Skip to main content

In Situ AFM Investigations and Fracture Mechanics Modeling of Slow Fracture Propagation in Oxide and Polymer Glasses

  • Reference work entry
  • First Online:
Handbook of Materials Modeling

Abstract

Fracture propagation is inherently a multiscale problem, involving the coupling of many length scales from sample dimension to molecular level. Fracture mechanics provides a valuable link between the macroscopic scale of the structural loading of the samples and the scale of the process zone for brittle materials. Modeling the toughness of materials requires yet an investigation at scales smaller than this process zone, which is nanometric in oxide glasses and micrometric in polymer glasses. We present here the important insights that have been obtained through an in situ experimental investigation of the strain fields in the micrometric neighborhood of a propagating crack. We show the richness of atomic force microscopy combined with digital image correlation although it limits the observations to the external surface of the sample and to very slow crack propagation (below nm/s). For oxide glasses, this novel technique provided enlightening information on the nanoscale mechanisms of stress corrosion during subcritical crack propagation (Ciccotti, J Phys D Appl Phys 42:214006, 2009; Pallares et al., Corros Rev 33(6):501–514, 2015), including the relevance of crack tip plasticity (Han et al., EPL 89:66003, 2010), stress-induced ion exchange processes (Célarié et al., J Non-Cryst Solids 353:51–68, 2007), and capillary condensation in the crack tip cavity (Grimaldi et al., Phys Rev Lett 100:165505, 2008; Pallares et al., J Am Ceram Soc 94:2613–2618, 2011). An extension of this technique has recently been developed for glassy polymers (George et al., J Mech Phys Solids 112:109–125, 2018), leading to novel insights on the transition between crazing and shear yielding mechanisms and to promising new ways to link the toughness properties to the time-dependent large strain material properties of these nominally brittle materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bazant ZP, Estenssoro LF (1979) Surface singularity and crack propagation. Int J Solids Struct 15:405–426

    Article  MathSciNet  MATH  Google Scholar 

  • Benthem JP (1977) State of stress at the vertex of a quarter-infinite crack in a half-space. Int J Solids Struct 13:479–492

    Article  MATH  Google Scholar 

  • Bonamy D, Ponson L, Prades S, Bouchaud E, Guillot C (2006) Scaling exponents for fracture surfaces in homogeneous glass and glassy ceramics. Phys Rev Lett 97:135504

    Article  ADS  Google Scholar 

  • Bowden FP, Tabor D (1950) Friction and lubrication in solids. Clarendon Press, Oxford, U.K

    Google Scholar 

  • Brown HR (1991) A molecular interpretation of the toughness of glassy polymers. Macromolecules 24:2752–2756

    Article  ADS  Google Scholar 

  • Bunker BC (1994) Molecular mechanisms for corrosion of silica and silicate glasses. J Non-Cryst Solids 179:300–308

    Article  ADS  Google Scholar 

  • Célarié F, Prades S, Bonamy D, Ferrero L, Bouchaud E, Guillot C, Marliére C (2003) Glass breaks like metal, but at the nanometer scale. Phys Rev Lett 90:075504

    Article  ADS  Google Scholar 

  • Célarié F (2004) Dynamique de fissuration a basse vitesse des matériaux vitreux. PhD thesis, Université Montpellier 2

    Google Scholar 

  • Célarié F, Ciccotti M, Marlière C (2007) Stress-enhanced ion diffusion at the vicinity of a crack tip as evidenced by atomic force microscopy in silicate glasses. J Non-Cryst Solids 353:51–68

    Article  ADS  Google Scholar 

  • Charlaix E, Ciccotti M (2010) Capillary condensation in confined media. In: Sattler K (ed) Handbook of nanophysics: principles and methods. CRC Press, Boca Raton, p 12–1

    Google Scholar 

  • Ciccotti M (2009) Stress-corrosion mechanisms in silicate glasses. J Phys D Appl Phys 42:214006

    Article  ADS  Google Scholar 

  • Cleveland JP, Anczykowski B, Schmid AE, Elings VB (1998) Energy dissipation in tapping-mode atomic force microscopy. Appl Phys Lett 72:2613–2615

    Article  ADS  Google Scholar 

  • Crichton SN, Tomozawa M, Hayden JS, Suratwala TI, Campbell JH (1999) Subcritical crack growth in a phosphate laser glass. J Am Ceram Soc 82:3097–104

    Article  Google Scholar 

  • Dimitrov A, Buchholz FG, Schnack E (2006) 3D-corner effects in crack propagation. Comput Model Eng Sci 12:1–25

    Google Scholar 

  • Doll W (1983) Optical interference measurements and fracture mechanics analysis of crack tip craze zones. Adv Polym Sci 52/53:105–168

    Article  Google Scholar 

  • Donald AM, Kramer EJ (1982) The competition between shear deformation and crazing in glassy polymers. J Mater Sci 17:1871–1879

    Article  ADS  Google Scholar 

  • Du J, Cormack AN (2005) Molecular dynamics simulation of the structure and hydroxylation of silica glass surfaces. J Am Ceram Soc 88:2532–2539

    Article  Google Scholar 

  • Dugdale DS (1960) Yielding of steel sheets containing slits. J Mech Phys Solids 8:100–104

    Article  ADS  Google Scholar 

  • Fett T, Guin JP, Wiederhorn SM (2005) Interpretation of effects at the static fatigue limit of soda-lime-silicate glass. Eng Fract Mech 72:2774–2791

    Article  Google Scholar 

  • Fineberg J, Marder M (1999) Instability in dynamic fracture. Elsevier, Phys Rep 313:1–108

    Article  ADS  MathSciNet  Google Scholar 

  • Freund LB (1990) Dynamic fracture mechanics. Cambridge University, Cambridge; Rate J Mat Sci 14:583–591

    Google Scholar 

  • Gehrke E, Ullner C, Mahnert M (1991) Fatigue limit and crack arrest in alkali containing silicate glasses. J Mater Sci 26:5445–5455

    Article  ADS  Google Scholar 

  • George M, Nziakou Y, Goerke S, Genix AC, Bresson B, Roux S, Delacroix H, Halary JL, Ciccotti M (2018) In situ AFM investigation of slow crack propagation mechanisms in a glassy polymer. J Mech Phys Solids 112:109–125

    Article  ADS  Google Scholar 

  • Griffith AA (1920) The phenomena of rupture and flow in solids. Phil Trans R Soc Lond A 221:163–198

    ADS  Google Scholar 

  • Grimaldi A, George M, Pallares G, Marlière C, Ciccotti M (2008) The crack tip: a nanolab for studying confined liquids. Phys Rev Lett 100:165505

    Article  ADS  Google Scholar 

  • G’Sell C, Jonas JJ (1979) Determination of the plastic behaviour of solid polymers at constant true strain. J Mater Sci 14:583–591

    Article  ADS  Google Scholar 

  • Guilloteau E, Charrue H, Creuzet F (1996) The direct observation of the core region of a propagating fracture crack in glass. Europhys Lett 34:549–553

    Article  ADS  Google Scholar 

  • Guin JP, Wiederhorn SM (2004) Fracture of silicate glasses: ductile or brittle? Phys Rev Lett 92:215502

    Article  ADS  Google Scholar 

  • Han K, Ciccotti M, Roux S (2010) Measuring nanoscale stress intensity factors with an atomic force microscope. EPL 89:66003

    Article  ADS  Google Scholar 

  • Halary JL, Lauprétre F, Monnerie L (2011) Polymer materials. Wiley, Haboken

    Google Scholar 

  • Hattali ML, Barés, Ponson L, Bonamy D (2012) Low velocity surface fracture patterns in brittle material: a newly evidenced mechanical instability. Math Sci Forum 706–709:920–924

    Article  Google Scholar 

  • He MY, Turner MR, Evans AG (1995) Analysis of the double cleavage drilled compression specimen for interface fracture energy measurements over a wide range of mode mixities. Acta Metall Mater 43:3453–3458

    Article  Google Scholar 

  • Hutter K (2013) Deformation and failure in metallic materials. Springer, Berlin

    Google Scholar 

  • Irwin GR (1957) Analysis of stresses and strains near the end of a crack traversing a plate. J Appl Mech 24:361–364

    Google Scholar 

  • Janssen C (1974) Specimen for fracture mechanics studies on glass. In: Proceedings of the 10th International Congress on Glass, Kyoto, pp 10.23–10.30

    Google Scholar 

  • Jones RM (2015) Mechanics Of composite materials, 2nd edn. CRC Press, Philadelphia

    Google Scholar 

  • Kermode JR, Albaret T, Sherman D, Bernstein N, Gumbsch P, Payne MC, Csanyi G, De Vita A (2008) Low-speed fracture instabilities in a brittle crystal. Nature 455:1224–1228

    Article  ADS  Google Scholar 

  • Kinloch AJ, Williams JG (1980) Crack blunting mechanisms in polymers. J Mat Sci 15: 897–996

    Google Scholar 

  • Kramer EJ (1983) Microscopic and molecular fundamentals of crazing. Adv Polym Sci 52/53:1–56

    Google Scholar 

  • Lawn BR (1993) Fracture of brittle solids, 2nd edn. Cambridge University, Cambridge

    Book  Google Scholar 

  • Lechenault F, Pallares G, George M, Rountree C, Bouchaud E, Ciccotti M (2010) Effects of finite probe size on self-affine roughness measurements. Phys Rev Lett 104:025502

    Article  ADS  Google Scholar 

  • Marsh DM (1964) Plastic flow and fracture of glass. Proc R Soc London A 282:33–43

    Article  ADS  Google Scholar 

  • Maugis D (1985) Review: subcritical crack growth, surface energy, fracture toughness, stick-slip and embrittlement. J Mater Sci 20:3041–3073

    Article  ADS  Google Scholar 

  • McClintock FA, Irwin GR (1964) Plasticity aspects of fracture mechanics. In: Fracture toughness testing and its applications. ASTM STP 381; Philadelphia, pp 84–113

    Google Scholar 

  • Michalske TA, Freiman SW (1983) A molecular mechanism for stress corrosion in vitreous silica. J Am Ceram Soc 66:284–288

    Article  Google Scholar 

  • Michalske TA, Bunker BC (1984) Slow fracture mode based on strained silicate structures. J Appl Phys 56:2686–2693

    Article  ADS  Google Scholar 

  • Mischler C, Horbach J, Kob W, Binder K (2005) Water adsorption on amorphous silica surfaces: a Car-Parrinello simulation study. J Phys Cond Matt 17:4005–4013

    Article  ADS  Google Scholar 

  • Nziakou Y (2015) Analyse multi-échelle des mécanismes d’endommagement des matériaux composites à morphologie complexe destinés à l’aéronautique. PhD Thesis, Université Pierre et Marie Curie

    Google Scholar 

  • Nziakou Y, George M, Fisher G, Bresson B, Roux S, Halary JL, Ciccotti M (2019) Bridging steady-state and stick-slip fracture propagation in glassy polymers. preprint Soft Matter (submitted)

    Google Scholar 

  • Orowan E (1955) Energy criteria of fracture. Weld J Res Suppl 34:S157–S160

    Google Scholar 

  • Pallares G, Ponson L, Grimaldi A, George M, Prevot G, Ciccotti M (2009) Crack opening profile in DCDC specimen. Int J Fract 156:11–20

    Article  Google Scholar 

  • Pallares G, Grimaldi A, George M, Ponson L, Ciccotti M (2011) Quantitative analysis of crack closure driven by Laplace pressure in silica glass. J Am Ceram Soc 94:2613–2618

    Article  Google Scholar 

  • Pallares G, George M, Ponson L, Chapuliot S, Roux S, Ciccotti M (2015) Multiscale investigation of stress-corrosion crack propagation mechanisms in oxide glasses. Corros Rev 33(6):501–514. Freund Publishing House Ltd.

    Google Scholar 

  • Pallares G, Lechenault F, George M, Bouchaud E, Ottina C, Rountree CL, Ciccotti M (2017) Roughness of oxide glass subcritical fracture surfaces J Am Ceram Soc 101:1279–1288

    Article  Google Scholar 

  • Phillips DC, Scott JM, Jones M (1978) Crack propagation in an amine-cured epoxide resin. J Mat Sci 13:311–322

    Article  ADS  Google Scholar 

  • Réthoré J, Estevez R (2013) Identification of a cohesive zone model from digital images at the micron-scale. J Mech Phys Solids 61:1407–1420

    Article  ADS  MathSciNet  Google Scholar 

  • Roduit C, AFM figures 2010, Creative Commons Attribution

    Google Scholar 

  • Roux S, Hild F (2006) Stress intensity factor measurements from digital image correlation: post-processing and integrated approaches. Int J Fract 140:141–157

    Article  MATH  Google Scholar 

  • Taylor EW (1949) Plastic Deformation of Optical Glass. Nature 163:323

    Article  ADS  Google Scholar 

  • Takahashi K, Arakawa K (1984) Dependence of crack acceleration on the dynamic stress-intensity factor in polymers. Exp Mech 27:195–199

    Article  Google Scholar 

  • Thomson W (1871) On the equilibrium of vapour at a curved surface of liquid. Philos Mag 42:448–452

    Article  Google Scholar 

  • Tomozawa M (1984) Effect of stress on water diffusion in silica glass. J Am Ceram Soc 67: 151–154

    Article  Google Scholar 

  • Tomozawa M (1996) Fracture of glasses. Ann Rev Mater Sci 26:43–74

    Article  ADS  Google Scholar 

  • Wiederhorn SM (1967) Influence of water vapor on crack propagation in soda-lime glass. J Am Ceram Soc 50:407–414

    Article  Google Scholar 

  • Wiederhorn SM (1969) Fracture surface energy of glass. J Am Ceram Soc 52:99–105

    Article  Google Scholar 

  • Wiederhorn SM, Bolz LH (1970) Stress-corrosion and static fatigue of glass. J Am Ceram Soc 53:543–548

    Article  Google Scholar 

  • Wiederhorn SM, Lopez-Cepero J, Wallace J, Guin JP, Fett T (2007) Roughness of glass surfaces formed by sub-critical crack growth. J Non-Cryst Solids 353:1582

    Article  ADS  Google Scholar 

  • Wiederhorn SM, Fett T, Rizzi G, Fünfschilling S, Hoffmann MJ, Guin JP (2011) Effect of water penetration on the strength and toughness of silica glass. J Am Ceram Soc 94:S196–S203

    Article  Google Scholar 

  • Wiederhorn SM, Fett T, Guin JP, Ciccotti M (2013) Griffith cracks at the nanoscale. Int J Appl Glass Science 4:76–86

    Article  Google Scholar 

  • Williams JG (1984) Fracture Mechanics of Polymers. Ellis Horwood, Chichester

    Google Scholar 

  • Williams ML (1957) On the stress distribution at the base of a stationary crack. ASME J Appl Mech 24:109–114

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work has been supported by the French ANR through grants CORCOSIL ANR-07-BLAN-0261-02 and PROMORPH ANR-2011-RMNP-006. We thank C. Marlière, F. Célarié, J.M. Fromental, G. Prevot, and B. Bresson for important developments of the in situ AFM technique. We thank S.M. Wiederhorn, J.P. Guin, T. Fett, S. Roux, E. Charlaix, E. Bouchaud, L. Ponson, C. Fretigny, J.W. Hutchinson, J. Rice, and C.H. Hui for fruitful discussions. A special thanks to PhD and post-doc students involved in past investigations: L. Wondraczec, A. Grimaldi, G. Pallares, F. Lechenault, K. Han, Y. Nziakou, and G. Fischer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Ciccotti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ciccotti, M., George, M. (2020). In Situ AFM Investigations and Fracture Mechanics Modeling of Slow Fracture Propagation in Oxide and Polymer Glasses. In: Andreoni, W., Yip, S. (eds) Handbook of Materials Modeling. Springer, Cham. https://doi.org/10.1007/978-3-319-44680-6_125

Download citation

Publish with us

Policies and ethics