Skip to main content

Immunosenescence and Cancer Immunotherapy at Old Age: Basics

  • Living reference work entry
  • First Online:
Geriatric Oncology
  • 282 Accesses

Abstract

Age is the single most important risk factor for cancer development. Of the many age-associated changes paralleling increased cancer incidence, those of the immune system may play a major role in waning defense against tumorigenesis. Thus, immunosenescence may contribute to the higher rate of occurrence of tumors in the elderly. However, exactly how these age-related changes in immunity translate to cancer development is not well defined and understood. With the dramatic recent successes of immunotherapy in some patients for some tumors, there is an increasing concern that immunosenescence may temper responses in older patients. Nonetheless, existing anecdotal data suggest that success rates and side effects of first-generation checkpoint blockade immunotherapy in elderly patients are similar to those in younger subjects. However, success rates are still low, with only a fraction of patients obtaining clinical benefit in most trials, and it cannot yet be excluded that age may play a role in the failure of some therapies in some patients. Thus, although there are no reasons to refuse the elderly these treatments, appropriate clinical trials and not just anecdotal evidence are required to explore this issue further.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adeegbe DO1, Nishikawa H. Natural and induced T regulatory cells in cancer. Front Immunol. 2013;4:190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agrawal A, Agrawal S, Gupta S. Role of dendritic cells in inflammation and loss of tolerance in the elderly. Front Immunol. 2017;8:896.

    Article  PubMed  PubMed Central  Google Scholar 

  • Akbar AN, Henson SM. Are senescence and exhaustion intertwined or unrelated processes that compromise immunity? Nat Rev Immunol. 2011;11:289–95.

    Article  CAS  PubMed  Google Scholar 

  • Albright JM, Dunn RC, Shults JA, Boe DM, Afshar M, Kovacs EJ. Advanced age alters monocyte and macrophage responses. Antioxid Redox Signal. 2016;25:805–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Аnisimov VN. Carcinogenesis and aging 20 years after: escaping horizon. Mech Ageing Dev. 2009;130:105–21.

    Article  CAS  Google Scholar 

  • Appay V, Sauce D. Naive T cells: the crux of cellular immune aging? Exp Gerontol. 2014;54:90–3.

    Article  CAS  PubMed  Google Scholar 

  • Arlen PM. Neoantigens in the immuno-oncology space. Future Oncol. 2017;13:2209–11.

    Article  CAS  PubMed  Google Scholar 

  • Azzaoui I, Uhel F, Rossille D, Pangault C, Dulong J, Le Priol J, Lamy T, Houot R, Le Gouill S, Cartron G, Godmer P, Bouabdallah K, Milpied N, Damaj G, Tarte K, Fest T, Roussel M. T-cell defect in diffuse large B-cell lymphomas involves expansion of myeloid-derived suppressor cells. Blood. 2016;128:1081–92.

    Article  CAS  PubMed  Google Scholar 

  • Bailur JK, Gueckel B, Derhovanessian E, Pawelec G. Presence of circulating Her2-reactive CD8 + T-cells is associated with lower frequencies of myeloid derived suppressor cells and regulatory T cells, and better survival in older breast cancer patients. Breast Cancer Res. 2015;17:34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baitsch L1, Fuertes-Marraco SA, Legat A, Meyer C, Speiser DE. The three main stumbling blocks for anticancer T cells. Trends Immunol. 2012;33:364–72.

    Article  CAS  PubMed  Google Scholar 

  • Bandaranayake T, Shaw AC. Host resistance and immune aging. Clin Geriatr Med. 2016;32:415–32.

    Article  PubMed  Google Scholar 

  • Barnes TA, Amir E. HYPE or HOPE: the prognostic value of infiltrating immune cells in cancer. Br J Cancer. 2017;117:451–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bauer ME, de La Fuente M. The role of oxidative and inflammatory stress and persistent viral infections in immunosenescence. Mech Ageing Dev. 2016;158:27–37.

    Article  CAS  PubMed  Google Scholar 

  • Beier UH, Wang L, Han R, Akimova T, Liu Y, Hancock WW. Histone deacetylases 6 and 9 and sirtuin-1 control Foxp3+ regulatory T cell function through shared and isoform-specific mechanisms. Sci Signal. 2012;5:ra45.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bettonville M, D’Aria S, Braun MY. Metabolic programming in chronically stimulated T cells: lessons from cancer and viral infections. Eur J Immunol. 2016;46:1574–82.

    Article  CAS  PubMed  Google Scholar 

  • Bonelli S, Geeraerts X, Bolli E, Keirsse J, Kiss M, Pombo Antunes AR, Van Damme H, De Vlaminck K, Movahedi K, Laoui D, Raes G, Van Ginderachter JA. Beyond the M-CSF receptor – novel therapeutic targets in tumor-associated macrophages. FEBS J. 2018;285(4):777–787.

    Article  PubMed  CAS  Google Scholar 

  • Bryl E, Gazda M, Foerster J, Witkowski JM. Age-related increase of frequency of a new, phenotypically distinct subpopulation of human peripheral blood T cells expressing lowered levels of CD4. Blood. 2001;98:1100–7.

    Article  CAS  PubMed  Google Scholar 

  • Capece D, Verzella D, Tessitore A, Alesse E, Capalbo C, Zazzeroni F. Cancer secretome and inflammation: the bright and the dark sides of NF-κB. Semin Cell Dev Biol. 2017. pii: S1084-9521(16)30485-2.

    Google Scholar 

  • Catakovic K, Klieser E, Neureiter D, Geisberger R. T cell exhaustion: from pathophysiological basics to tumor immunotherapy. Cell Commun Signal. 2017;15:1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chang CI, Liao JC, Kuo L. Macrophage arginase promotes tumor cell growth and suppresses nitric oxide-mediated tumor cytotoxicity. Cancer Res. 2001;61:1100–6.

    CAS  PubMed  Google Scholar 

  • Channappanavar R, Twardy BS, Krishna P, Suvas S. Advancing age leads to predominance of inhibitory receptor expressing CD4 T cells. Mech Ageing Dev. 2009;130:709–12.

    Article  CAS  PubMed  Google Scholar 

  • Chaplin DD. Overview of the immune response. J Allergy Clin Immunol. 2010;125(2 Suppl 2):S3–23.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen DS, Mellman I. Oncology meets immunology: the cancer immunity cycle. Immunity. 2013;39:1e10.

    Google Scholar 

  • Chidrawar S, Khan N, Wei W, McLarnon A, Smith N, Nayak L, Moss P. Cytomegalovirus-seropositivity has a profound influence on the magnitude of major lymphoid subsets within healthy individuals. Clin Exp Immunol. 2009;155:423–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Childs BG, Durik M, Baker DJ, van Deursen JM. Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nat Med. 2015;21:1424–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coppé J-P, Patil CK, Rodier F, Sun Y, Muñoz DP, Goldstein J, Nelson PS, Desprez PY, Campisi J. Senescence-associated secretory phenotypes reveal cell- nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 2008;6:2853–68.

    Article  PubMed  CAS  Google Scholar 

  • Daste A, Domblides C, Gross-Goupil M, Chakiba C, Quivy A, Cochin V, de Mones E, Larmonier N, Soubeyran P, Ravaud A. Immune checkpoint inhibitors and elderly people: a review. Eur J Cancer. 2017;82:155–66.

    Article  CAS  PubMed  Google Scholar 

  • Demaria M, O’Leary MN, Chang J, Shao L, Liu S, Alimirah F, Koenig K, Le C, Mitin N, Deal AM, Alston S, Academia EC, Kilmarx S, Valdovinos A, Wang B, de Bruin A, Kennedy BK, Melov S, Zhou D, Sharpless NE, Muss H, Campisi J. Cellular senescence promotes adverse effects of chemotherapy and cancer relapse. Cancer Discov. 2017;7:165–76.

    Article  CAS  PubMed  Google Scholar 

  • Denkinger MD, Leins H, Schirmbeck R, Florian MC, Geiger H. HSC aging and senescent immune remodeling. Trends Immunol. 2015;36:815–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Douziech N, Seres I, Larbi A, Szikszay E, Roy PM, Arcand M, Dupuis G, Fulop T Jr. Modulation of human lymphocyte proliferative response with aging. Exp Gerontol. 2002;37:369–87.

    Article  CAS  PubMed  Google Scholar 

  • Duan S, Thomas PG. Balancing immune protection and immune pathology by CD8(+) T-cell responses to influenza infection. Front Immunol. 2016;7:25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dunn GP, Old LJ, Schreiber RD. The three Es of cancer immunoediting. Annu Rev Immunol. 2004;22:329–60.

    Article  CAS  PubMed  Google Scholar 

  • Effros RB. Replicative senescence: the final stage of memory T cell differentiation? Curr HIV Res. 2003;1:153–65.

    Article  CAS  PubMed  Google Scholar 

  • Eleftheriadis T, Pissas G, Antoniadi G, Spanoulis A, Liakopoulos V, Stefanidis I. Indoleamine 2,3-dioxygenase increases p53 levels in alloreactive human T cells, and both indoleamine 2,3-dioxygenase and p53 suppress glucose uptake, glycolysis and proliferation. Int Immunol. 2014;26:673–84.

    Article  CAS  PubMed  Google Scholar 

  • Elias R, Karantanos T, Sira E, Hartshorn KL. Immunotherapy comes of age: immune aging & checkpoint inhibitors. J Geriatr Oncol. 2017;8:229–35.

    Article  PubMed  Google Scholar 

  • Fanoni D, Tavecchio S, Recalcati S, Balice Y, Venegoni L, Fiorani R, Crosti C, Berti E. New monoclonal antibodies against B-cell antigens: possible new strategies for diagnosis of primary cutaneous B-cell lymphomas. Immunol Lett. 2011;134:157–60.

    Article  CAS  PubMed  Google Scholar 

  • Ferguson SD, Srinivasan VM, Ghali MG, Heimberger AB. Cytomegalovirus-targeted immunotherapy and glioblastoma: hype or hope? Immunotherapy. 2016;8:413–23.

