low-frequency variant in HNF1A with type 2 diabetes in a Latino population. JAMA. 2014b;311(22):2305–14.CrossRefGoogle Scholar
  217. Silverman BL, Rizzo T, Green OC, Cho NH, Winter RJ, Ogata ES, et al. Long-term prospective evaluation of offspring of diabetic mothers. Diabetes. 1991;40(Suppl 2):121–5.CrossRefGoogle Scholar
  218. Sim X, et al. Transferability of type 2 diabetes implicated loci in multi-ethnic cohorts from Southeast Asia. PLoS Genet. 2011;7(4):e1001363.PubMedCentralCrossRefPubMedGoogle Scholar
  219. Singal DP, Blajchman MA. Histocompatibility (HL-A) antigens, lymphocytotoxic antibodies and tissue antibodies in patients with diabetes mellitus. Diabetes. 1973;22(6):429–32. Epub 1973/06/01CrossRefGoogle Scholar
  220. Sladek R, Rocheleau G, Rung J, Dina C, Shen L, Serre D, et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature. 2007;445(7130):881–5.CrossRefGoogle Scholar
  221. Small KS, Hedman AK, Grundberg E, Nica AC, Thorleifsson G, Kong A, et al. Identification of an imprinted master trans regulator at the KLF14 locus related to multiple metabolic phenotypes. Nat Genet. 2011;43(6):561–4. Epub 2011/05/17PubMedCentralCrossRefPubMedGoogle Scholar
  222. Smyth DJ, Cooper JD, Howson JM, Walker NM, Plagnol V, Stevens H, et al. PTPN22 Trp620 explains the association of chromosome 1p13 with type 1 diabetes and shows a statistical interaction with HLA class II genotypes. Diabetes. 2008;57(6):1730–7. Epub 2008/02/29CrossRefGoogle Scholar
  223. Sonestedt E, Lyssenko V, Ericson U, Gullberg B, Wirfalt E, Groop L, et al. Genetic variation in the glucose-dependent insulinotropic polypeptide receptor modifies the association between carbohydrate and fat intake and risk of type 2 diabetes in the Malmo Diet and Cancer cohort. J Clin Endocrinol Metab. 2012;97(5):E810–8.CrossRefGoogle Scholar
  224. Steinke JM, Sinaiko AR, Kramer MS, Suissa S, Chavers BM, Mauer M, et al. The early natural history of nephropathy in Type 1 Diabetes: III. Predictors of 5-year urinary albumin excretion rate patterns in initially normoalbuminuric patients. Diabetes. 2005;54(7):2164–71. Epub 2005/06/29PubMedCentralCrossRefPubMedGoogle Scholar
  225. Steinthorsdottir V, Thorleifsson G, Reynisdottir I, Benediktsson R, Jonsdottir T, Walters GB, et al. A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. Nat Genet. 2007;39(6):770–5.CrossRefGoogle Scholar
  226. Steinthorsdottir V, Thorleifsson G, Sulem P, Helgason H, Grarup N, Sigurdsson A, et al. Identification of low-frequency and rare sequence variants associated with elevated or reduced risk of type 2 diabetes. Nat Genet. 2014;46(3):294–8.CrossRefGoogle Scholar
  227. Stoffers DA, Zinkin NT, Stanojevic V, Clarke WL, Habener JF. Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 gene coding sequence. Nat Genet. 1997;15:106–10.CrossRefGoogle Scholar
  228. Stoy J, Edghill EL, Flanagan SE, Ye H, Paz VP, Pluzhnikov A, et al. Insulin gene mutations as a cause of permanent neonatal diabetes. Proc Natl Acad Sci U S A. 2007;104(38):15040–4.PubMedCentralCrossRefPubMedGoogle Scholar
  229. Strawbridge RJ, et al. Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes. Diabetes. 2011;60(10):2624–34.PubMedCentralCrossRefPubMedGoogle Scholar
  230. Tabassum R, et al. Genome-wide association study for type 2 diabetes in Indians identifies a new susceptibility locus at 2q21. Diabetes. 2013;62(3):977–86.PubMedCentralCrossRefPubMedGoogle Scholar
  231. Takeuchi F, et al. Confirmation of multiple risk Loci and genetic impacts by a genome-wide association study of type 2 diabetes in the Japanese population. Diabetes. 2009;58(7):1690–9.PubMedCentralCrossRefPubMedGoogle Scholar
  232. Taneera J, Fadista J, Ahlqvist E, Atac D, Ottosson-Laakso E, Wollheim CB, et al. Identification of novel genes for glucose metabolism based upon expression pattern in human islets and effect on insulin secretion and glycemia. Hum Mol Genet. 2015;24(7):1945–55. Epub 2014/12/10CrossRefGoogle Scholar
  233. Tattersall RB. Mild familial diabetes with dominant inheritance. Q J Med. 1974;43(170):339–57.Google Scholar
  234. Temple IK, James RS, Crolla JA, Sitch FL, Jacobs PA, Howell WM, et al. An imprinted gene(s) for diabetes? Nat Genet. 1995;9(2):110–2.CrossRefGoogle Scholar
  235. Temple IK, Gardner RJ, Robinson DO, Kibirige MS, Ferguson AW, Baum JD, et al. Further evidence for an imprinted gene for neonatal diabetes localised to chromosome 6q22-q23. Hum Mol Genet. 1996;5(8):1117–21.CrossRefGoogle Scholar
  236. Thamotharampillai K, Chan AK, Bennetts B, Craig ME, Cusumano J, Silink M, et al. Decline in neurophysiological function after 7 years in an adolescent diabetic cohort and the role of aldose reductase gene polymorphisms. Diabetes Care. 2006;29(9):2053–7.CrossRefGoogle Scholar
  237. Thorleifsson G, et al. Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity. Nat Genet. 2009;41(1):18–24.CrossRefGoogle Scholar
  238. Timpson NJ, et al. Adiposity-related heterogeneity in patterns of type 2 diabetes susceptibility observed in genome-wide association data. Diabetes. 2009;58(2):505–10.PubMedCentralCrossRefPubMedGoogle Scholar
  239. Tong Z, Yang Z, Patel S, Chen H, Gibbs D, Yang X, et al. Promoter polymorphism of the erythropoietin gene in severe diabetic eye and kidney complications. Proc Natl Acad Sci U S A. 2008;105(19):6998–7003. Epub 2008/05/07PubMedCentralCrossRefPubMedGoogle Scholar
  240. Tong Y, Lin Y, Zhang Y, Yang J, Liu H, Zhang B. Association between TCF7L2 gene polymorphisms and susceptibility to type 2 diabetes mellitus: a large Human Genome Epidemiology (HuGE) review and meta-analysis. BMC Med Genet. 2009;10:15. Epub 2009/02/21PubMedCentralCrossRefPubMedGoogle Scholar
  241. Toperoff G, Aran D, Kark JD, Rosenberg M, Dubnikov T, Nissan B, et al. Genome-wide survey reveals predisposing diabetes type 2-related DNA methylation variations in human peripheral blood. Hum Mol Genet. 2012;21(2):371–83. Epub 2011/10/14CrossRefGoogle Scholar
  242. Travers ME, Mackay DJ, Dekker Nitert M, Morris AP, Lindgren CM, Berry A, et al. Insights into the molecular mechanism for type 2 diabetes susceptibility at the KCNQ1 locus from temporal changes in imprinting status in human islets. Diabetes. 2013;62(3):987–92. Epub 2012/11/10PubMedCentralCrossRefPubMedGoogle Scholar
  243. Tsai FJ, et al. A genome-wide association study identifies susceptibility variants for type 2 diabetes in Han Chinese. PLoS Genet. 2010;6(2):e1000847.PubMedCentralCrossRefPubMedGoogle Scholar
  244. Tuomi T, Groop LC, Zimmet PZ, Rowley MJ, Knowles W, Mackay IR. Antibodies to glutamic acid decarboxylase reveal latent autoimmune diabetes mellitus in adults with a non-insulin-dependent onset of disease. Diabetes. 1993a;42(2):359–62. Epub 1993/02/01CrossRefGoogle Scholar
  245. Tuomi T, Groop LC, Zimmet PZ, Rowley MJ, Knowles W, Mackay IR. Antibodies to glutamic acid decarboxylase reveal latent autoimmune diabetes mellitus in adults with a non-insulin-dependent onset of disease. Diabetes. 1993b;42(2):359–62.CrossRefGoogle Scholar
  246. Unoki H, et al. SNPs in KCNQ1 are associated with susceptibility to type 2 diabetes in East Asian and European populations. Nat Genet. 2008;40(9):1098–102.CrossRefGoogle Scholar
  247. van den Ouweland JM, Lemkes HH, Ruitenbeek W, Sandkuijl LA, de Vijlder MF, Struyvenberg PA, et al. Mutation in mitochondrial tRNA(Leu)(UUR) gene in a large pedigree with maternally transmitted type II diabetes mellitus and deafness. Nat Genet. 1992;1(5):368–71.CrossRefGoogle Scholar
  248. Visscher PM, Hill WG, Wray NR. Heritability in the genomics era–concepts and misconceptions. Nat Rev Genet. 2008;9(4):255–66. Epub 2008/03/06CrossRefPubMedGoogle Scholar
  249. Viswanath K, McGavin DD. Diabetic retinopathy: clinical findings and management. Community Eye Health/Int Centre Eye Health. 2003;16(46):21–4.Google Scholar
  250. Voight BF, Scott LJ, Steinthorsdottir V, Morris AP, Dina C, Welch RP, et al. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet. 2010;42(7):579–89.PubMedCentralCrossRefPubMedGoogle Scholar
  251. Volkov P, Bacos K, Ofori JK, Esguerra JL, Eliasson L, Ronn T, et al. Whole-genome bisulfite sequencing of human pancreatic islets reveals novel differentially methylated regions in type 2 diabetes pathogenesis. Diabetes. 2017;66(4):1074–85.CrossRefGoogle Scholar
  252. von Muhlendahl KE, Herkenhoff H. Long-term course of neonatal diabetes. N Engl J Med. 1995;333(11):704–8.CrossRefGoogle Scholar
  253. Wang F, Fang Q, Yu N, Zhao D, Zhang Y, Wang J, et al. Association between genetic polymorphism of the angiotensin-converting enzyme and diabetic nephropathy: a meta-analysis comprising 26,580 subjects. J Renin-Angiotensin-Aldosterone Syst. 2012;13(1):161–74. Epub 2011/08/04CrossRefGoogle Scholar
  254. Wang YJ, Schug J, Won KJ, Liu C, Naji A, Avrahami D, et al. Single-cell transcriptomics of the human endocrine pancreas. Diabetes. 2016;65(10):3028–38.PubMedCentralCrossRefPubMedGoogle Scholar
  255. Weedon MN, et al. Meta-analysis and a large association study confirm a role for calpain-10 variation in type 2 diabetes susceptibility. Am J Hum Genet. 2003;73(5):1208–12.PubMedCentralCrossRefPubMedGoogle Scholar
  256. Wei WH, Hemani G, Haley CS. Detecting epistasis in human complex traits. Nat Rev Genet. 2014;15(11):722–33. Epub 2014/09/10CrossRefGoogle Scholar
  257. Wellcome Trust Case Control C. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447(7145):661–78.CrossRefGoogle Scholar
  258. Wellcome Trust Case Control C, Craddock N, Hurles ME, Cardin N, Pearson RD, Plagnol V, et al. Genome-wide association study of CNVs in 16,000 cases of eight common diseases and 3,000 shared controls. Nature. 2010;464(7289):713–20.CrossRefGoogle Scholar
  259. White AJ, Sandler DP, Bolick SC, Xu Z, Taylor JA, DeRoo LA. Recreational and household physical activity at different time points and DNA global methylation. Eur J Cancer. 2013;49(9):2199–206.PubMedCentralCrossRefPubMedGoogle Scholar
  260. Willer CJ, et al. Newly identified loci that influence lipid concentrations and risk of coronary artery disease. Nat Genet. 2008;40(2):161–9.PubMedCentralCrossRefPubMedGoogle Scholar
  261. Williams MA, Qiu C, Dempsey JC, Luthy DA. Familial aggregation of type 2 diabetes and chronic hypertension in women with gestational diabetes mellitus. J Reprod Med. 2003;48(12):955–62.Google Scholar
  262. Williams WW, Salem RM, McKnight AJ, Sandholm N, Forsblom C, Taylor A, et al. Association testing of previously reported variants in a large case-control meta-analysis of diabetic nephropathy. Diabetes. 2012;61(8):2187–94. Epub 2012/06/23PubMedCentralCrossRefPubMedGoogle Scholar
  263. Winckler W, et al. Association of common variation in the HNF1alpha gene region with risk of type 2 diabetes. Diabetes. 2005a;54(8):2336–42.CrossRefGoogle Scholar
  264. Winckler W, et al. Association testing of variants in the hepatocyte nuclear factor 4alpha gene with risk of type 2 diabetes in 7,883 people. Diabetes. 2005b;54(3):886–92.CrossRefGoogle Scholar
  265. Wolf JB, Hager R. A maternal-offspring coadaptation theory for the evolution of genomic imprinting. PLoS Biol. 2006;4(12):e380.PubMedCentralCrossRefPubMedGoogle Scholar
  266. Writing Team for the Diabetes C, Complications Trial/Epidemiology of Diabetes I, Complications Research G. Effect of intensive therapy on the microvascular complications of type 1 diabetes mellitus. JAMA. 2002;287(19):2563–9. Epub 2002/05/22CrossRefGoogle Scholar
  267. Writing Team for the Diabetes C, Complications Trial/Epidemiology of Diabetes I, Complications Research G. Sustained effect of intensive treatment of type 1 diabetes mellitus on development and progression of diabetic nephropathy: the Epidemiology of Diabetes Interventions and Complications (EDIC) study. JAMA. 2003;290(16):2159–67. Epub 2003/10/23CrossRefGoogle Scholar
  268. Wu P, Farrell WE, Haworth KE, Emes RD, Kitchen MO, Glossop JR, et al. Maternal genome-wide DNA methylation profiling in gestational diabetes shows distinctive disease-associated changes relative to matched healthy pregnancies. Epigenetics. 2018;13(2):122–128. Scholar
  269. Xin Y, Kim J, Okamoto H, Ni M, Wei Y, Adler C, et al. RNA sequencing of single human islet cells reveals type 2 diabetes genes. Cell Metab. 2016;24(4):608–15.CrossRefGoogle Scholar
  270. Yamauchi T, et al. A genome-wide association study in the Japanese population identifies susceptibility loci for type 2 diabetes at UBE2E2 and C2CD4A-C2CD4B. Nat Genet. 2010;42(10):864–8.CrossRefGoogle Scholar
  271. Yasuda K, et al. Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus. Nat Genet. 2008;40(9):1092–7.CrossRefGoogle Scholar
  272. Yau JW, Rogers SL, Kawasaki R, Lamoureux EL, Kowalski JW, Bek T, et al. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care. 2012;35(3):556–64. Epub 2012/02/04PubMedCentralCrossRefPubMedGoogle Scholar
  273. Young BC, Ecker JL. Fetal macrosomia and shoulder dystocia in women with gestational diabetes: risks amenable to treatment? Curr Diab Rep. 2013;13(1):12–8.CrossRefGoogle Scholar
  274. Young AI, Wauthier F, Donnelly P. Multiple novel gene-by-environment interactions modify the effect of FTO variants on body mass index. Nat Commun. 2016;7:12724.PubMedCentralCrossRefPubMedGoogle Scholar
  275. Zeggini E, et al. Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science. 2007;316(5829):1336–41.PubMedCentralCrossRefPubMedGoogle Scholar
  276. Zeggini E, Scott LJ, Saxena R, Voight BF, Marchini JL, Hu T, et al. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet. 2008;40(5):638–45.PubMedCentralCrossRefPubMedGoogle Scholar
  277. Zhao T, Zhao J. Association between the -634C/G polymorphisms of the vascular endothelial growth factor and retinopathy in type 2 diabetes: a meta-analysis. Diabetes Res Clin Pract. 2010;90(1):45–53. Epub 2010/07/02CrossRefGoogle Scholar
  278. Zheng Y, Wang Z, Zhou Z. miRNAs: novel regulators of autoimmunity-mediated pancreatic beta-cell destruction in type 1 diabetes. Cell Mol Immunol. 2017;14(6):488–96.PubMedCentralCrossRefPubMedGoogle Scholar
  279. Zhernakova A, van Diemen CC, Wijmenga C. Detecting shared pathogenesis from the shared genetics of immune-related diseases. Nat Rev Genet. 2009;10(1):43–55. Epub 2008/12/19CrossRefGoogle Scholar
  280. Zullo A, Sommese L, Nicoletti G, Donatelli F, Mancini FP, Napoli C. Epigenetics and type 1 diabetes: mechanisms and translational applications. Transl Res. 2017;185:85–93. Epub 2017/05/30CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Clinical Sciences, Diabetes and Endocrinology UnitLund University Diabetes CentreMalmoSweden
  2. 2.Finnish Institute of Molecular MedicineHelsinki UniversityHelsinkiFinland

Personalised recommendations