Abstract
Peptide hormones are composed of polypeptide chains with a size ranging from three to hundreds of amino acids. Peptide hormone synthesis involves several steps occurring in the nucleus and cytoplasm of secretory cells, including gene transcription into the precursor nuclear ribonucleic acid, posttranscriptional modifications of the precursor messenger ribonucleic acid transcript, translation of the mature messenger ribonucleic acid, and cotranslational and posttranslational modifications of the hormonal peptide. Synthesis of peptide hormones is regulated at one or more of the above-mentioned biosynthetic steps in order to meet the secretory requirements of endocrine glands. Once they are synthesized, peptide hormones are packaged into secretory granules until appropriate stimuli result in their secretion into the extracellular space. Secretion is not uniform, but rather follows pulsatile patterns and rhythmic changes which, in association with feedback mechanisms, ensure that hormone production is adequate and prevent the excessive release of hormones. Most peptide hormones are water soluble and therefore do not require carrier proteins to circulate in the blood stream. This property results in rapid hormone degradation by plasma proteases and a shorter half-life and duration of action compared to other types of hormones, such as steroid and thyroid hormones.
Similar content being viewed by others
References
Amara SG, Jonas V, Rosenfeld MG, Ong ES, Evans RM. Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products. Nature. 1982;298(5871):240–4.
Becker KL. Principles and practice of endocrinology and metabolism. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 2001.
Blundell TL, Humbel RE. Hormone families: pancreatic hormones and homologous growth factors. Nature. 1980;287(5785):781–7.
Cooke NE, Coit D, Weiner RI, Baxter JD, Martial JA. Structure of cloned DNA complementary to rat prolactin messenger RNA. J Biol Chem. 1980;255(13):6502–10.
Darnell Jr JE. Variety in the level of gene control in eukaryotic cells. Nature. 1982;297(5865):365–71.
Eipper BA, Mains RE. Structure and biosynthesis of pro-adrenocorticotropin/endorphin and related peptides. Endocr Rev. 1980;1:1–27.
Fisker S. Physiology and pathophysiology of growth hormone-binding protein: methodological and clinical aspects. Growth Hormon IGF Res. 2006;16(1):1–28.
Gharib SD, Wierman ME, Shupnik MA, Chin WW. Molecular biology of the pituitary gonadotropins. Endocr Rev. 1990;11(1):177–99.
Gibson S, Crosby SR, White A. Discrimination between beta- endorphin and beta-lipotrophin in human plasma using two-site immunoradiometric assays. Clin Endocrinol. 1993;39:445–53.
Griffin JE, Ojeda SR. Textbook of endocrine physiology. 5th ed. New York: Oxford University Press; 2004.
Jones JI, Clemmons DR. Insulin like growth factor and their binding proteins: biologic actions. Endocr Rev. 1995;16:3–34.
Lodish H, Berk A, Kaiser CA, Krieger M, Scott MP, Bretscher A, et al. Molecular cell biology. 6th ed. New York: W.H. Freeman & Company; 2008.
Molina PE. Endocrine physiology. 4th ed. New York: Mc Graw Hill; 2013.
Normal AW, Litwack G. Hormones. 2nd ed. New York: Academic Press; 1997.
Nussey S, Whitehead S. Endocrinology: an integrated approach. Oxford: BIOS Scientific Publishers; 2001.
Palazzo AF, Akef A. Nuclear export as a key arbiter of “mRNA identity” in eukaryotes. Biochim Biophys Acta. 2012;1819(6):566–77.
Pocock G, Richards CD, Richards D. Human physiology. 4th ed. Oxford: Oxford University Press; 2013.
Pritchard LE, Turnbull AV, White A. Pro-opiomelanocortin processing in the hypothalamus: impact on melanocortin signalling and obesity. J Endocrinol. 2002;172:411–21.
Re R. The nature of intracrine peptide hormone action. Hypertension. 1999;34:534–8.
Seasholtz AF, Valverde RA, Denver RJ. Corticotropin-releasing hormone-binding protein: biochemistry and function from fishes to mammals. J Endocrinol. 2002;175(1):89–97.
Veldhuis JD, Keenan DM, Pincus SM. Motivations and methods for analyzing pulsatile hormone secretion. Endocr Rev. 2008;29(7):823–64.
Wintzen M, Yaar M, Burbach JP, Gilchrest BA. Proopiomelanocortin gene product regulation in keratinocytes. J Invest Dermatol. 1996;106:673–8.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this entry
Cite this entry
Malandrino, N., Smith, R.J. (2018). Synthesis, Secretion, and Transport of Peptide Hormones. In: Belfiore, A., LeRoith, D. (eds) Principles of Endocrinology and Hormone Action. Endocrinology. Springer, Cham. https://doi.org/10.1007/978-3-319-44675-2_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-44675-2_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-44674-5
Online ISBN: 978-3-319-44675-2
eBook Packages: MedicineReference Module Medicine