    Article  CAS  PubMed  Google Scholar 

  • Flores RR, Clauson CL, Cho J, Lee BC, McGowan SJ, Baker DJ, Niedernhofer LJ, Robbins PD. Expansion of myeloid-derived suppressor cells with aging in the bone marrow of mice through a NF-κB-dependent mechanism. Aging Cell. 2017;16:480–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forman D, Bray F, Brewster DH, Gombe Mbalawa C, Kohler B, Piñeros M, Steliarova-Foucher E, Swaminathan R, Ferlay J, editors. Cancer incidence in five continents, Vol. X (IARC scientific publication no. 164). Lyon: IARC; 2013.

    Google Scholar 

  • Fornara O, Odeberg J, Wolmer Solberg N, Tammik C, Skarman P, Peredo I, Stragliotto G, Rahbar A, Söderberg-Nauclér C. Poor survival in glioblastoma patients is associated with early signs of immunosenescence in the CD4 T-cell compartment after surgery. Oncoimmunology. 2015;4(9):e1036211.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fougère B, Boulanger E, Nourhashémi F, Guyonnet S, Cesari M. Chronic inflammation: accelerator of biological aging. J Gerontol A Biol Sci Med Sci. 2017;72:1218–25.

    PubMed  Google Scholar 

  • Franceschi C, Bonafè M, Valensin S, Olivieri F, De Luca M, Ottaviani E, De Benedictis G. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci. 2000;908:244–54.

    Article  CAS  PubMed  Google Scholar 

  • Franceschi C, Capri M, Monti D, Giunta S, Olivieri F, Sevini F, Panourgia MP, Invidia L, Celani L, Scurti M, Cevenini E, Castellani GC, Salvioli S. Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mech Ageing Dev. 2007;128:92–105.

    Article  CAS  PubMed  Google Scholar 

  • Franceschi C, Salvioli S, Garagnani P, de Eguileor M, Monti D, Capri M. Immunobiography and the heterogeneity of immune responses in the elderly: a focus on Inflammaging and trained immunity. Front Immunol. 2017;8:982.

    Article  PubMed  PubMed Central  Google Scholar 

  • Frey AB. The inhibitory signaling receptor Protocadherin-18 regulates tumor-infiltrating CD8+ T-cell function. Cancer Immunol Res. 2017;5:920–8.

    Article  CAS  PubMed  Google Scholar 

  • Fulop T, Larbi A, Douziech N, Fortin C, Guérard KP, Lesur O, Khalil A, Dupuis G. Signal transduction and functional changes in neutrophils with aging. Aging Cell. 2004;3:217–26.

    Article  CAS  PubMed  Google Scholar 

  • Fulop T, Larbi A, Kotb R, de Angelis F, Pawelec G. Aging, immunity, and cancer. Discov Med. 2011;11:537–50.

    PubMed  Google Scholar 

  • Fulop T, Larbi A, Kotb R, Pawelec G. Immunology of aging and cancer development. Interdiscip Top Gerontol. 2013a;38:38–48.

    Article  PubMed  Google Scholar 

  • Fulop T, Larbi A, Pawelec G. Human T cell aging and the impact of persistent viral infections. Front Immunol. 2013b;4:271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fulop T, Le Page A, Fortin C, Witkowski JM, Dupuis G, Larbi A. Cellular signaling in the aging immune system. Curr Opin Immunol. 2014;29:105–11.

    Article  CAS  PubMed  Google Scholar 

  • Fulop T, Dupuis G, Baehl S, Le Page A, Bourgade K, Frost E, Witkowski JM, Pawelec G, Larbi A, Cunnane S. From inflamm-aging to immune-paralysis: a slippery slope during aging for immune-adaptation. Biogerontology. 2016;17:147–57.

    Article  CAS  PubMed  Google Scholar 

  • Fumagalli M, Rossiello F, Clerici M, Barozzi S, Cittaro D, Kaplunov JM, Bucci G, Dobreva M, Matti V, Beausejour CM, Herbig U, Longhese MP, d’Adda di Fagagna F. Telomeric DNA damage is irreparable and causes persistent DNA-damage-response activation. Nat Cell Biol. 2012;14:355–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gabrilovich DI. Myeloid-Derived Suppressor Cells. Cancer Immunol Res. 2017;5:3–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galati D, Zanotta S. Hematologic neoplasms: dendritic cells vaccines in motion. Clin Immunol. 2017;183:181–90.

    Article  CAS  PubMed  Google Scholar 

  • Geeraerts X, Bolli E, Fendt SM, Van Ginderachter JA. Macrophage metabolism as therapeutic target for Cancer, atherosclerosis, and obesity. Front Immunol. 2017;8:289.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Glienke W, Esser R, Priesner C, Suerth JD, Schambach A, Wels WS, Grez M, Kloess S, Arseniev L, Koehl U. Advantages and applications of CAR-expressing natural killer cells. Front Pharmacol. 2015;6:21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gonzalez-Freire M, de Cabo R, Bernier M, Sollott SJ, Fabbri E, Navas P, Ferrucci L. Reconsidering the role of mitochondria in aging. J Gerontol A Biol Sci Med Sci. 2015;70:1334–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goronzy JJ, Fang F, Cavanagh MM, Qi Q, Weyand CM. Naïve T cell maintenance and function in human ageing. J Immunol. 2015;194:4073e80.

    Article  CAS  Google Scholar 

  • Gregg R, Smith CM, Clark FJ, Dunnion D, Khan N, Chakraverty R, Nayak L, Moss PA. The number of human peripheral blood CD4+ CD25high regulatory T cells increases with age. Clin Exp Immunol. 2005;140:540–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gruver AL, Hudson LL, Sempowski GD. Immunosenescence of ageing. J Pathol. 2007;211:144e56.

    Article  CAS  Google Scholar 

  • Guéry L, Hugues S. Th17 cell plasticity and functions in cancer immunity. Biomed Res Int. 2015;2015:314620.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guha P, Cunetta M, Somasundar P, Espat NJ, Junghans RP, Katz SC. Frontline science: functionally impaired geriatric CAR-T cells rescued by increased α5β1 integrin expression. J Leukoc Biol. 2017;102:201–8.

    Article  CAS  PubMed  Google Scholar 

  • Haabeth OA, Lorvik KB, Hammarström C, Donaldson IM, Haraldsen G, Bogen B, Corthay A. Inflammation driven by tumour-specific Th1 cells protects against B-cell cancer. Nat Commun. 2011;2:240.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hahn-Windgassen A, Nogueira V, Chen CC, Skeen JE, Sonenberg N, Hay N. Akt activates the mammalian target of rapamycin by regulating cellular ATP level and AMPK activity. J Biol Chem. 2005;280:32081–9.

    Article  CAS  PubMed  Google Scholar 

  • Hato T, Zhu AX, Duda DG. Rationally combining anti-VEGF therapy with checkpoint inhibitors in hepatocellular carcinoma. Immunotherapy. 2016;8:299–313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains. Exp Cell Res. 1961;25:585–621.

    Article  CAS  PubMed  Google Scholar 

  • Hazeldine J, Lord JM. Innate immunesenescence: underlying mechanisms and clinical relevance. Biogerontology. 2015;16:187–201.

    Article  CAS  PubMed  Google Scholar 

  • Henson SM, Macaulay R, Riddell NE, Nunn CJ, Akbar AN. Blockade of PD-1 or p38 MAP kinase signaling enhances senescent human CD8(+) T-cell proliferation by distinct pathways. Eur J Immunol. 2015;45:1441–51.

    Article  CAS  PubMed  Google Scholar 

  • Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O, Gordon MS, Sosman JA, McDermott DF, Powderly JD, Gettinger SN, Kohrt HE, Horn L, Lawrence DP, Rost S, Leabman M, Xiao Y, Mokatrin A, Koeppen H, Hegde PS, Mellman I, Chen DS, Hodi FS. Predictive correlates of response to the anti- PD-L1 antibody MPDL3280A in cancer patients. Nature. 2014;515:563–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirokawa K, Utsuyama M. Combined grafting of bone marrow and thymus, and sequential multiple thymus graftings in various strains of mice. The effect on immune functions and life span. Mech Ageing Dev. 1989;49:49e60.

    Article  Google Scholar 

  • Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, Akerley W, van den Eertwegh AJ, Lutzky J, Lorigan P, Vaubel JM, Linette GP, Hogg D, Ottensmeier CH, Lebbé C, Peschel C, Quirt I, Clark JI, Wolchok JD, Weber JS, Tian J, Yellin MJ, Nichol GM, Hoos A, Urba WJ. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363:711e23.

    Article  CAS  Google Scholar 

  • Hoffmann M, Pantazis N, Martin GE, Hickling S, Hurst J, Meyerowitz J, Willberg CB, Robinson N, Brown H, Fisher M, Kinloch S, Babiker A, Weber J, Nwokolo N, Fox J, Fidler S, Phillips R, Frater J, SPARTAC and CHERUB Investigators. Exhaustion of activated CD8 T cells predicts disease progression in primary HIV-1 infection. PLoS Pathog. 2016;12:e1005661.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huguet F, Tavitian S. Emerging biological therapies to treat acute lymphoblastic leukemia. Expert Opin Emerg Drugs. 2017;22:107–21.

    Article  CAS  PubMed  Google Scholar 

  • Hurez V, Padrón ÁS, Svatek RS, Curiel TJ. Considerations for successful cancer immunotherapy in aged hosts. Clin Exp Immunol. 2017;187:53–63.

    Article  CAS  PubMed  Google Scholar 

  • Hurt B, Schulick R, Edil B, El Kasmi KC, Barnett C Jr. Cancer-promoting mechanisms of tumor-associated neutrophils. Am J Surg. 2017;214:938. pii: S0002-9610(17)30604-9

    Article  PubMed  Google Scholar 

  • Imai K, Matsuyama S, Miyake S, Suga K, Nakachi K. Natural cytotoxic activity of peripheral-blood lymphocytes and cancer incidence: an 11-year follow-up study of a general population. Lancet. 2000;356:1795–9.

    Article  CAS  PubMed  Google Scholar 

  • Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, Cua DJ, Littman DR. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell. 2006;126:1121–33.

    Article  CAS  PubMed  Google Scholar 

  • Jacqueline C, Bourfia C, Hbid H, Sorci G, Thomas F, Roche B. Interactions between immune challenges and cancer cells proliferation: timing does matter! Evol Med Publ Health. 2016;2016:299–311.

    Article  Google Scholar 

  • Jiang S1, Yan W. T-cell immunometabolism against cancer. Cancer Lett. 2016;382:255–8.

    Article  CAS  PubMed  Google Scholar 

  • Johnson DB, Sullivan RJ, Menzies AM. Immune checkpoint inhibitors in challenging populations. Cancer. 2017;123:1904–11.

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnston-Carey HK, Pomatto LC, Davies KJ. The immunoproteasome in oxidative stress, aging, and disease. Crit Rev Biochem Mol Biol. 2015;51:268–81.

    Article  PubMed  CAS  Google Scholar 

  • June CH, Maus MV, Plesa G, Johnson LA, Zhao Y, Levine BL, Grupp SA, Porter DL. Engineered T cells for cancer therapy. Cancer Immunol Immunother. 2014;63:969–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khong A, Nelson DJ, Nowak AK, Lake RA, Robinson BW. The use of agonistic anti-CD40 therapy in treatments for cancer. Int Rev Immunol. 2012;31:246–66.

    Article  CAS  PubMed  Google Scholar 

  • Kim HJ, Cantor H. CD4 T-cell subsets and tumor immunity: the helpful and the not-so-helpful. Cancer Immunol Res. 2014;2:91–8.

    Article  CAS  PubMed  Google Scholar 

  • Kouidhi S, Elgaaied AB, Chouaib S. Impact of metabolism on T-cell differentiation and function and cross talk with tumor microenvironment. Front Immunol. 2017;13(8):270.

    Google Scholar 

  • Larbi A, Fulop T. From “truly naïve” to “exhausted senescent” T cells: when markers predict functionality. Cytometry A. 2014;85:25–35.

    Article  PubMed  CAS  Google Scholar 

  • Larbi A, Dupuis G, Khalil A, Douziech N, Fortin C, Fülöp T Jr. Differential role of lipid rafts in the functions of CD4+ and CD8+ human T lymphocytes with aging. Cell Signal. 2006;18:1017–30.

    Article  CAS  PubMed  Google Scholar 

  • Le Page A, Fortin C, Garneau H, Allard N, Tsvetkova K, Tan CT, Larbi A, Dupuis G, Fülöp T. Downregulation of inhibitory SRC homology 2 domain-containing phosphatase-1 (SHP-1) leads to recovery of T cell responses in elderly. Cell Commun Signal. 2014;12:2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li G, Yu M, Lee WW, Tsang M, Krishnan E, Weyand CM, Goronzy JJ. Decline in miR-181a expression with age impairs T cell receptor sensitivity by increasing DUSP6 activity. Nat Med. 2012;18:1518–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Yang H, Chen X, Lu Y, Zhang Z, Wang J, Zhang M, Xue L, Xue F, Liu G. Cellular metabolism modulation in T lymphocyte immunity. Immunology. 2014.

    Google Scholar 

  • Lowry LE, Zehring WA. Potentiation of natural killer cells for Cancer immunotherapy: a review of literature. Front Immunol. 2017;8:1061.

    Article  PubMed  PubMed Central  Google Scholar 

  • MacIver NJ, Michalek RD, Rathmell JC. Metabolic regulation of T lymphocytes. Annu Rev Immunol. 2013;31:259–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manser AR, Uhrberg M. Age-related changes in natural killer cell repertoires: impact on NK cell function and immune surveillance. Cancer Immunol Immunother. 2016;65:417e26.

    Article  CAS  Google Scholar 

  • Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008;454:436–44.

    Article  CAS  PubMed  Google Scholar 

  • Margel D, Alkhateeb SS, Finelli A, Fleshner N. Diminished efficacy of bacille Calmette–Guerin among elderly patients with nonmuscle invasive bladder cancer. Urology. 2011;78:848–54.

    Article  PubMed  Google Scholar 

  • Martínez-Lostao L, Anel A, Pardo J. How do cytotoxic lymphocytes kill cancer cells? Clin Cancer Res. 2015;21:5047–56.

    Article  PubMed  CAS  Google Scholar 

  • Marvel D, Gabrilovich DI. Myeloid-derived suppressor cells in the tumor microenvironment: expect the unexpected. J Clin Invest. 2015;125:3356–64.

    Article  PubMed  PubMed Central  Google Scholar 

  • McElhaney JE, Zhou X, Talbot HK, Soethout E, Bleackley RC, Granville DJ, Pawelec G. The unmet need in the elderly: how immunosenescence, CMV infection, co-morbidities and frailty are a challenge for the development of more effective influenza vaccines. Vaccine. 2012;30:2060–7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Melssen M, Slingluff CL Jr. Vaccines targeting helper T cells for cancer immunotherapy. Curr Opin Immunol. 2017;47:85–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Metcalf TU, Cubas RA, Ghneim K, Cartwright MJ, Grevenynghe JV, Richner JM, Olagnier DP, Wilkinson PA, Cameron MJ, Park BS, Hiscott JB, Diamond MS, Wertheimer AM, Nikolich-Zugich J, Haddad EK. Global analyses revealed age-related alterations in innate immune responses after stimulation of pathogen recognition receptors. Ageing Cell. 2015;14:421e32.

    Article  CAS  Google Scholar 

  • Michalek RD, Rathmell JC. The metabolic life and times of a T-cell. Immunol Rev. 2010;236:190–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mikulandra M, Pavelic J, Glavan TM. Recent findings on the application of toll-like receptors agonists in cancer therapy. Curr Med Chem. 2017;24:2011–32.

    Article  CAS  PubMed  Google Scholar 

  • Mills CD, Harris RA, Ley K. Macrophage polarization: decisions that affect health. J Clin Cell Immunol. 2015;6(5):364.

    PubMed  PubMed Central  Google Scholar 

  • Minciullo PL, Catalano A, Mandraffino G, Casciaro M, Crucitti A, Maltese G, Morabito N, Lasco A, Gangemi S, Basile G. Inflammaging and anti-Inflammaging: the role of cytokines in extreme longevity. Arch Immunol Ther Exp. 2016;64:111–26.

    Article  CAS  Google Scholar 

  • Molony RD, Malawista A, Montgomery RR. Reduced dynamic range of antiviral innate immune responses in aging. Exp Gerontol. 2017. pii: S0531-5565(17)30483-7.

    Google Scholar 

  • Moynihan KD, Irvine DJ. Roles for innate immunity in combination immunotherapies. Cancer Res. 2017;77:5215–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen LT, Ohashi PS. Clinical blockade of PD1 and LAG3--potential mechanisms of action. Nat Rev Immunol. 2015;15:45–56.

    Article  CAS  PubMed  Google Scholar 

  • Nguyen THO, Sant S, Bird NL, Grant EJ, Clemens EB, Koutsakos M, Valkenburg SA, Gras S, Lappas M, Jaworowski A, Crowe J, Loh L, Kedzierska K. Perturbed CD8+ T cell immunity across universal influenza epitopes in the elderly. J Leukoc Biol. 2018;103(2):321–339.

    Google Scholar 

  • Nishikawa H, Sakaguchi S. Regulatory T cells in tumor immunity. Int J Cancer. 2010;127:759–67.

    CAS  PubMed  Google Scholar 

  • Nyugen J, Agrawal S, Gollapudi S, Gupta S. Impaired functions of peripheral blood monocyte subpopulations in aged humans. J Clin Immunol. 2010;30:806e13.

    Article  CAS  Google Scholar 

  • Ok CY, Young KH. Checkpoint inhibitors in hematological malignancies. J Hematol Oncol. 2017;10:103.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pardoll D. Does the immune system see tumors as foreign or self? Annu Rev Immunol. 2003;21:807–39.

    Article  CAS  PubMed  Google Scholar 

  • Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12:252–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park CB, Larsson NG. Mitochondrial DNA mutations in disease and aging. J Cell Biol. 2011;193:809–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pawelec G. Hallmarks of human “immunosenescence”: adaptation or dysregulation? Immun Ageing. 2012;9:15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pawelec G. Immunosenenescence: role of cytomegalovirus. Exp Gerontol. 2014;54:1–5.

    Article  CAS  PubMed  Google Scholar 

  • Pawelec G. Immunosenescence and cancer. Biogerontology. 2017;18:717–21.

    Article  CAS  PubMed  Google Scholar 

  • Pearce EL1, Walsh MC, Cejas PJ, Harms GM, Shen H, Wang LS, Jones RG, Choi Y. Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature. 2009;460:103–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pedicord VA, Cross JR, Montalvo-Ortiz W, Miller ML, Allison JP. Friends not foes: CTLA-4 blockade and mTOR inhibition cooperate during CD81 T cell priming to promote memory formation and metabolic readiness. J Immunol. 2015;194:2089–98.

    Article  CAS  PubMed  Google Scholar 

  • Peng M, Yin N, Chhangawala S, Xu K, Leslie CS, Li MO. Aerobic glycolysis promotes T helper 1 cell differentiation through an epigenetic mechanism. Science. 2016;354:481–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pera A, Campos C, Lopez N, Hassouneh F, Alonso C, Tarazona R, Solana R. Immunosenescence: implications for response to infection and vaccination in older people. Maturitas. 2015;82:50e5.

    Article  CAS  Google Scholar 

  • Petrova G, Ferrante A, Gorski J. Cross-reactivity of T cells and its role in the immune system. Crit Rev Immunol. 2012;32:349–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips AC, Carroll D, Drayson MT, Der G. Salivary immunoglobulin a secretion rate is negatively associated with cancer mortality: the west of Scotland twenty-07 study. PLoS One. 2015;10(12):e0145083.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pyonteck SM, Akkari L, Schuhmacher AJ, Bowman RL, Sevenich L, Quail DF, Olson OC, Quick ML, Huse JT, Teijeiro V, Setty M, Leslie CS, Oei Y, Pedraza A, Zhang J, Brennan CW, Sutton JC, Holland EC, Daniel D, Joyce JA. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med. 2013;19:1264–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao SG, Jackson JG. SASP: tumor suppressor or promoter? Yes! Trends Cancer. 2016;2:676–87.

    Article  PubMed  Google Scholar 

  • Raynor J, Lages CS, Shehata H, Hildeman DA, Chougnet CA. Homeostasis and function of regulatory T cells in aging. Curr Opin Immunol. 2012;24:482–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reck M, Rodríguez-Abreu D, Robinson AG, Hui R, Csőszi T, Fülöp A, Gottfried M, Peled N, Tafreshi A, Cuffe S, O’Brien M, Rao S, Hotta K, Leiby MA, Lubiniecki GM, Shentu Y, Rangwala R, Brahmer JR, KEYNOTE-024 Investigators. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med. 2016;375:1823–33.

    Article  CAS  PubMed  Google Scholar 

  • Ristow M, Schmeisser K. Mitohormesis: promoting health and lifespan by increased levels of reactive oxygen species (ROS). Dose Response. 2014;12:288–341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rolf J, Zarrouk M, Finlay DK, Foretz M, Viollet B, Cantrell DA. AMPKα1: a glucose sensor that controls CD8 T-cell memory. Eur J Immunol. 2013;43:889–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roth GS, Ingram DK. Manipulation of health span and function by dietary caloric restriction mimetics. Ann N Y Acad Sci. 2016;1363:5–10.

    Article  PubMed  Google Scholar 

  • Ruggeri L, Mancusi A, Burchielli E, Capanni M, Carotti A, Aloisi T, Aversa F, Martelli MF, Velardi A. NK cell alloreactivity and allogeneic hematopoietic stem cell transplantation. Blood Cells Mol Dis. 2008;40:84–90.

    Article  CAS  PubMed  Google Scholar 

  • Saavedra D, Garcia B, Lage A. T cell subpopulations in healthy elderly and lung Cancer patients: insights from Cuban studies. Front Immunol. 2017;8:146.

    PubMed  PubMed Central  Google Scholar 

  • Satoh T, Akira S. Toll-like receptor signaling and its inducible proteins. Microbiol Spectr. 2016;4(6).

    Google Scholar 

  • Schamel WW, Alarcon B, Höfer T, Minguet S. The Allostery model of TCR regulation. J Immunol. 2017;198:47–52.

    Article  CAS  PubMed  Google Scholar 

  • Setrerrahmane S, Xu H. Tumor-related interleukins: old validated targets for new anti-cancer drug development. Mol Cancer. 2017;16:153.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sgambato A, Casaluce F, Gridelli C. The role of checkpoint inhibitors immunotherapy in advanced non-small cell lung cancer in the elderly. Expert Opin Biol Ther. 2017;17:565–71.

    Article  CAS  PubMed  Google Scholar 

  • Shapiro M, Nandi B, Pai 1C, Samur MK, Pelluru D, Fulciniti M, Prabhala RH RH, Munshi NC, Gold JS. Deficiency of IL-17A, but not the prototypical Th17 transcription factor RORγt, decreases murine spontaneous intestinal tumorigenesis. Cancer Immunol Immunother. 2016;65:13–24.

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Allison JP. The future of immune checkpoint therapy. Science. 2015;348:56–61.

    Article  CAS  PubMed  Google Scholar 

  • Shipp C, Speigl L, Janssen N, Martens A, Pawelec G. A clinical and biological perspective of human myeloid-derived suppressor cells in cancer. Cell Mol Life Sci. 2016;73:4043–61.

    Article  CAS  PubMed  Google Scholar 

  • Sica A, Strauss L. Energy metabolism drives myeloid-derived suppressor cell differentiation and functions in pathology. J Leukoc Biol. 2017;102(2):325–334.

    Article  CAS  PubMed  Google Scholar 

  • Solana R, Tarazona R, Gayoso I, Lesur O, Dupuis G, Fulop T. Innate immunosenescence: effect of aging on cells and receptors of the innate immune system in humans. Semin Immunol. 2012;24:331–41.

    Article  CAS  PubMed  Google Scholar 

  • Sun HL, Zhou X, Xue YF, Wang K, Shen YF, Mao JJ, Guo HF, Miao ZN. Increased frequency and clinical significance of myeloid-derived suppressor cells in human colorectal carcinoma. World J Gastroenterol. 2012;18:3303–9.

    PubMed  PubMed Central  Google Scholar 

  • Tang YC, Thoman M, Linton PJ, Deisseroth A. Use of CD40L immunoconjugates to overcome the defective immune response to vaccines for infections and cancer in the aged. Cancer Immunol Immunother. 2009;58:1949–57.

    Article  CAS  PubMed  Google Scholar 

  • Tarazona R, Campos C, Pera A, Sanchez-Correa B, Solana R. Flow cytometry analysis of NK cell phenotype and function in aging. Methods Mol Biol. 2015;1343:9–18.

    Article  CAS  PubMed  Google Scholar 

  • Tarazona R, Sanchez-Correa B, Casas-Avilés I, Campos C, Pera A, Morgado S, López-Sejas N, Hassouneh F, Bergua JM, Arcos MJ, Bañas H, Casado JG, Durán E, Labella F, Solana R. Immunosenescence: limitations of natural killer cell-based cancer immunotherapy. Cancer Immunol Immunother. 2017;66:233–45.

    Article  CAS  PubMed  Google Scholar 

  • Topalian SL. Targeting immune checkpoints in cancer therapy. JAMA. 2017;318(17):1647–1648.

    Article  PubMed  Google Scholar 

  • Turner JE, Brum PC. Does regular exercise counter T cell Immunosenescence reducing the risk of developing Cancer and promoting successful treatment of malignancies? Oxidative Med Cell Longev. 2017;2017:4234765.

    Google Scholar 

  • Vacca P, Montaldo E, Croxatto D, Moretta F, Bertaina A, Vitale C, Locatelli F, Mingari MC, Moretta L. NK cells and other innate lymphoid cells in hematopoietic stem cell transplantation. Front Immunol. 2016;7:188.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van der Geest KS, Abdulahad WH, Tete SM, Lorencetti PG, Horst G, Bos NA, Kroesen BJ, Brouwer E, Boots AM. Aging disturbs the balance between effector and regulatory CD4+ T cells. Exp Gerontol. 2014;60:190–6.

    Article  PubMed  CAS  Google Scholar 

  • van der Windt GJ, Everts B, Chang CH, Curtis JD, Freitas TC, Amiel E, Pearce EJ, Pearce EL. Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity. 2012;36:68–78.

    Article  PubMed  CAS  Google Scholar 

  • Velu V, Titanji K, Zhu B, Husain S, Pladevega A, Lai L, Vanderford TH, Chennareddi L, Silvestri G, Freeman GJ, Ahmed R, Amara RR. Enhancing SIV-specific immunity in vivo by PD-1 blockade. Nature. 2009;458:206–10.

    Article  CAS  PubMed  Google Scholar 

  • Verschoor CP, Johnstone J, Millar J, Dorrington MG, Habibagahi M, Lelic A, Loeb M, Bramson JL, Bowdish DM. Blood CD33(þ)HLA-DR(-) myeloid-derived suppressor cells are increased with age and a history of cancer. J Leukoc Biol. 2013;93:633e7.

    Article  CAS  Google Scholar 

  • Vesely MD, Kershaw MH, Schreiber RD, Smyth MJ. Natural innate and adaptive immunity to cancer. Annu Rev Immunol. 2011;29:235–71.

    Article  CAS  PubMed  Google Scholar 

  • Vina J, Borras C, Abdelaziz KM, Garcia-Valles R, Gomez-Cabrera MC. The free radical theory of aging revisited: the cell signaling disruption theory of aging. Antioxid Redox Signal. 2013;19:779–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Huang S, Zhang Y, Zhu L, Wu X. The application and mechanism of PD pathway blockade for cancer therapy. Postgrad Med J. 2018;94(1107):53–60.

    Article  PubMed  Google Scholar 

  • Watkins SK, Egilmez NK, Suttles J, Stout RD. IL-12 rapidly alters the functional profile of tumor-associated and tumor infiltrating macrophages in vitro and in vivo. J Immunol. 2007;178:1357–62.

    Article  CAS  PubMed  Google Scholar 

  • Weyand CM, Goronzy JJ. Aging of the immune system. Mechanisms and therapeutic targets. Ann Am Thorac Soc. 2016;13(Suppl 5):S422–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wherry EJ, Ahmed R. Memory CD8 T-cell differentiation during viral infection. J Virol. 2004;78:5535–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wherry EJ, Kurachi M. Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol. 2015;15:486–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu W, Larbi A. Markers of T cell senescence in humans. Int J Mol Sci. 2017;10(8):18.

    Google Scholar 

  • Yanes RE, Gustafson CE, Weyand CM, Goronzy JJ. Lymphocyte generation and population homeostasis throughout life. Semin Hematol. 2017;54:33e8.

    Article  Google Scholar 

  • Yang Y, Li T, Nielsen ME. Aging and cancer mortality: dynamics of change and sex differences. Exp Gerontol. 2012;47:695–705.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zarour HM. Reversing T-cell dysfunction and exhaustion in Cancer. Clin Cancer Res. 2016;22:1856–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Meng X, Chen Y, Leng SX, Zhang H. The biology of aging and cancer. Cancer J. 2017;23:201–5.

    PubMed  Google Scholar 

  • Zhao Y, Wu T, Shao S, Shi B, Zhao Y. Phenotype, development, and biological function of myeloid-derived suppressor cells. Oncoimmunology. 2015;5:e1004983.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu J, Yamane H, Paul WE. Differentiation of effector CD4 T cell populations. Annu Rev Immunol. 2010;28:445–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou W, Wolchok JD, Chen L. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: mechanisms, response biomarkers, and combinations. Sci Transl Med. 2016;8:328rv324.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partly supported by grants from the Canadian Institutes of Health Research (No. 106634 and No. 106701), the Université de Sherbrooke, and the Research Center on Aging, a grant from the Croeni Foundation (GP), Polish Ministry of Science and Higher Education statutory grant 02-0058/07/262 to JMW, and Agency for Science Technology and Research (A*STAR) to AL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamas Fulop .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Fulop, T., Witkowski, J.M., Hirokawa, K., Larbi, A., Pawelec, G. (2018). Immunosenescence and Cancer Immunotherapy at Old Age: Basics. In: Extermann, M. (eds) Geriatric Oncology . Springer, Cham. https://doi.org/10.1007/978-3-319-44870-1_77-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44870-1_77-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44870-1

  • Online ISBN: 978-3-319-44870-1

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics