Skip to main content

Myelodysplastic Syndrome

  • Living reference work entry
  • First Online:
Geriatric Oncology

Abstract

Myelodysplastic syndrome (MDS) is a heterogeneous, clonal hematologic malignancy of the elderly defined by morphologic dysplasia and ineffective hematopoiesis, resulting in uni- or multilineage cytopenias. Driven by genetic mutations and immune deregulation, MDS patients commonly present with cytopenias, which manifest in transfusion dependency, bleeding, and/or recurrent infections, and eventually progress into acute myeloid leukemia (AML). The International Prognostic Scoring System (IPSS) and revised IPSS (R-IPSS) are paramount in risk-stratifying patients and guiding treatment decisions, which include observation, erythropoiesis-stimulating agents (ESA), hypomethylating agents (HMA), immunosuppressive therapy, lenalidomide, and allogeneic hematopoietic stem cell transplant (allo-HSCT). Allo-HSCT remains the only curative treatment modality in MDS, and should be considered in the elderly population in the right setting. While genetic mutations play an important role in prognosis, none are MDS-defining or guide treatment decisions to date. Novel therapies are being investigated in clinical trials, including oral HMAs, checkpoint inhibitors, TGF-beta inhibitors, and targeted therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Al Ustwani O, Ford LA, Sait SJ, et al. Myelodysplastic syndromes and autoimmune diseases – case series and review of literature. Leuk Res. 2013;37:894–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Arber D, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127:2391–405.

    Article  CAS  PubMed  Google Scholar 

  • Barlow JL, Drynan LF, Hewett DR, et al. A p53-dependent mechanism underlies macrocytic anemia in a mouse model of human 5q- syndrome. Nat Med. 2010;16:59–66.

    Article  CAS  PubMed  Google Scholar 

  • Bejar R, Stevenson K, Abdel-Wahab O, et al. Clinical effect of point mutations in myelodysplastic syndromes. N Engl J Med. 2011;364:2496–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bejar R, Stevenson KE, Caughey BA, et al. Validation of a prognostic model and the impact of mutations in patients with lower-risk myelodysplastic syndromes. J Clin Oncol. 2012;30:3376–82.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bennett JM. World Health Organization classification of the acute leukemias and myelodysplastic syndrome. Int J Hematol. 2000;72:131–3.

    CAS  PubMed  Google Scholar 

  • Bennett JM, Catovsky D, Daniel MT, et al. Proposals for the classification of the myelodysplastic syndromes. Br J Haematol. 1982;51:189–99.

    Article  CAS  PubMed  Google Scholar 

  • Bennett JM, Brunning RD, Vardiman JW. Myelodysplastic syndromes: from French-American-British to World Health Organization: a commentary. Blood. 2002;99:3074–5.

    Article  CAS  PubMed  Google Scholar 

  • Bennett JM, Komrokji R, Kouides P. The myelodysplastic syndromes. In: Abeloff MD, Armitage JO, Niederhuber JE, Kastan MB, editors. Clinical oncology. 3rd ed. New York: Churchill Livingstone; 2004. p. 2849–81.

    Google Scholar 

  • Boogaerts MA, Nelissen V, Roelant C, et al. Blood neutrophil function in primary myelodysplastic syndromes. Br J Haematol. 1983;55:217–27.

    Article  CAS  PubMed  Google Scholar 

  • Boultwood J, Fidler C, Strickson AJ, et al. Narrowing and genomic annotation of the commonly deleted region of the 5q- syndrome. Blood. 2002;99:4638–41.

    Article  CAS  PubMed  Google Scholar 

  • Buckstein R, et al. Patient-related factors independently impact overall survival in patients with myelodysplastic syndromes: an MDS-CAN prospective study. Br J Haematol. 2016;174(1):88–101. https://doi.org/10.1111/bjh.14033.

    Article  PubMed  Google Scholar 

  • Chen X, Eksioglu EA, Zhou J, et al. Induction of myelodysplasia by myeloid-derived suppressor cells. J Clin Invest. 2013;123:4595–611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Churpek JE, Lorenz R, Nedumgottil S, et al. Proposal for the clinical detection and management of patients and their family members with familial myelodysplastic syndrome/acute leukemia predisposition syndromes. Leuk Lymphoma. 2013;54:28–35.

    Article  PubMed  Google Scholar 

  • Cutler CS, et al. A decision analysis of allogeneic bone marrow transplantation for the myelodysplastic syndromes: delayed transplantation for low-risk myelodysplasia is associated with improved outcome. Blood. 2004;104(2):579–85.

    Article  CAS  PubMed  Google Scholar 

  • Czuchlewski DR, Peterson LC. Myeloid neoplasms with germline predisposition: a new provisional entity within the World Health Organization classification. Surg Pathol Clin. 2016;9:165–76.

    Article  PubMed  Google Scholar 

  • Damaj G, et al. Impact of azacitidine before allogeneic stem-cell transplantation for myelodysplastic syndromes: a study by the Societe Francaise de Greffe de Moelle et de Therapie-Cellulaire and the Groupe-Francophone des Myelodysplasies. J Clin Oncol. 2012;30(36):4533–40.

    Article  CAS  PubMed  Google Scholar 

  • Della Porta MG, Malcovati L, Boveri E, et al. Clinical relevance of bone marrow fibrosis and CD34-positive cell clusters in primary myelodysplastic syndromes. J Clin Oncol. 2009;27:754–62.

    Article  PubMed  Google Scholar 

  • Della Porta MG, Malcovati L, Strupp C, et al. Risk stratification based on both disease status and extra-hematologic comorbidities in patients with myelodysplastic syndrome. Haematologica. 2011;96:441–9.

    Article  PubMed  Google Scholar 

  • Dimicoli S, Wei Y, Bueso-Ramos C, et al. Overexpression of the toll-like receptor (TLR) signaling adaptor MYD88, but lack of genetic mutation, in myelodysplastic syndromes. PLoS One. 2013;8:e71120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ebert BL, Pretz J, Bosco J, et al. Identification of RPS14 as a 5q− syndrome gene by RNA interference screen. Nature. 2008;451:335–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Enright H, Miller W. Autoimmune phenomena in patients with myelodysplastic syndromes. Leuk Lymphoma. 1997;24:483–9.

    Article  CAS  PubMed  Google Scholar 

  • Epling-Burnette PK, Painter JS, Rollison DE, et al. Prevalence and clinical association of clonal T-cell expansions in myelodysplastic syndrome. Leukemia. 2007;21:659–67.

    Article  CAS  PubMed  Google Scholar 

  • Fain O, Braun T, Stirnemann J, et al. Systemic and autoimmune manifestations in myelodysplastic syndromes. Rev Med Interne. 2011;32:552–9.

    Article  CAS  PubMed  Google Scholar 

  • Fenaux P, et al. Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study. Lancet Oncol. 2009;10(3):223–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Manero G, et al. A prognostic score for patients with lower risk myelodysplastic syndrome. Leukemia. 2007;22(3):538–43.

    Article  PubMed  Google Scholar 

  • Garcia-Manero G, et al. Outcome of patients (pts) with low and intermediate-1 risk myelodysplastic syndrome (MDS) after hypomethylating agent (HMA) failure. Blood. 2013;122(21):388.

    Google Scholar 

  • Gelsi-Boyer V, Trouplin V, Adelaide J, et al. Mutations of polycomb-associated gene ASXL1 in myelodysplastic syndromes and chronic myelomonocytic leukaemia. Br J Haematol. 2009;145:788–800.

    Article  CAS  PubMed  Google Scholar 

  • Genovese G, Kähler A, Handsaker R, et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med. 2014;371:2477–87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Germing U, Lauseker M, Hildebrandt B, et al. Survival, prognostic factors and rates of leukemic transformation in 381 untreated patients with MDS and del(5q): a multicenter study. Leukemia. 2012;26:1286–92.

    Article  CAS  PubMed  Google Scholar 

  • Giagounidis AA, Germing U, Haase S, et al. Clinical, morphologic, cytogenetic, and prognostic features of patients with myelodysplastic syndromes and del(5q) including band q31. Leukemia. 2004;18:113–9.

    Article  CAS  PubMed  Google Scholar 

  • Gillis NK, et al. Clonal haemopoiesis and therapy-related myeloid malignancies in elderly patients: a proof-of-concept, case-control study. Lancet Oncol. 2017;18(1):112–21.

    Article  PubMed  Google Scholar 

  • Greenberg P, et al. International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood. 1997;89(6):2079–88.

    CAS  PubMed  Google Scholar 

  • Greenberg PL, et al. Revised international prognostic scoring system for myelodysplastic syndromes. Blood. 2012;120(12):2454–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grossmann V, Kohlmann A, Eder C, et al. Analyses of 81 chronic myelomonocytic leukemia (CMML) for EZH2, TET2, ASXL1, CBL, KRAS, NRAS, RUNX1, IDH1, IDH2, and NPM1 revealed mutations in 86.4% of all patients with TET2 and EZH2 being of high prognostic relevance. ASH Annual Meeting Abstracts. Blood. 2010;116:296.

    Google Scholar 

  • Haferlach T. Molecular genetics in myelodysplastic syndromes. Leuk Res. 2012;36(12):1459–62.

    Article  CAS  PubMed  Google Scholar 

  • Hugo SE, et al. Independent validation of the MD Anderson Cancer Center risk model for myelodysplastic syndromes (MDS), and comparison to the international prognostic scoring system (IPSS) and the World Health Organization-based prognostic scoring system (WPSS). ASH Annual Meeting Abstracts. Blood. 2009;114(22):3814.

    Google Scholar 

  • International Agency for Research on Cancer. IARC monographs. Chemical agents and related occupations, Volume F. A review of human carcinogens. Lyon: IARC; 2012.

    Google Scholar 

  • Itzykson R, Kosmider O, Renneville A, et al. Prognostic score including gene mutations in chronic myelomonocytic leukemia. J Clin Oncol. 2013;31:2428–36.

    Article  CAS  PubMed  Google Scholar 

  • Jabbour E, et al. Low-dose azacitidine after allogeneic stem cell transplantation for acute leukemia. Cancer. 2009;115(9):1899–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jabbour E, et al. Outcome of patients with myelodysplastic syndrome after failure of decitabine therapy. Cancer. 2010;116(16):3830–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jabbour EJ, et al. Outcome of patients with low-risk and intermediate-1-risk myelodysplastic syndrome after hypomethylating agent failure: a report on behalf of the MDS Clinical Research Consortium. Cancer. 2015;121(6):876–82.

    Article  PubMed  Google Scholar 

  • Jadersten M, Saft L, Smith A, et al. TP53 mutations in low-risk myelodysplastic syndromes with del(5q) predict disease progression. J Clin Oncol. 2011;29:1971–9.

    Article  PubMed  Google Scholar 

  • Jaiswal S, Fontanillas P, Flannick J, et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med. 2014;371:2488–98.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jankowska AM, Makishima H, Tiu RV, et al. Mutational spectrum analysis of chronic myelomonocytic leukemia includes genes associated with epigenetic regulation: UTX, EZH2, and DNMT3A. Blood. 2011;118:3932–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kantarjian H, Giles F, List A, et al. The incidence and impact of thrombocytopenia in myelodysplastic syndromes. Cancer. 2007a;109:1705–14.

    Article  CAS  PubMed  Google Scholar 

  • Kantarjian H, Oki Y, Garcia-Manero G, et al. Results of a randomized study of 3 schedules of low-dose decitabine in higher-risk myelodysplastic syndrome and chronic myelomonocytic leukemia. Blood. 2007b;109(1):52–7.

    Article  CAS  PubMed  Google Scholar 

  • Kantarjian H, et al. Proposal for a new risk model in myelodysplastic syndrome that accounts for events not considered in the original International Prognostic Scoring System. Cancer. 2008;113(6):1351–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ko M, Huang Y, Jankowska AM, et al. Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature. 2010;468:839–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komrokji R. Myelodysplastic syndromes: a view from where the sun rises and where the sun sets. Leuk Res. 2006;30:1067–8.

    Article  PubMed  Google Scholar 

  • Komrokji R, Bennett JM. The myelodysplastic syndromes: classification and prognosis. Curr Hematol Rep. 2003;2:179–85.

    PubMed  Google Scholar 

  • Komrokji RS, et al. Validation of the MD Anderson Prognostic Risk Model for patients with myelodysplastic syndrome. Cancer. 2012;118(10):2659–64.

    Article  PubMed  Google Scholar 

  • Komrokji RS, Garcia-Manero G, Ades L, et al. An open-label, phase 2, dose-finding study of sotatercept (ACE-011) in patients with low or intermediate-1 (Int-1)-risk myelodysplastic syndromes (MDS) or non-proliferative chronic myelomonocytic leukemia (CMML) and anemia requiring transfusion. Blood. 2014;124(21):3251–1

    Google Scholar 

  • Koreth J, et al. Role of reduced-intensity conditioning allogeneic hematopoietic stem-cell transplantation in older patients with de novo myelodysplastic syndromes: an international collaborative decision analysis. J Clin Oncol. 2013;31(21):2662–70.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kristinsson SY, Björkholm M, Hultcrantz M, et al. Chronic immune stimulation might act as a trigger for the development of acute myeloid leukemia or myelodysplastic syndromes. J Clin Oncol. 2011;29:2897–903.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kulasekararaj AG, Al Ali NH, Kordasti SY, et al. Characteristics and outcome of myelodysplastic syndromes (MDS) patients with autoimmune diseases. Blood. 2013;122:746.

    Google Scholar 

  • Liew E, Owen C. Familial myelodysplastic syndromes: a review of the literature. Haematologica. 2011;96:1536–42.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lim Z, et al. Allogeneic hematopoietic stem-cell transplantation for patients 50 years or older with myelodysplastic syndromes or secondary acute myeloid leukemia. J Clin Oncol. 2010;28(3):405–11.

    Article  PubMed  Google Scholar 

  • Lindsley RC, et al. Prognostic mutations in myelodysplastic syndrome after stem-cell transplantation. N Engl J Med. 2017;376(6):536–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • List A, et al. Lenalidomide in the myelodysplastic syndrome with chromosome 5q deletion. N Engl J Med. 2006;355(14):1456–65.

    Article  CAS  PubMed  Google Scholar 

  • List AF, et al. Extended survival and reduced risk of AML progression in erythroid-responsive lenalidomide-treated patients with lower-risk del(5q) MDS. Leukemia. 2014;28(5):1033–40.

    Article  CAS  PubMed  Google Scholar 

  • Lubbert M, et al. Low-dose decitabine versus best supportive care in elderly patients with intermediate- or high-risk myelodysplastic syndrome (MDS) ineligible for intensive chemotherapy: final results of the randomized phase III study of the European Organisation for Research and Treatment of Cancer Leukemia Group and the German MDS Study Group. J Clin Oncol. 2011;29(15):1987–96.

    Article  PubMed  CAS  Google Scholar 

  • Lyons RM, et al. Hematologic response to three alternative dosing schedules of azacitidine in patients with myelodysplastic syndromes. J Clin Oncol. 2009;27(11):1850–6.

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Does M, Raza A, et al. Myelodysplastic syndromes: incidence and survival in the United States. Cancer. 2007;109:1536–42.

    Article  PubMed  Google Scholar 

  • Mailloux AW, Sugimori C, Komrokji RS, et al. Expansion of effector memory regulatory T cells represents a novel prognostic factor in lower risk myelodysplastic syndrome. J Immunol. 2012;189:3198–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malcovati L, Della Porta MG, Cazzola M. Predicting survival and leukemic evolution in patients with myelodysplastic syndrome. Haematologica. 2006;91:1588–90.

    PubMed  Google Scholar 

  • Malcovati L, et al. Time-dependent prognostic scoring system for predicting survival and leukemic evolution in myelodysplastic syndromes. J Clin Oncol Off J Am Soc Clin Oncol. 2007;25(23):3503–10.

    Article  Google Scholar 

  • Malcovati L, Della Porta MG, Pietra D, et al. Molecular and clinical features of refractory anemia with ringed sideroblasts associated with marked thrombocytosis. Blood. 2009;114:3538–45.

    Article  CAS  PubMed  Google Scholar 

  • Malcovati L, Papaemmanuil E, Bowen DT, et al. Clinical significance of SF3B1 mutations in myelodysplastic syndromes and myelodysplastic/myeloproliferative neoplasms. Blood. 2011;118:6239–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malcovati L, Papaemmanuil E, Ambaglio I, et al. Driver somatic mutations identify distinct disease entities within myeloid neoplasms with myelodysplasia. Blood. 2014;124:1513–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malcovati L, Karimi M, Papaemmanuil E, et al. SF3B1 mutation identifies a distinct subset of myelodysplastic syndrome with ring sideroblasts. Blood. 2015;126:233–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mallo M, Cervera J, Schanz J, et al. Impact of adjunct cytogenetic abnormalities for prognostic stratification in patients with myelodysplastic syndrome and deletion 5q. Leukemia. 2011;25:110–20.

    Article  CAS  PubMed  Google Scholar 

  • Meggendorfer M, Roller A, Haferlach T, et al. SRSF2 mutations in 275 cases with chronic myelomonocytic leukemia (CMML). Blood. 2012;120:3080–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller JS, Arthur DC, Litz CE, et al. Myelodysplastic syndrome after autologous bone marrow transplantation: an additional late complication of curative cancer therapy. Blood. 1994;83:3780–6.

    CAS  PubMed  Google Scholar 

  • Mishra A, et al. Validation of the revised International Prognostic Scoring System in treated patients with myelodysplastic syndromes. Am J Hematol. 2013;88(7):566–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naqvi K, Garcia-Manero G, Sardesai S, et al. Association of comorbidities with overall survival in myelodysplastic syndrome: development of a prognostic model. J Clin Oncol. 2011;29:2240–6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nardi V, Winkfield KM, Ok CY, et al. Acute myeloid leukemia and myelodysplastic syndromes after radiation therapy are similar to de novo disease and differ from other therapy-related myeloid neoplasms. J Clin Oncol. 2012;30:2340–7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nazha A, Bejar R. Molecular data and the IPSS-R: how mutational burden can affect prognostication in MDS. Curr Hematol Malig Rep. 2017;12:461.

    Article  PubMed  Google Scholar 

  • Ong KR, Sordillo E, Frankel E. Unusual case of Aeromonas hydrophila endocarditis. J Clin Microbiol. 1991;29:1056–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Orazi A, Bennett JM, Germing U. Chronic myelomonocytic leukemia. In: Swerdlow SH, Campo E, Harris NL, Jaffe ES, editors. WHO classification of tumours of haematopoietic and lymphoid tissues. 4th ed. Lyon: IARC; 2008. p. 76–9.

    Google Scholar 

  • Ostergaard P, Simpson MA, Connell FC, et al. Mutations in GATA2 cause primary lymphedema associated with a predisposition to acute myeloid leukemia (Emberger syndrome). Nat Genet. 2011;43:929–31.

    Article  CAS  PubMed  Google Scholar 

  • Padron E, Komrokji RS. Myelodysplastic syndromes. In: Govindan R, Jabbour E, editors. InPractice oncology, Chapter 39. 2015. https://www.inpractice.com/Textbooks/Oncology/Hematologic_Malignancies/ch39_Acute_Leukemias.aspx. Accessed 20 Aug 2017.

  • Papaemmanuil E, Cazzola M, Boultwood J, et al. Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. N Engl J Med. 2011;365:1384–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papaemmanuil E, Gerstung M, Malcovati L, et al. Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood. 2013;122:3616–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parikh SA, Tefferi A. Chronic myelomonocytic leukemia: 2013 update on diagnosis, risk stratification, and management. Am J Hematol. 2013;88:967–74.

    Article  CAS  PubMed  Google Scholar 

  • Park DJ, Koeffler HP. Therapy-related myelodysplastic syndromes. Semin Hematol. 1996;33:256–73.

    CAS  PubMed  Google Scholar 

  • Patnaik MM, Hansen CA, Sulai NH, et al. Prognostic irrelevance of ring sideroblast percentage in World Health Organization-defined myelodysplastic syndromes without excess blasts. Blood. 2012;119:5674–7.

    Article  CAS  PubMed  Google Scholar 

  • Platzbecker U, et al. Luspatercept for the treatment of anaemia in patients with lower-risk myelodysplastic syndromes (PACE-MDS): a multicentre, open-label phase 2 dose-finding study with long-term extension study. Lancet Oncol. 2017;18(10):1338–47.

    Article  CAS  PubMed  Google Scholar 

  • Pomeroy C, Oken MM, Rydell RE, et al. Infection in the myelodysplastic syndromes. Am J Med. 1991;90:338–44.

    Article  CAS  PubMed  Google Scholar 

  • Prebet T, et al. Outcome of high-risk myelodysplastic syndrome after azacitidine treatment failure. J Clin Oncol. 2011;29(24):3322–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raman BK, Van Slyck EJ, Riddle J, et al. Platelet function and structure in myeloproliferative disease, myelodysplastic syndrome, and secondary thrombocytosis. Am J Clin Pathol. 1989;91:647–55.

    Article  CAS  PubMed  Google Scholar 

  • Rowe JM, et al. A phase 3 study of three induction regimens and of priming with GM-CSF in older adults with acute myeloid leukemia: a trial by the Eastern Cooperative Oncology Group. Blood. 2004;103(2):479–85.

    Article  CAS  PubMed  Google Scholar 

  • Sanz C, Cervantes F, Pereira A, et al. Coombs-positive autoimmune hemolytic anemia as a striking initial manifestation of myelodysplastic syndromes. Sangre. 1990;35:329.

    CAS  PubMed  Google Scholar 

  • Schnatter AR, Glass DC, Tang G, et al. Myelodysplastic syndrome and benzene exposure among petroleum workers: an international pooled analysis. J Natl Cancer Inst. 2012;104:1724–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sloand EM, et al. Factors affecting response and survival in patients with myelodysplasia treated with immunosuppressive therapy. J Clin Oncol. 2008;26(15):2505–11.

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith SM, Le Beau MM, Huo D, et al. Clinical-cytogenetic associations in 306 patients with therapy-related myelodysplasia and myeloid leukemia: the University of Chicago series. Blood. 2003;102:43–52.

    Article  CAS  PubMed  Google Scholar 

  • Steensma D. Dysplasia has a differential diagnosis: distinguishing genuine myelodysplastic syndromes (MDS) from mimics, imitators, copycats and impostors. Curr Hematol Malig Rep. 2012;7:310–20.

    Article  PubMed  Google Scholar 

  • Steensma D, Bejar R, Jaiswal S, et al. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood. 2015;126:9–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strom SS, Vélez-Bravo V, Estey EH. Epidemiology of myelodysplastic syndromes. Semin Hematol. 2008;45:8–13.

    Article  PubMed  Google Scholar 

  • Tabata R, Tabata C, Okamoto T, et al. Autoimmune pancreatitis associated with myelodysplastic syndrome. Int Arch Allergy Immunol. 2010;151:168–72.

    Article  PubMed  Google Scholar 

  • Tefferi A, et al. Targeted next-generation sequencing in myelodysplastic syndromes and prognostic interaction between mutations and IPSS-R. Am J Hematol. 2017;92:1311.

    Article  CAS  PubMed  Google Scholar 

  • Tong H, Hu C, Yin X, et al. A meta-analysis of the relationship between cigarette smoking and incidence of myelodysplastic syndromes. PLoS One. 2013;8:e67537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsukada H, Chou T, Ishizuka Y, et al. Disseminated Mycobacterium avium-intracellulare infection in a patient with myelodysplastic syndrome (refractory anemia). Am J Hematol. 1994;45:325–9.

    Article  CAS  PubMed  Google Scholar 

  • Valent P, Horny HP, Bennett JM, et al. Definitions and standards in the diagnosis and treatment of the myelodysplastic syndromes: consensus statements and report from a working conference. Leuk Res. 2007;31:727–36.

    Article  PubMed  Google Scholar 

  • Vardiman JW, Harris NL, Brunning RD. The World Health Organization (WHO) classification of the myeloid neoplasms. Blood. 2002;100:2292–302.

    Article  CAS  PubMed  Google Scholar 

  • Vardiman JW, Bennett JM, Bain BJ. Myelodysplastic/myeloproliferative neoplasm, unclassifiable. In: Swerdlow SH, Campo E, Harris NL, Jaffe ES, editors. WHO classification of tumours of haematopoietic and lymphoid tissues. 4th ed. Lyon: IARC; 2008. p. 85–6.

    Google Scholar 

  • Vardiman JW, Thiele J, Arber DA, et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood. 2009;114:937–51.

    Article  CAS  PubMed  Google Scholar 

  • Voso MT, et al. Revised International Prognostic Scoring System (IPSS) predicts survival and leukemic evolution of myelodysplastic syndromes significantly better than IPSS and WHO Prognostic Scoring System: validation by the Gruppo Romano Mielodisplasie Italian Regional Database. J Clin Oncol. 2013;31(21):2671–7.

    Article  PubMed  Google Scholar 

  • Walter MJ, Shen D, Ding L, et al. Clonal architecture of secondary acute myeloid leukemia. N Engl J Med. 2012;366:1090–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei Y, Dimicoli S, Bueso-Ramos C, et al. Toll-like receptor alterations in myelodysplastic syndrome. Leukemia. 2013;27:1832–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • West AH, Godley LA, Churpek JE. Familial myelodysplastic syndrome/acute leukemia syndromes: a review and utility for translational investigations. Ann N Y Acad Sci. 2014;1310:111–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woll PS, Kjallquist U, Chowdhury O, et al. Myelodysplastic syndromes are propagated by rare and distinct human cancer stem cells in vivo. Cancer Cell. 2014;25:794–808.

    Article  CAS  PubMed  Google Scholar 

  • Wu SJ, Kuo YY, Hou HA, et al. The clinical implication of SRSF2 mutation in patients with myelodysplastic syndrome and its stability during disease evolution. Blood. 2012;120:3106–11.

    Article  CAS  PubMed  Google Scholar 

  • Xie M, Lu C, Wang J, et al. Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat Med. 2014;20:1472–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L, Mailloux A, Rollison DE, et al. Naive T-cells in myelodysplastic syndrome display intrinsic human telomerase reverse transcriptase (hTERT) deficiency. Leukemia. 2013;27:897–906.

    Article  CAS  PubMed  Google Scholar 

  • Zeidan AM, et al. Lenalidomide treatment for lower risk nondeletion 5q myelodysplastic syndromes patients yields higher response rates when used before azacitidine. Clin Lymphoma Myeloma Leuk. 2015;15(11):705–10.

    Article  PubMed  Google Scholar 

  • Zou JX, Rollison DE, Boulware D, et al. Altered naive and memory CD4+ T-cell homeostasis and immunosenescence characterize younger patients with myelodysplastic syndrome. Leukemia. 2009;23:1288–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rami Komrokji .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Van den Bergh, M., Shams, S., Komrokji, R. (2019). Myelodysplastic Syndrome. In: Extermann, M. (eds) Geriatric Oncology . Springer, Cham. https://doi.org/10.1007/978-3-319-44870-1_46-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44870-1_46-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44870-1

  • Online ISBN: 978-3-319-44870-1

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics