Role of Biosurfactants

Living reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)

Abstract

Oil is a mixture of a large number of components, all of which are hydrophobic. The high molecular weight fraction, especially the polyaromatic hydrocarbons, has a low water solubility that significantly reduces their availability to bioremediating bacteria. The addition of biosurfactants is critical for increasing the bioavailability of these hydrocarbons, and encouraging results were obtained with the use of high molecular weight biosurfactants.

References

  1. Arino S, Marchal R, Vandecasteele JP (1998) Involvement of a rhamnolipid-producing strain of Pseudomonas aeruginosa in the degradation of polycyclic aromatic hydrocarbons by a bacterial community. J Appl Microbiol 84:769–776CrossRefGoogle Scholar
  2. Barkay T, Navon-Venezia S, Ron EZ, Rosenberg E (1999) Enhancement of solubilization and biodegradation of polyaromatic hydrocarbons by the bioemulsifier alasan. Appl Environ Microbiol 65:2697–2702PubMedPubMedCentralGoogle Scholar
  3. Bonilla M, Olivaro C, Corona M, Vazquez A, Soubes M (2005) Production and characterization of a new bioemulsifier from Pseudomonas putida ML2. J Appl Microbiol 98:456–463CrossRefGoogle Scholar
  4. Bruheim P, Eimhjellen K (1998) Chemically emulsified crude oil as substrate for bacterial oxidation: differences in species response. Can J Microbiol 44:195–199CrossRefGoogle Scholar
  5. Bruheim P, Bredholt H, Eimhjellen K (1997) Bacterial degradation of emulsified crude oil and the effect of various surfactants. Can J Microbiol 43:17–22CrossRefGoogle Scholar
  6. Desai JD, Banat M (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61:47–64PubMedPubMedCentralGoogle Scholar
  7. Grimberg SJ, Stringfellow WT, Aitken MD (1996) Quantifying the biodegradation of phenanthrene by Pseudomonas stutzeri P16 in the presence of a nonionic surfactant. Appl Environ Microbiol 62:2387–2392PubMedPubMedCentralGoogle Scholar
  8. Gutierrez T, Mulloy B, Bavington C, Black K, Green DH (2007) Partial purification and chemical characterization of a glycoprotein (putative hydrocolloid) emulsifier produced by a marine bacterium Antarctobacter. Appl Microbiol Biotechnol 76:1017–1026CrossRefGoogle Scholar
  9. Holden PA, LaMontagne MG, Bruce AK, Miller WG, Lindow SE (2002) Assessing the role of Pseudomonas aeruginosa surface-active gene expression in hexadecane biodegradation in sand. Appl Environ Microbiol 68:2509–2518CrossRefGoogle Scholar
  10. Kelkar DS, Kumar AR, Zinjarde SS (2007) Hydrocarbon emulsification and enhanced crude oil degradation by lauroyl glucose ester. Bioresour Technol 98:1505–1508CrossRefGoogle Scholar
  11. Lim DJ, Kim JD, Kim MY, Yoo SH, Kong JY (2007) Physicochemical properties of the exopolysaccharides produced by marine bacterium Zoogloea sp. KCCM10036. J Microbiol Biotechnol 17:979–984PubMedGoogle Scholar
  12. Mahanty B, Pakshirajan K, Dasu VV (2006) Production and properties of a biosurfactant applied to polycyclic aromatic hydrocarbon solubilization. Appl Biochem Biotechnol 134:129–141CrossRefGoogle Scholar
  13. Maneerat S, Bamba T, Harada K, Kobayashi A, Yamada H, Kawai F (2006) A novel crude oil emulsifier excreted in the culture supernatant of a marine bacterium, Myroides sp. strain SM1. Appl Microbiol Biotechnol 70:254–259CrossRefGoogle Scholar
  14. Marcoux J, Deziel E, Villemur R, Lepine F, Bisaillon JG, Beaudet R (2000) Optimization of high-molecular-weight polycyclic aromatic hydrocarbons’ degradation in a two-liquid-phase bioreactor. J Appl Microbiol 88:655–662CrossRefGoogle Scholar
  15. Miller RM, Zhang Y (1997) Measurement of biosurfactant-enhanced solubilization and biodegradation of hydrocarbons. Methods Biotechnol 2:59–66Google Scholar
  16. Navon-Venezia S, Zosim Z, Gottlieb A, Legmann R, Carmeli S, Ron EZ, Rosenberg E (1995) Alasan: a new bioemulsifier from Acinetobacter radioresistens. Appl Environ Microbiol 61:3240–3244PubMedPubMedCentralGoogle Scholar
  17. Navon-Venezia S, Ron EZ, Banin E, Rosenberg E (1998) The bioemulsifier alasan: role of protein in maintaining structure and activity. Appl Microbiol Biotechnol 49:382–384CrossRefGoogle Scholar
  18. Osterreicher-Ravid D, Ron EZ, Rosenberg E (2000) Horizontal transfer of an exopolymer complex from one bacterial species to another. Environ Microbiol 2:366–372CrossRefGoogle Scholar
  19. Ron EZ (2000) Microbial life on petroleum. In: Seckbach J (ed) Journey to diverse microbial worlds. Kluwer Academica Publishers, Dordrecht, pp 303–315CrossRefGoogle Scholar
  20. Ron EZ, Rosenberg E (2001) Natural roles of biosurfactants. Environ Microbiol 3:229–236CrossRefGoogle Scholar
  21. Ron EZ, Rosenberg E (2002) Biosurfactants and oil bioremediation. Curr Opin Biotechnol 13:249–252CrossRefGoogle Scholar
  22. Rosenberg E, Ron EZ (1998) Surface active polymers of Acinetobacter. In: Kaplan D (ed) Biopolymers from renewable sources. Springer, Berlin, pp 281–291CrossRefGoogle Scholar
  23. Rosenberg E, Ron EZ (1999) High- and low-molecular-mass microbial surfactants. Appl Microbiol Biotechnol 52:154–162CrossRefGoogle Scholar
  24. Rosenberg E, Barkay T, Navon-Venezia S, Ron EZ (1998a) Role of Acinetobacter bioemulsans in petroleum degradation. In: Fass R et al (eds) Novel approaches for bioremediation of organic pollution. Kluwer Academic/Plenum Publishers, New York, pp 171–180Google Scholar
  25. Rosenberg E, Navon-Venezia S, Zilber-Rosenberg I, Ron EZ (1998b) Rate-limiting steps in the microbial degradation of petroleum hydrocarbons. In: Rubin H, Narkis N, Carberry J (eds) Soil and aquifer pollution. Springer, Berlin, pp 59–172Google Scholar
  26. Taylor WH, Juni E (1961) Pathways for biosynthesis of a bacterial capsular polysaccharide. I. Carbohydrate metabolism and terminal oxidation mechanisms of a capsuleproducing coccus. J Bacteriol 81:694–703PubMedPubMedCentralGoogle Scholar
  27. Toren A, Navon-Venezia S, Ron EZ, Rosenberg E (2001) Emulsifying activities of purified Alasan proteins from Acinetobacter radioresistens KA53. Appl Environ Microbiol 67:1102–1106CrossRefGoogle Scholar
  28. Toren A, Orr E, Paitan Y, Ron EZ, Rosenberg E (2002a) The active component of the bioemulsifier alasan from Acinetobacter radioresistens KA53 is an OmpA-like protein. J Bacteriol 184:165–170CrossRefGoogle Scholar
  29. Toren A, Ron EZ, Bekerman R, Rosenberg E (2002b) Solubilization of polyaromatic hydrocarbons by recombinant bioemulsifier AlnA. Appl Microbiol Biotechnol 59:580–584CrossRefGoogle Scholar
  30. Van Delden C, Pesci EC, Pearson JP, Iglewski BH (1998) Starvation selection restores elastase and rhamnolipid production in a Pseudomonas aeruginosa quorum-sensing mutant. Infect Immun 66:4499–4502PubMedPubMedCentralGoogle Scholar
  31. van Loosdrecht MC, Lyklema J, Norde W, Zehnder AJ (1990) Influence of interfaces on microbial activity. Microbiol Rev 54:75–87PubMedPubMedCentralGoogle Scholar
  32. Walzer G, Rosenberg E, Ron EZ (2006) The Acinetobacter outer membrane protein A (OmpA) is a secreted emulsifier. Environ Microbiol 8:1026–1032CrossRefGoogle Scholar
  33. Yakimov MM, Golyshin PN, Lang S, Moore ER, Abraham WR, Lunsdorf H, Timmis KN (1998) Alcanivorax borkumensis gen. nov., sp. nov., a new, hydrocarbon-degrading and surfactant-producing marine bacterium. Int J Syst Bacteriol 48(Pt 2):339–348CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Molecular Microbiology and BiotechnologyTel-Aviv UniversityTel AvivIsrael

Personalised recommendations