Advertisement

Physiopathology, Diagnosis, and Treatment of Secondary Female Hypogonadism

  • Athanasios Antoniou-Tsigkos
  • Djuro Macut
  • George Mastorakos
Reference work entry
Part of the Endocrinology book series (ENDOCR)

Abstract

Female hypogonadism is a state characterized by absent or decreased ovarian function. It results from a gonadal (primary hypogonadism) or an extragonadal (secondary hypogonadism) princeps defect. In secondary hypogonadism, hypothalamic gonadotropin-releasing hormone or/and pituitary-secreted gonadotropins (follicle-stimulating hormone, luteinizing hormone) are either deficient or inactive leading to decreased secretion of gonadal steroids and subsequent amenorrhea. In certain conditions, both hypothalamic and pituitary dysfunctions are present. The genetic causes of secondary hypogonadism manifest mainly as congenital genetic syndromes (i.e., Kallmann syndrome) while some of them have been attributed to recognized single gene mutations and others have been characterized as idiopathic forms. Acquired causes of secondary hypogonadism include reversible causes such as functional hypothalamic amenorrhea, drugs, chronic illnesses, and irreversible causes such as central nervous system insults (trauma, irradiation, and intracranial tumors). Diagnosis should take in consideration the age at the clinical presentation (prepubertal or postpubertal), the physical findings as well as biochemical and imaging findings. Genetic investigation can be employed for more precise diagnosis. Finally, treatment should focus upon the treatment of the causal factor wherever possible and the hormone replacement therapy. The latter is adapted to the age of diagnosis of secondary female hypogonadism (prepubertal vs. postpubertal).

Keywords

Secondary hypogonadism Hypogonadotropic hypogonadism Hypogonadism Kisspeptin Hypothalamic amenorrhea Kallman syndrome Idiopathic hypogonadotropic hypogonadism Hormone replacement therapy 

List of Abbreviations

ACTH

Adrenocorticotropic hormone

ADH

Antidiuretic hormone

cAMP

cyclic adenosine monophosphate

AVP

Antidiuretic hormone

AMH

Anti-Mullerian hormone

hCG

Human chorionic gonadotropin

CBT

Cognitive behavioral therapy

CDGP

Constitutional delay of growth and puberty

CRH

Corticotropin-releasing hormone

DHEA

Dehydroepiandrosterone

FHA

Functional hypothalamic amenorrhea

FSH

Follicle-stimulating hormone

GABA

Gamma-Aminobutyric Acid

GnRH

Gonadotropin-releasing hormone

GH

Growth hormone

HPO

Hypothalamic-pituitary-ovarian

IHH

Isolated hypogonadotrophic hypogonadism

IGF-1

Insulin growth factor 1

KDNY

Kisspeptin-Neurokinin B-Dynorphin

KS

Kallmann syndrome

LDL

Low-density lipoprotein

LH

Luteinizing hormone

α-MSH

α-Melanocyte-Stimulating hormone

NPY

Neuropeptide Y

PTH

Parathyroid hormone

PVN

paraventricular nucleus

POA

Preoptic area

PRL

Prolactin

POMC

Proopiomelanocortin

SHBG

Sex hormone binding globulin

TSH

Thyroid stimulating hormone

TRH

Thyrotropin-releasing hormone

References

  1. Ahima RS, Prabakaran D, Mantzoros C, et al. Role of leptin in the neuroendocrine response to fasting. Nature. 1996;382:250–2.PubMedCrossRefGoogle Scholar
  2. Akefeldt A, Tornhage CJ, Gillberg C. A woman with Prader-Willi syndrome gives birth to a healthy baby girl. Dev Med Child Neurol. 1999;41(11):789–90.PubMedCrossRefGoogle Scholar
  3. Amsterdam A, Rotmensch S. Structure-function relationships during granulosa cell differentiation. Endocr Rev. 1987;8(3):309–37.PubMedCrossRefGoogle Scholar
  4. Ankarberg-Lindgren C, Elfving M, Wikland KA, Norjavaara E. Nocturnal application of transdermal estradiol patches produces levels of estradiol that mimic those seen at the onset of spontaneous puberty in girls. J Clin Endocrinol Metab. 2001;86(7):3039–44.PubMedGoogle Scholar
  5. Armada-Dias L, Carvalho JJ, Breitenbach MMD, Franci CR, Moura EG. Is the infertility in hypothyroidism mainly due to ovarian or pituitary functional changes? Braz J Med Biol Res. 2001;34(9):1209–15.PubMedCrossRefGoogle Scholar
  6. Aubert ML, Pierroz DD, Gruaz NM, et al. Metabolic control of sexual function and growth: role of neuropeptide Y and leptin. Mol Cell Endocrinol. 1998;140(1–2):107–13. ReviewPubMedCrossRefGoogle Scholar
  7. Baird DT, Smith KB. Inhibin and related peptides in the regulation of reproduction. Oxford RevReprod. Biol. 1993;15:191–232.Google Scholar
  8. Barni T, Maggi M, Fantoni G, et al. Sex steroids and odorants modulate gonadotropin-releasing hormone secretion in primary cultures of human olfactory cells. J Clin Endocrinol Metab. 1999;84(11):4266.PubMedGoogle Scholar
  9. Bauer-Dantoin AC, McDonald JK, Levine JE, Neuropeptide Y. Potentiates luteinizing hormone (LH)-releasing hormone-induced LH secretion only under conditions leading to preovulatory LH surges. Endocrinology. 1992;131(6):2946–52.PubMedCrossRefGoogle Scholar
  10. Bauer-Dantoin AC, Weiss J, Jameson JL. Roles of estrogen, progesterone, and gonadotropin-releasing hormone (GnRH) in the control of pituitary GnRH receptor gene expression at the time of the preovulatory gonadotropin surges. Endocrinology. 1995;136(3):1014–9.PubMedCrossRefGoogle Scholar
  11. Bellefontaine N, Chachlaki K, Parkash J, et al. Leptin-dependent neuronal NO signaling in the preoptic hypothalamus facilitates reproduction. J Clin Invest. 2014;124:2550–9.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bergendahl M, Veldhuis JD. Altered pulsatile gonadotropin signaling in nutritional deficiency in the male. Trends Endocrinol Metab. 1995;6(5):145–59.PubMedCrossRefGoogle Scholar
  13. Bergendahl M, Aloi JA, Iranmanesh A, Mulligan TM, Veldhuis JD. Fasting suppresses pulsatile luteinizing hormone (LH) secretion and enhances orderliness of LH release in young but not older men. J Clin Endocrinol Metab. 1998;83(6):1967–75.PubMedGoogle Scholar
  14. Besecke LM, Guendner MJ, Schneyer AL, Bauer-Dantoin AC, Jameson JL, Weiss J. Gonadotropin-releasing hormone regulates follicle-stimulating hormone-beta gene expression through an activin/follistatin autocrine or paracrine loop. Endocrinology. 1996;137(9):3667–73.PubMedCrossRefGoogle Scholar
  15. Bilezikjian LM, Corrigan AZ, Blount AL, Vale WW. Pituitary follistatin and inhibin subunit messenger ribonucleic acid levels are differentially regulated by local and hormonal factors. Endocrinology. 1996;137(10):4277–84.PubMedCrossRefGoogle Scholar
  16. Blumenfeld Z. Response of human fetal pituitary cells to activin, inhibin, hypophysiotropic and neuroregulatory factors in vitro. Early Pregnancy. 2001;5(1):41–2.PubMedGoogle Scholar
  17. Boden G, Chen X, Mozzoli M, Ryan I. Effect of fasting on serum leptin in normal human subjects. J Clin Endocrinol Metab. 1996;81:3419–23.PubMedGoogle Scholar
  18. Bohnet HG, Dahlén HG, Wuttke W, Schneider HP. Hyperprolactinemic Anovulatory syndrome. J Clin Endocrinol Metab. 1976;42(1):132–43.PubMedCrossRefGoogle Scholar
  19. Bramley TA, Stirling D, Swanston IA, Menzies GS, McNeilly AS, Baird DT. Specific binding sites for gonadotrophin-releasing hormone, LH/chorionic gonadotrophin, low-density lipoprotein, prolactin and FSH in homogenates of human corpus luteum. II: concentrations throughout the luteal phase of the menstrual cycle and early pregnancy. J Endocrinol. 1987;113(2):317–27.PubMedCrossRefGoogle Scholar
  20. Brann DW, Mahesh VB. Excitatory Amino Acids. Their Role in Neuroendocrine Function. Front Neuroendocrinol. 1994;15:3–49.PubMedCrossRefGoogle Scholar
  21. Bray GA, York DA. Hypothalamic and genetic obesity in experimental animals: an autonomic and endocrine hypothesis. Physiol Rev. 1979;59:719–809.PubMedCrossRefGoogle Scholar
  22. Brundu B, Loucks TL, Adler LJ, Cameron JL, Berga SL. Increased cortisol in the cerebrospinal fluid of women with functional hypothalamic amenorrhea. J Clin Endocrinol Metab. 2006;91(4):1561–5.PubMedCrossRefGoogle Scholar
  23. Burke MC, Letts PA, Krajewski SJ, Rance NE. Coexpression of dynorphin and neurokinin B immunoreactivity in the rat hypothalamus: morphologic evidence of interrelated function within arcuate nucleus. J Comp Neurol. 2006;5:712–26.CrossRefGoogle Scholar
  24. Catzeflis C, Pierroz DD, Rohner-Jeanrenaud F, Rivier JE, Sizonenko PC, Aubert ML. Neuropeptide Y administered chronically into the lateral ventricle profoundly inhibits both the gonadotropic and the somatotropic axis in intact adult female rats. Endocrinology. 1993;132(1):224–34.PubMedCrossRefGoogle Scholar
  25. Chan JL, Mantzoros CS. Role of leptin in energy-deprivation states: normal human physiology and clinical implications for hypothalamic amenorrhoea and anorexia nervosa. Lancet. 2005;366(9479):74.PubMedCrossRefGoogle Scholar
  26. Chan JL, Heist K, DePaoli AM, Veldhuis JD, Mantzoros CS. The role of falling leptin levels in the neuroendocrine and metabolic adaptation to short-term starvation in healthy men. J Clin Invest. 2003;111:1409–21.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Chen HF, Jeung EB, Stephenson M, Leung PC. Human peripheral blood mononuclear cells express gonadotropin-releasing hormone (GnRH), GnRH receptor, and interleukin-2 receptor gamma-chain messenger ribonucleic acids that are regulated by GnRH in vitro. J Clin Endocrinol Metab. 1999;84(2):743–50.PubMedGoogle Scholar
  28. Cheng G, Coolen LM, Padmanabhan V, Goodman RL, Lehman MN. The kisspeptin/neurokinin B/dynorphin (KDNy) cell population of the arcuate nucleus: sex differences and effects of prenatal testosterone in sheep. Endocrinology. 2010;1:301–11.CrossRefGoogle Scholar
  29. Chetkowski RJ, Meldrum DR, Steingold KA, et al. Biologic effects of transdermal estradiol. N Engl J Med. 1986;314(25):1615–20.PubMedCrossRefGoogle Scholar
  30. Cheung LW, Wong AS. Gonadotropin-releasing hormone: GnRH receptor signaling in extrapituitary tissues. FEBS J. 2008;275(22):5479–95.PubMedCrossRefGoogle Scholar
  31. Choi JH, Gilks CB, Auersperg N, Leung PC. Immunolocalization of gonadotropin-releasing hormone (GnRH)-I, GnRH-II, and type I GnRH receptor during follicular development in the human ovary. J Clin Endocrinol Metab. 2006;91(11):4562–7.PubMedCrossRefGoogle Scholar
  32. Chou, Mantzoros. 20 years of leptin: role of leptin in human reproductive disorders. J Endocrinol. 2014;223(1):T49–62.PubMedCrossRefGoogle Scholar
  33. Chou CS, Beristain AG, MacCalman CD, Leung PC. Cellular localization of gonadotropin-releasing hormone (GnRH) I and GnRH II in first-trimester human placenta and decidua. J Clin Endocrinol Metab. 2004;89(3):1459–66.PubMedCrossRefGoogle Scholar
  34. Chou SH, Chamberland JP, Liu X, et al. Leptin is an effective treatment for hypothalamic amenorrhea. Proc Natl Acad Sci U S A. 2011;108:6585–90.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Christian CA, Moenter SM. Vasoactive intestinal polypetide can excite gonadotropin-releasing hormone neurons in a manner dependent on estradiol and gated by time of day. Endocrinology. 2008;149:3130–6.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Christian CA, Moenter SM. The neurobiology of preovulatory and estradiol-induced gonadotropin-releasing hormone surges. Endocr Rev. 2010;31(4):544–77.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Chrousos GP, Torpy DJ, Gold PW. Interactions between the hypothalamic-pituitary-adrenal Axis and the female reproductive system: clinical implications. Ann Intern Med. 1998;129(3):229–40.PubMedCrossRefGoogle Scholar
  38. Clement K, Vaisse C, Lahlou N, et al. A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature. 1998;392:398–401.PubMedCrossRefGoogle Scholar
  39. Constine LS, Woolf PD, Cann D, et al. Hypothalamic-pituitary dysfunction after radiation for brain tumors. N Engl J Med. 1993;328(2):87–94.PubMedCrossRefGoogle Scholar
  40. Conte FA, Grumbach MM, Kaplan SL, Reiter EO. Correlation of luteinizing hormone-releasing factor-induced luteinizing hormone and follicle-stimulating hormone release from infancy to 19 years with the changing pattern of gonadotropin secretion in Agonadal patients: relation to the restraint of puberty. J Clin Endocrinol Metab. 1980;50(1):163–8.PubMedCrossRefGoogle Scholar
  41. Crino A, Schiaffini R, Ciampalini P, et al. Hypogonadism and pubertal development in PraderWilli syndrome. Eur J Pediatr. 2003;162(5):327–33.PubMedGoogle Scholar
  42. Crowley WR, Tessel RE, O’Donohue TL, Adler BA, Kalra SP. Effects of ovarian hormones on the concentrations of immunoreactive neuropeptide Y in discrete brain regions of the female rat: correlation with serum luteinizing hormone (LH) and median eminence LH-releasing hormone. Endocrinology. 1985;117(3):1151–5.PubMedCrossRefGoogle Scholar
  43. Cui J, Smith RG, Mount GR, et al. Identification of Phe313 of the gonadotropin-releasing hormone (GnRH) receptor as a site critical for the binding of nonpeptide GnRH antagonists. Mol Endocrinol. 2000;14(5):671–81.PubMedCrossRefGoogle Scholar
  44. Dandona P, Dhindsa S. Update: hypogonadotropic hypogonadism in type 2 diabetes and obesity. J Clin Endocrinol Metab. 2011;96(9):2643–51.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Dasen JS, Barbera JP, Herman TS, et al. Temporal regulation of a paired-like homeodomain repressor/TLE corepressor complex and a related activator is required for pituitary organogenesis. Genes Dev. 2001;15(23):3193–207.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Dattani MT, Martinez-Barbera JP, Thomas PQ, et al. Mutations in the homeobox gene HESX1/Hesx1 associated with septooptic dysplasia in human and mouse. Nat Genet. 1998;19(2):125–33.PubMedCrossRefGoogle Scholar
  47. de Roux N, Milgrom E. Inherited disorders of GnRH and gonadotropin receptors. Mol Cell Endocrinol. 2001;179(1–2):83–7.PubMedCrossRefGoogle Scholar
  48. de Roux N, Genin E, Carel JC, Matsuda F, Chaussain JL, Milgrom E. Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proc Natl Acad Sci U S A. 2003;100(19):10972–6.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Degros V, Cortet-Rudelli C, Soudan B, Dewailly D. The human chorionic gonadotropin test is more powerful than the gonadotropin-releasing hormone agonist test to discriminate male isolated hypogonadotropic hypogonadism from constitutional delayed puberty. Eur J Endocrinol. 2003;149:23–9.PubMedCrossRefGoogle Scholar
  50. Deligeoroglou E, Athanasopoulos N, Tsimaris P, Dimopoulos KD, Vrachnis N, Creatsas G. Evaluation and management of adolescent amenorrhea. Ann N Y Acad Sci. 2010;1205:23–32.PubMedCrossRefGoogle Scholar
  51. Di Carlo C, Palomba S, De Fazio M, Gianturco M, Armellino M, Nappi C. Hypogonadotropic hypogonadism in obese women after biliopancreatic diversion. Fertil Steril. 1999;72(5):905–9.PubMedCrossRefGoogle Scholar
  52. Dierschke DJ, Bhattacharya AN, Atkinson LE, Knobil E. Circhoral oscillations of plasma LH levels in the Ovariectomized rhesus monkey. Endocrinology. 1970;87(5):850–3.PubMedCrossRefGoogle Scholar
  53. Donato J Jr, Cravo RM, Frazão R, et al. Leptin’s effect on puberty in mice is relayed by the ventral premammillary nucleus and does not require signaling in Kiss1 neurons. J Clin Invest. 2011;121:355–68.PubMedCrossRefGoogle Scholar
  54. Ducret E, Anderson GM, Herbison AE. RFamide-related peptide-3, a mammalian gonadotropin-inhibitory hormone ortholog, regulates gonadotropin-releasing hormone neuron firing in the mouse. Endocrinology. 2009;150:2799–804.PubMedCrossRefGoogle Scholar
  55. Durlinger AL, Gruijters MJ, Kramer P, et al. Anti-Mullerian hormone attenuates the effects of FSH on follicle development in the mouse ovary. Endocrinology. 2001;142:4891–9.PubMedCrossRefGoogle Scholar
  56. Durlinger AL, Gruijters MJ, Kramer P, et al. Anti-Mullerian hormone inhibits initiation of primordial follicle growth in the mouse ovary. Endocrinology. 2002;143(3):1076–84.PubMedCrossRefGoogle Scholar
  57. Eicke N, Gunthert AR, Viereck V, et al. GnRH-II receptor-like antigenicity in human placenta and in cancers of the human reproductive organs. Eur J Endocrinol. 2005;153(4):605–12.PubMedCrossRefGoogle Scholar
  58. El Majdoubi M, Sahu A, Ramaswamy S, Plant TM. Neuropeptide Y: a hypothalamic brake restraining the onset of puberty in primates. Proc Natl Acad Sci U S A. 2000;97(11):6179–84.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Evans WS, Weltman JY, Johnson ML, Weltman A, Veldhuis JD, Rogol AD. Effects of opioid receptor blockade on luteinizing hormone (LH) pulses and interpulse LH concentrations in normal women during the early phase of the menstrual cycle. J Endocrinol Investig. 1992;15(7):525–31.CrossRefGoogle Scholar
  60. Farooqi IS, Jebb SA, Langmack G, et al. Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N Engl J Med. 1999;341:879–84.PubMedCrossRefGoogle Scholar
  61. Farooqi IS, Matarese G, Lord GM, et al. Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. J Clin Invest. 2002;110:1093–103.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Farooqi IS, Wangensteen T, Collins S, et al. Clinical and molecular genetic spectrum of congenital deficiency of the leptin receptor. N Engl J Med. 2007;356:237–47.PubMedPubMedCentralCrossRefGoogle Scholar
  63. Fister S, Gunthert AR, Aicher B, Paulini KW, Emons G, Grundker C. GnRH-II antagonists induce apoptosis in human endometrial, ovarian, and breast cancer cells via activation of stress-induced MAPKs p38 and JNK and proapoptotic protein Bax. Cancer Res. 2009;69(16):6473–81.PubMedCrossRefGoogle Scholar
  64. Fleming R, Kelsey TW, Anderson RA, Wallace WH, Nelson SM. Interpreting human follicular recruitment and antimullerian hormone concentrations throughout life. Fertil Steril. 2012;98:1097–102.PubMedCrossRefGoogle Scholar
  65. Foradori CD, Coolen LM, Fitzgerald ME, Skinner DC, Goodman RL, Lehman MN. Colocalization of progesterone receptors in Parvicellular Dynorphin neurons of the ovine preoptic area and hypothalamus. Endocrinology. 2002;143(11):4366–74.PubMedCrossRefGoogle Scholar
  66. Foradori CD, Goodman RL, Adams VL, Valent M, Lehman MN. Progesterone increases Dynorphin a concentrations in cerebrospinal fluid and Preprodynorphin messenger ribonucleic acid levels in a subset of Dynorphin neurons in the sheep. Endocrinology. 2005;146(4):1835–42.PubMedCrossRefGoogle Scholar
  67. Fox SR, Harlan RE, Shivers BD, Pfaff DW. Chemical characterization of neuroendocrine targets for progesterone in the female rat brain and pituitary. Neuroendocrinology. 1990;51(3):276–83.PubMedCrossRefGoogle Scholar
  68. Franco B, Guioli S, Pragliola A, et al. A gene deleted in Kallmann’s syndrome shares homology with neural cell adhesion and axonal path-finding molecules. Nature. 1991;353(6344):529–36.PubMedCrossRefGoogle Scholar
  69. Ghizzoni L, Mastorakos G, Vottero A, et al. Corticotropin-releasing hormone (CRH) inhibits steroid biosynthesis by cultured human granulosa-lutein cells in a CRH and interleukin-1 receptor-mediated fashion. Endocrinology. 1997;138(11):4806–11.PubMedCrossRefGoogle Scholar
  70. Gibson MJ, Krieger DT, Charlton HM, Zimmerman EA, Silverman AJ, Perlow MJ. Mating and pregnancy can occur in genetically hypogonadal mice with preoptic area brain grafts. Science. 1984;225(4665):949.PubMedCrossRefGoogle Scholar
  71. Goodman RL, Parfitt DB, Evans NP, Dahl GE, Karsch FJ. Endogenous opioid peptides control the amplitude and shape of gonadotropin-releasing hormone pulses in the ewe. Endocrinology. 1995;136(6):2412–20.PubMedCrossRefGoogle Scholar
  72. Gottsch ML, Navarro VM, Zhao Z, et al. Regulation of Kiss1 and Dynorphin gene expression in the murine brain by classical and nonclassical Estrogen receptor pathways. J Neurosci. 2009;29(29):9390–5.PubMedPubMedCentralCrossRefGoogle Scholar
  73. Grumbach M, Kaplan S. The neuroendocrinology of human puberty: an ontogenetic perspective. In: Grumbach M, Sizonenko P, Aubert M, editors. Control of the onset of puberty. Baltimore: Williams & Wilkins; 1990.Google Scholar
  74. Grynberg M, Pierre A, Rey R, et al. Differential regulation of ovarian anti-mullerian hormone (AMH) by estradiol through a- and b- estrogen receptors. J Clin Endocrinol Metab. 2012;97:E1649–57.PubMedCrossRefGoogle Scholar
  75. Haddad NG, Eugster EA. Hypopituitarism and neurodevelopmental abnormalities in relation to central nervous system structural defects in children with optic nerve hypoplasia. J Pediatr Endocrinol Metab. 2005;18(9):853–8.PubMedCrossRefGoogle Scholar
  76. Han SK, Gottsch ML, Lee KJ, et al. Activation of gonadotropin-releasing hormone neurons by Kisspeptin as a neuroendocrine switch for the onset of puberty. J Neurosci. 2005;25(49):11349–56.PubMedCrossRefGoogle Scholar
  77. Heiman ML, Ahima RS, Craft LS, Schoner B, Stephens TW, Flier JS. Leptin inhibition of the hypothalamic-pituitary-adrenal axis in response to stress. Endocrinology. 1997;138:3859–63.PubMedCrossRefGoogle Scholar
  78. Herbison AE, Skinner DC, Robinson JE, King IS. Androgen receptor-immunoreactive cells in ram hypothalamus: distribution and co-localization patterns with gonadotropin-releasing hormone, somatostatin and tyrosine hydroxylase. Neuroendocrinology. 1996;63(2):120–31.PubMedCrossRefGoogle Scholar
  79. Hill JW, Urban JH, Xu M, Levine JE. Estrogen induces neuropeptide Y (NPY) Y1 receptor gene expression and responsiveness to NPY in Gonadotrope-enriched pituitary cell cultures. Endocrinology. 2004;145(5):2283–90.PubMedCrossRefGoogle Scholar
  80. Hrabovszky E, Ciofi P, Vida B, et al. The kisspeptin system of the human hypothalamus: sexual dimorphism and relationship with gonadotropin-releasing hormone and neurokinin B neurons. Eur J Neurosci. 2010;31(11):1984–98.PubMedCrossRefGoogle Scholar
  81. Ingraham HA, Lala DS, Ikeda Y, et al. The nuclear receptor steroidogenic factor 1 acts at multiple levels of the reproductive axis. Genes Dev. 1994;8(19):2302–12.PubMedCrossRefGoogle Scholar
  82. Irwig MS, Fraley GS, Smith JT, et al. Kisspeptin activation of gonadotropin releasing hormone neurons and regulation of KiSS-1 mRNA in the male rat. Neuroendocrinology. 2004;80(4):264–72.PubMedCrossRefGoogle Scholar
  83. Jeffcoate WJ, Laurance BM, Edwards CR, Besser GM. Endocrine function in the Prader-Willi syndrome. Clin Endocrinol. 1980;12(1):81–9.CrossRefGoogle Scholar
  84. Jeppesen JV, Anderson RA, Kelsey TW, et al. Which follicles make the most anti-Mullerian hormone in humans? Evidence for an abrupt decline in AMH production at the time of follicle selection. Mol Hum Reprod. 2013;19:519–27.PubMedCrossRefGoogle Scholar
  85. Kaiser UB, Conn PM, Chin WW. Studies of gonadotropin-releasing hormone (GnRH) action using GnRH receptor-expressing pituitary cell lines. Endocr Rev. 1997;18(1):46–70.PubMedGoogle Scholar
  86. Kakar SS, Jennes L. Expression of gonadotropin-releasing hormone and gonadotropin-releasing hormone receptor mRNAs in various non-reproductive human tissues. Cancer Lett. 1995;98(1):57–62.PubMedCrossRefGoogle Scholar
  87. Kalra SP, Crowley WR. Differential effects of pancreatic polypeptide on luteinizing hormone release in female rats. Neuroendocrinology. 1984a;38(6):511–3.PubMedCrossRefGoogle Scholar
  88. Kalra SP, Crowley WR. Norepinephrine-like effects of neuropeptide Y on LH release in the rat. Life Sci. 1984b;35(11):1173–6.PubMedCrossRefGoogle Scholar
  89. Kalra SP, Dube MG, Sahu A, Phelps CP, Kalra PS. Neuropeptide Y secretion increases in the paraventricular nucleus in association with increased appetite for food. Proc Natl Acad Sci U S A. 1991;88(23):10931–5.PubMedPubMedCentralCrossRefGoogle Scholar
  90. Kaynard AH, Pau KY, Hess DL, Spies HG. Third-ventricular infusion of neuropeptide Y suppresses luteinizing hormone secretion in ovariectomized rhesus macaques. Endocrinology. 1990;127(5):2437–44.PubMedCrossRefGoogle Scholar
  91. Kelberman D, Rizzoti K, Avilion A, et al. Mutations within Sox2/SOX2 are associated with abnormalities in the hypothalamo-pituitary-gonadal axis in mice and humans. J Clin Invest. 2006;116(9):2442–55.PubMedPubMedCentralGoogle Scholar
  92. Kelesidis T, Kelesidis I, Chou S, Mantzoros CS. Narrative review: the role of leptin in human physiology: emerging clinical applications. Ann Intern Med. 2010;152(2):93–100.PubMedPubMedCentralCrossRefGoogle Scholar
  93. Kelly DF, Gonzalo IT, Cohan P, Berman N, Swerdloff R, Wang C. Hypopituitarism following traumatic brain injury and aneurysmal subarachnoid hemorrhage: a preliminary report. J Neurosurg. 2000;93(5):743–52.PubMedCrossRefGoogle Scholar
  94. Khorram O, Pau KY, Spies HG. Bimodal effects of neuropeptide Y on hypothalamic release of gonadotropin-releasing hormone in conscious rabbits. Neuroendocrinology. 1987;45(4):290–7.PubMedCrossRefGoogle Scholar
  95. Kiapekou E, Zapanti E, Mastorakos G, Loutradis D. Update on the role of ovarian corticotropin-releasing hormone. Ann N Y Acad Sci. 2010;1205:225–9.PubMedCrossRefGoogle Scholar
  96. King JC, Tai DW, Hanna IK, et al. A subgroup of LHRH neurons in guinea pigs with progestin receptors is centrally positioned within the total population of LHRH neurons. Neuroendocrinology. 1995;61(3):265–75.PubMedCrossRefGoogle Scholar
  97. Knobil E, Plant TM, Wildt L, Belchetz PE, Marshall G. Control of the rhesus monkey menstrual cycle: permissive role of hypothalamic gonadotropin-releasing hormone. Science. 1980;207(4437):1371–3.PubMedCrossRefGoogle Scholar
  98. Kobayashi Y, Zhai YL, Iinuma M, Horiuchi A, Nikaido T, Fujii S. Effects of a GnRH analogue on human smooth muscle cells cultured from normal myometrial and from uterine leiomyomal tissues. Mol Hum Reprod. 1997;3(2):91–9.PubMedCrossRefGoogle Scholar
  99. Kotani M, Detheux M, Vandenbogaerde A, et al. The metastasis suppressor gene KiSS-1 encodes Kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54. J Biol Chem. 2001;276(37):34631–6.PubMedCrossRefGoogle Scholar
  100. Krassas GE, Pontikides N, Kaltsas T, et al. Disturbances of menstruation in hypothyroidism. ClinEndocrinol. 1999;50:655–9.Google Scholar
  101. Kuiper GG, Enmark E, Pelto-Huikko M, Nilsson S, Gustafsson JA. Cloning of a novel receptor expressed in rat prostate and ovary. Proc Natl Acad Sci U S A. 1996;93(12):5925–30.PubMedPubMedCentralCrossRefGoogle Scholar
  102. Latronico AC, Anasti J, Arnhold IJ, et al. Brief report: testicular and ovarian resistance to luteinizing hormone caused by inactivating mutations of the luteinizing hormone-receptor gene. N Engl J Med. 1996;334(8):507–12.PubMedCrossRefGoogle Scholar
  103. Laughlin GA, Dominguez CE, Yen SS. Nutritional and endocrine-metabolic aberrations in women with functional hypothalamic amenorrhea. J Clin Endocrinol Metab. 1998;83(1):25.PubMedGoogle Scholar
  104. Lee EJ, Moore CT, Hosny S, Centers A, Jennes L. Expression of estrogen receptor-α and c-Fos in adrenergic neurons of the female rat during the steroid-induced LH surge. Brain Res. 2000;875:56–65.PubMedCrossRefGoogle Scholar
  105. Lehman MN, Coolen LM, Goodman RL. Minireview: Kisspeptin/neurokinin B/Dynorphin (KNDy) cells of the arcuate nucleus: a central node in the control of gonadotropin-releasing hormone secretion. Endocrinology. 2010;151(8):3479–89.PubMedPubMedCentralCrossRefGoogle Scholar
  106. Leung PC, Cheng CK, Zhu XM. Multi-factorial role of GnRH-I and GnRH-II in the human ovary. Mol Cell Endocrinol. 2003;202(1–2):145–53.PubMedCrossRefGoogle Scholar
  107. Licinio J, Mantzoros C, Negrao AB, et al. Human leptin levels are pulsatile and inversely related to pituitary-adrenal function. Nat Med. 1997;3:575–9.PubMedCrossRefGoogle Scholar
  108. Lieberman SA, Oberoi AL, Gilkison CR, Masel BE, Urban RJ. Prevalence of neuroendocrine dysfunction in patients recovering from traumatic brain injury. J Clin Endocrinol Metab. 2001;86(6):2752–6.PubMedGoogle Scholar
  109. Loucks AB, Thuma JR. Luteinizing hormone Pulsatility is disrupted at a threshold of energy availability in regularly menstruating women. J Clin Endocrinol Metab. 2003;88(1):297–311.PubMedCrossRefGoogle Scholar
  110. Loucks AB, Verdun M, Heath EM. Low energy availability, not stress of exercise alters LH pulsatility in exercising women. J Appl Physiol. 1998;84(1):37–46.PubMedCrossRefGoogle Scholar
  111. Macut D, Micic D, Pralong FP, Bischof P, Campana A. Is there a role for leptin in human reproduction? Gynecol Endocrinol. 1998;12(5):321–6.PubMedCrossRefGoogle Scholar
  112. Maeda K, Ohkura S, Uenoyama Y. Neurobiological mechanisms underlying GnRH pulse generation by the hypothalamus. Brain Res. 2010;1364:103–15.PubMedCrossRefGoogle Scholar
  113. Mainieri AS, Elnecave RH. Usefulness of the free alpha-subunit to diagnose hypogonadotropic hypogonadism. Clin Endocrinol. 2003;59:307–13.CrossRefGoogle Scholar
  114. Mancall EL, Brock DG, editors. Gray’s clinical neuroanatomy: the anatomic basis for clinical neuroscience. 1st ed. Philadelphia: Elsevier Saunders; 2011.Google Scholar
  115. Marshall JC, Dalkin AC, Haisenleder DJ, Paul SJ, Ortolano GA, Kelch RP. Gonadotropin-releasing hormone pulses: regulators of gonadotropin synthesis and ovulatory cycles. Recent Prog Horm Res. 1991;47:155–87.PubMedGoogle Scholar
  116. Marshall JC, Dalkin AC, Haisenleder DJ, Griffin ML, Kelch RP. GnRH pulses – the regulators of human reproduction. Tans Am Clin Climatol Assoc. 1993;104:31–46.Google Scholar
  117. Martin K, Santoro N, Hall J, Filicori M, Wierman M, Crowley WF Jr. Clinical review 15: management of ovulatory disorders with pulsatile gonadotropin-releasing hormone. J Clin Endocrinol Metab. 1990;71:1081A–G.PubMedCrossRefGoogle Scholar
  118. Martin C, Balasubramanian R, Dwyer AA, et al. The role of the prokineticin 2 pathway in human reproduction: evidence from the study of human and murine gene mutations. Endocr Rev. 2011;32(2):225–46.PubMedCrossRefGoogle Scholar
  119. Mastorakos G, Scopa CD, Vryonidou A, et al. Presence of immunoreactive corticotropin-releasing hormone in normal and polycystic human ovaries. J Clin Endocrinol Metab. 1994;79(4):1191–7.PubMedGoogle Scholar
  120. Mauras N, Shulman D, Hsiang HY, Balagopal P, Welch S. Metabolic effects of oral versus trans-dermal estrogen in growth hormone-treated girls with turner syndrome. J Clin Endocrinol Metab. 2007;92(11):4154–60.PubMedCrossRefGoogle Scholar
  121. McDonald JK, Lumpkin MD, DePaolo LV. Neuropeptide-Y suppresses pulsatile secretion of luteinizing hormone in ovariectomized rats: possible site of action. Endocrinology. 1989;125(1):186–91.PubMedCrossRefGoogle Scholar
  122. Merke DP, Tajima T, Baron J, Cutler GB Jr. Hypogonadotropic hypogonadism in a female caused by an X-linked recessive mutation in the DAX1 gene. N Engl J Med. 1999;340(16):1248–52.PubMedCrossRefGoogle Scholar
  123. Messager S, Chatzidaki EE, Ma D, et al. Kisspeptin directly stimulates gonadotropin-releasing hormone release via G protein-coupled receptor 54. Proc Natl Acad Sci U S A. 2005;102(5):1761–6.PubMedPubMedCentralCrossRefGoogle Scholar
  124. Mijiddorj T, Kanasaki H, Sukhbaatar U, Oride A, Kyo S. DS1, delta subunit-containing GABA(a) receptor agonist, increases gonadotropin subunit gene expression in mouse pituitary gonadotrophs. Biol Reprod. 2015;92(2):45.PubMedCrossRefGoogle Scholar
  125. Miller KK, Parulekar MS, Schoenfeld E, et al. Decreased leptin levels in normal weight women with hypothalamic amenorrhea: the effects of body composition and nutritional intake. J Clin Endocrinol Metab. 1998;83:2309–12.PubMedGoogle Scholar
  126. Miller BH, Olson SL, Levine JE, Turek FW, Horton TH, Takahashi JS. Vasopressin regulation of the proestrous luteinizing hormone surge in wild-type and clock mutant mice. Biol Reprod. 2006;75:778–84.PubMedCrossRefGoogle Scholar
  127. Mills JL, Fears TR, Robison LL, Nicholson HS, Sklar CA, Byrne J. Menarche in a cohort of 188 long-term survivors of acute lymphoblastic leukemia. J Pediatr. 1997;131(4):598–602.PubMedCrossRefGoogle Scholar
  128. Mitchell AL, Dwyer A, Pitteloud N, Quinton R. Genetic basis and variable phenotypic expression of Kallmann syndrome: towards a unifying theory. Trends Endocrinol Metab. 2011;22:249–58.PubMedGoogle Scholar
  129. Moenter SR, DeFazio A, Pitts GR, Nunemaker CS. Mechanisms underlying episodic gonadotropin-releasing hormone secretion. Front Neuroendocrinol. 2003;24(2):79–93.PubMedCrossRefGoogle Scholar
  130. Moore AM, Prescott M, Marshall CJ, Yip SH, Campbell RE. Enhancement of a robust arcuate GABAergic input to gonadotropin-releasing hormone neurons in a model of polycystic ovarian syndrome. Proc Natl Acad Sci U S A. 2015;112(2):596–601.PubMedCrossRefGoogle Scholar
  131. Morell AG, Gregoriadis G, Scheinberg IH, Hickman J, Ashwell G. The role of sialic acid in determining the survival of glycoproteins in the circulation. J Biol Chem. 1971;246(5):1461–7.PubMedGoogle Scholar
  132. Morton MV, Wehman P. Psychosocial and emotional sequelae of individuals with traumatic brain injury: a literature review and recommendations. Brain Inj. 1995;9(1):81–92.PubMedCrossRefGoogle Scholar
  133. Mosselman S, Polman J, Dijkema RER. Beta: identification and characterization of a novel human estrogen receptor. FEBS Lett. 1996;392(1):49–53.PubMedCrossRefGoogle Scholar
  134. Nabhan ZM, DiMeglio LA, Qi R, Perkins SM, Eugster EA. Conjugated oral versus transdermal estrogen replacement in girls with turner syndrome: a pilot comparative study. J Clin Endocrinol Metab. 2009;94(6):2009–14.PubMedCrossRefGoogle Scholar
  135. Naftolin F, Yen SS, Tsai CC. Rapid cycling of plasma gonadotrophins in normal men as demonstrated by frequent sampling. Nat New Biol. 1972;236(64):92–3.PubMedCrossRefGoogle Scholar
  136. Navarro VM, Kaiser UB. Metabolic influences on neuroendocrine regulation of reproduction. Curr Opin Endocrinol Diabetes Obes. 2013;20(4):335–41.PubMedPubMedCentralCrossRefGoogle Scholar
  137. Navarro VM, Gottsch ML, Chavkin C, Okamura H, Clifton DK, Steiner RA. Regulation of gonadotropin-releasing hormone secretion by Kisspeptin/Dynorphin/neurokinin B neurons in the arcuate nucleus of the mouse. J Neurosci. 2009;29(38):11859–66.PubMedPubMedCentralCrossRefGoogle Scholar
  138. Neill JD. GnRH and GnRH receptor genes in the human genome. Endocrinology. 2002;143(3):737–43.PubMedCrossRefGoogle Scholar
  139. Neill JD, Duck LW, Sellers JC, Musgrove LC. A gonadotropinreleasing hormone (GnRH) receptor specific for GnRH II in primates. Biochem Biophys Res Commun. 2001;282(4):1012–8.PubMedCrossRefGoogle Scholar
  140. Nepomnaschy PA, Sheiner E, Mastorakos G, Arck PC. Stress, immune function, and women’s reproduction. Ann N Y Acad Sci. 2007;1113:350–64.PubMedCrossRefGoogle Scholar
  141. Nezi M, Christopoulos P, Paltoglou G, et al. Focus on BMI and subclinical hypothyroidism in adolescent girls first examined for amenorrhea or oligomenorrhea. The emerging role of polycystic ovary syndrome. J Pediatr Endocrinol Metab. 2016;29(6):693–702.PubMedCrossRefGoogle Scholar
  142. Nikolics K, Mason AJ, Szonyi E, Ramachandran J, Seeburg PH. A prolactin-inhibiting factor within the precursor for human gonadotropin-releasing hormone. Nature. 1985;316(6028):511–7.PubMedCrossRefGoogle Scholar
  143. Norwitz ER, Xu S, Jeong KH, et al. Activin a augments GnRH-mediated transcriptional activation of the mouse GnRH receptor gene. Endocrinology. 2002;143(3):985–97.PubMedCrossRefGoogle Scholar
  144. Okuhara K, Abe S, Kondo T, et al. Four Japanese patients with adrenal hypoplasia congenita and hypogonadotropic hypogonadism caused by DAX-1 gene mutations: mutant DAX-1 failed to repress steroidogenic acute regulatory protein (StAR) and luteinizing hormone beta-subunit gene promoter activity. Endocr J. 2008;55(1):97–103. Epub 2008 Jan 17PubMedCrossRefGoogle Scholar
  145. Oral EA, Ruiz E, Andewelt A, et al. Effect of leptin replacement on pituitary hormone regulation in patients with severe lipodystrophy. J Clin Endocrinol Metab. 2002;87:3110–7.PubMedCrossRefGoogle Scholar
  146. Ozisik G, Mantovani G, Achermann JC, et al. An alternate translation initiation site circumvents an amino-terminal DAX1 nonsense mutation leading to a mild form of X-linked adrenal hypoplasia congenita. J Clin Endocrinol Metab. 2003;88(1):417–23.PubMedCrossRefGoogle Scholar
  147. Pasquier J, Kamech N, Lafont AG, Vaudry H, Rousseau K, Dufour S. Molecular evolution of GPCRs: Kisspeptin/kisspeptin receptors. J Mol Endocrinol. 2014;52:T101–17.PubMedCrossRefGoogle Scholar
  148. Pfaeffle RW, Hunter CS, Savage JJ, et al. Three novel missense mutations within the LHX4 gene are associated with variable pituitary hormone deficiencies. J Clin Endocrinol Metab. 2008;93(3):1062–71.PubMedCrossRefGoogle Scholar
  149. Pfaffle RW, Blankenstein O, Wuller S, Kentrup H. Combined pituitary hormone deficiency: role of Pit-1 and Prop-1. Acta Paediatr Suppl. 1999;88(433):33–41.PubMedCrossRefGoogle Scholar
  150. Pierroz DD, Gruaz NM, d’Alièves V, Aubert ML. Chronic administration of neuropeptide Y into the lateral ventricle starting at 30 days of life delays sexual maturation in the female rat. Neuroendocrinology. 1995;61(3):293–300.PubMedCrossRefGoogle Scholar
  151. Pierroz DD, Catzeflis C, Aebi AC, Rivier JE, Aubert ML. Chronic administration of neuropeptide Y into the lateral ventricle inhibits both the pituitary-testicular axis and growth hormone and insulin-like growth factor I secretion in intact adult male rats. Endocrinology. 1996;137(1):3–12.PubMedCrossRefGoogle Scholar
  152. Piippo S, Lenko H, Kainulainen P, Sipilä I. Use of percutaneous estrogen gel for induction of puberty in girls with turner syndrome. J Clin Endocrinol Metab. 2004;89(7):3241–7.PubMedCrossRefGoogle Scholar
  153. Pinilla L, Aguilar E, Dieguez C, Millar RP, Tena-Sempere M. Kisspeptins and reproduction: physiological roles and regulatory mechanisms. Physiol Rev. 2012;92:1235–316.PubMedCrossRefGoogle Scholar
  154. Pitteloud N, Meysing A, Quinton R, et al. Mutations in fibroblast growth factor receptor 1 cause Kallmann syndrome with a wide spectrum of reproductive phenotypes. Mol Cell Endocrinol. 2006;254-255:60–9.PubMedCrossRefGoogle Scholar
  155. Pitteloud N, Zhang C, Pignatelli D, et al. Loss-of-function mutation in the prokineticin 2 gene causes Kallmann syndrome and normosmic idiopathic hypogonadotropic hypogonadism. Proc Natl Acad Sci U S A. 2007;104(44):17447–52.PubMedPubMedCentralCrossRefGoogle Scholar
  156. Quennell JH, Mulligan AC, Tups A, et al. Leptin indirectly regulates gonadotropin-releasing hormone neuronal function. Endocrinology. 2009;150(6):2805–12.PubMedPubMedCentralCrossRefGoogle Scholar
  157. Raivio T, Falardeau J, Dwyer A, et al. Reversal of idiopathic hypogonadotropic hypogonadism. N Engl J Med. 2007;357(9):863–73.PubMedCrossRefGoogle Scholar
  158. Rappaport R, Brauner R, Czernichow P, et al. Effect of hypothalamic and pituitary irradiation on pubertal development in children with cranial tumors. J Clin Endocrinol Metab. 1982;54(6):1164–8.PubMedCrossRefGoogle Scholar
  159. Reame NE, Sauder SE, Case GD, Kelch RP, Marshall JC. Pulsatile gonadotropin secretion in women with hypothalamic amenorrhea: evidence that reduced frequency of gonadotropin-releasing hormone secretion is the mechanism of persistent anovulation. J Clin Endocrinol Metab. 1985;61(5):851–8.PubMedCrossRefGoogle Scholar
  160. Rometo AM, Krajewski SJ, Voytko ML, Rance NE. Hypertrophy and increased Kisspeptin gene expression in the hypothalamic infundibular nucleus of postmenopausal women and Ovariectomized monkeys. J Clin Endocrinol Metab. 2007;92(7):2744–50.PubMedCrossRefGoogle Scholar
  161. Sabatino FD, Collins P, McDonald JK. Neuropeptide-Y stimulation of luteinizing hormone-releasing hormone secretion from the median eminence in vitro by estrogen-dependent and extracellular Ca2+−independent mechanisms. Endocrinology. 1989;124(5):2089–98.PubMedCrossRefGoogle Scholar
  162. Santoro N, Filicori M, Crowley WF Jr. Hypogonadotropic disorders in men and women: diagnosis and therapy with pulsatile gonadotropin-releasing hormone. Endocr Rev. 1986;7:11–23.PubMedCrossRefGoogle Scholar
  163. Sato N, Katsumata N, Kagami M, et al. Clinical assessment and mutation analysis of Kallmann syndrome 1 (KAL1) and fibroblast growth factor receptor 1 (FGFR1, or KAL2) in five families and 18 sporadic patients. J Clin Endocrinol Metab. 2004;89(3):1079–88.PubMedCrossRefGoogle Scholar
  164. Sauder SE, Frager M, Case GD, Kelch RP, Marshall JC. Abnormal patterns of pulsatile luteinizing hormone secretion in women with hyperprolactinemia and amenorrhea: responses to bromocriptine. J Clin Endocrinol Metab. 1984;59(5):941–8.PubMedCrossRefGoogle Scholar
  165. Schneider JE. Energy balance and reproduction. Physiol Behav. 2004;81(2):289–317.PubMedCrossRefGoogle Scholar
  166. Schreihofer D, Amico J, Cameron JL. Reversal of fasting-induced suppression of luteinizing hormone (LH) secretion in male rhesus monkeys by intragastric nutrient infusion: evidence for rapid stimulation of LH by nutritional signals. Endocrinology. 1993;132(5):1890–7.PubMedCrossRefGoogle Scholar
  167. Schulze A, Mogensen H, Hamborg-Petersen B, Graem N, Ostergaard JR, Brøndum-Nielsen K. Fertility in Prader-Willi syndrome: a case report with Angelman syndrome in the offspring. Acta Paediatr. 2001;90(4):455–9.PubMedCrossRefGoogle Scholar
  168. Sealfon SC, Weinstein H, Millar RP. Molecular mechanisms of ligand interaction with the gonadotropin-releasing hormone receptor. Endocr Rev. 1997;18(2):180–205.PubMedCrossRefGoogle Scholar
  169. Sedlmeyer IL, Palmert MR. Delayed puberty: analysis of a large case series from an academic center. J Clin Endocrinol Metab. 2002;87(4):1613–20.PubMedCrossRefGoogle Scholar
  170. Segal TY, Mehta A, Anazodo A, Hindmarsh PC, Dattani MT. Role of gonadotropin-releasing hormone and human chorionic gonadotropin stimulation tests in differentiating patients with hypogonadotropic hypogonadism from those with constitutional delay of growth and puberty. J Clin Endocrinol Metab. 2009;94:780–5.PubMedCrossRefGoogle Scholar
  171. Seminara SB, Hayes FJ, Crowley WF Jr. Gonadotropin-releasing hormone deficiency in the human (idiopathic hypogonadotropic hypogonadism and Kallmann’s syndrome): pathophysiological and genetic considerations. Endocr Rev. 1998;19:521–39.PubMedGoogle Scholar
  172. Seminara SB, Achermann JC, Genel M, Jameson JL, Crowley WF Jr. X-linked adrenal hypoplasia congenita: a mutation in DAX1 expands the phenotypic spectrum in males and females. J Clin Endocrinol Metab. 1999;84(12):4501–9.PubMedGoogle Scholar
  173. Semple RK, Topaloglu AK. The recent genetics of hypogonadotrophic hypogonadism – novel insights and new questions. Clin Endocrinol. 2010;72:427–35.CrossRefGoogle Scholar
  174. Shacham S, Harris D, Ben-Shlomo H, et al. Mechanism of GnRH receptor signaling on gonadotropin release and gene expression in pituitary gonadotrophs. Vitam Horm. 2001;63:63–90.PubMedCrossRefGoogle Scholar
  175. Shaw ND, Seminara SB, Welt CK, et al. Expanding the phenotype and genotype of female GnRH deficiency. J Clin Endocrinol Metab. 2011;96(3):E566–76.PubMedPubMedCentralCrossRefGoogle Scholar
  176. Silveira LF, MacColl GS, Bouloux PM. Hypogonadotropic hypogonadism. Semin Reprod Med. 2002;20:327–38.PubMedCrossRefGoogle Scholar
  177. Silveira LF, Trarbach EB, Latronico AC. Genetics basis for GnRH dependent pubertal disorders in humans. Mol Cell Endocrinol. 2010;324:30–8.PubMedCrossRefGoogle Scholar
  178. Skinner DC, Caraty A, Allingham R. Unmasking the progesterone receptor in the preoptic area and hypothalamus of the ewe: no Colocalization with gonadotropin-releasing neurons. Endocrinology. 2001;142(2):573–9.PubMedCrossRefGoogle Scholar
  179. Skorupskaite K, George JT, Anderson RA. The kisspeptin-GnRH pathway in human reproductive health and disease. Hum Reprod Update. 2014;20(4):485–500.PubMedPubMedCentralCrossRefGoogle Scholar
  180. Smith MJ, Jennes L. Neural signals that regulate GnRH neurons directly during the oestrous cycle. Reproduction. 2001;122:1):1–10.PubMedCrossRefGoogle Scholar
  181. Smith JT, Cunningham MJ, Rissman EF, Clifton DK, Steiner RA. Regulation of Kiss1 gene expression in the brain of the female mouse. Endocrinology. 2005a;146(9):3686–92.PubMedCrossRefGoogle Scholar
  182. Smith JT, Dungan HM, et al. Differential regulation of KiSS-1 mRNA expression by sex steroids in the brain of the male mouse. Endocrinology. 2005b;146(7):2976–84.PubMedCrossRefGoogle Scholar
  183. Terasawa E, Fernandez DL. Neurobiological mechanisms of the onset of puberty in primates. Endocr Rev. 2001;22:111−151.Google Scholar
  184. Themmen APN, Huhtaniemi IT. Mutations of gonadotropins and gonadotropin receptors: elucidating the physiology and pathophysiology of pituitary-gonadal function. Endocr Rev. 2000;21(5):551–83.PubMedCrossRefGoogle Scholar
  185. Toledo SP, Brunner HG, Kraaij R, et al. An inactivating mutation of the luteinizing hormone receptor causes amenorrhea in a 46,XX female. J Clin Endocrinol Metab. 1996;81(11):3850–4.PubMedGoogle Scholar
  186. Tortoriello DV, Sidis Y, Holtzman DA, Holmes WE, Schneyer AL. Human follistatin-related protein: a structural homologue of follistatin with nuclear localization. Endocrinology. 2001;142(8):3426–34.PubMedCrossRefGoogle Scholar
  187. Uenoyama Y, Inoue N, Pheng V. Ultrastructural evidence of kisspeptin-gonadotrophin-releasing hormone (GnRH) interaction in the median eminence of female rats: implication of axo-axonal regulation of GnRH release. J Neuroendocrinol. 2011;10:863–70.CrossRefGoogle Scholar
  188. van Biljon W, Wykes S, Scherer S, Krawetz SA, Hapgood J, Type II. Gonadotropin-releasing hormone receptor transcripts in human sperm. Biol Reprod. 2002;67(6):1741–9.PubMedCrossRefGoogle Scholar
  189. van Vliet G. Hormonal changes during development in Turner’s syndrome. Acta Paediatr Scand Suppl. 1988;343:31–7.PubMedGoogle Scholar
  190. Vance ML, Thorner MO. Fasting alters pulsatile and rhythmic cortisol release in normal man. J Clin Endocrinol Metab. 1989;68:1013–8.PubMedCrossRefGoogle Scholar
  191. Vogl TJ, Stemmler J, Heye B, et al. Kallman syndrome versus idiopathic hypogonadotropic hypogonadism at MR imaging. Radiology. 1994;191(1):53–7.PubMedCrossRefGoogle Scholar
  192. von Kalckreuth G, Haverkamp F, Kessler M, Rosskamp RH. Constitutional delay of growth and puberty: do they really reach their target height? Horm Res. 1991;35(6):222–5.CrossRefGoogle Scholar
  193. Vrekoussis T, Kalantaridou SN, Mastorakos G, et al. The role of stress in female reproduction and pregnancy: an update. Ann N Y Acad Sci. 2010;1205:69–75.PubMedCrossRefGoogle Scholar
  194. Waldhauser F, Weissenbacher G, Frisch H, Pollak A. Pulsatile secretion of gonadotropins in early infancy. Eur J Pediatr. 1981;137(1):71–4.PubMedCrossRefGoogle Scholar
  195. Waldstreicher J, Seminara SB, Jameson JL, et al. The genetic and clinical heterogeneity of gonadotropin-releasing hormone deficiency in the human. J Clin Endocrinol Metab. 1996;81:4388–95.PubMedGoogle Scholar
  196. Warren MP, Voussoughian F, Geer EB, Hyle EP, Adberg CL, Ramos RH. Functional hypothalamic amenorrhea: hypoleptinemia and disordered eating. J Clin Endocrinol Metab. 1999;84(3):873.PubMedCrossRefGoogle Scholar
  197. Watanabe M, Fukuda A, Nabekura J. The role of GABA in the regulation of GnRH neurons. Front Neurosci. 2014;8:387.PubMedPubMedCentralCrossRefGoogle Scholar
  198. Weigle DS, Duell PB, Connor WE, Steiner RA, Soules MR, Kuijper JL. Effect of fasting, refeeding, and dietary fat restriction on plasma leptin levels. J Clin Endocrinol Metab. 1997;82(2):561–5.PubMedGoogle Scholar
  199. Welt CK, Chan JL, Bullen J, et al. Recombinant human leptin in women with hypothalamic amenorrhea. N Engl J Med. 2004;351(10):987.PubMedCrossRefGoogle Scholar
  200. Wharton RH, Loechner KJ. Genetic and clinical advances in Prader-Willi syndrome. Curr Opin Pediatr. 1996;8(6):618–24.PubMedCrossRefGoogle Scholar
  201. White RB, Eisen JA, Kasten TL, Fernald RD. Second gene for gonadotropin-releasing hormone in humans. Proc Natl Acad Sci U S A. 1998;95(1):305–9.PubMedPubMedCentralCrossRefGoogle Scholar
  202. Whitlock KE. Origin and development of GnRH neurons. Trends Endocrinol Metab. 2005;16(4):145.PubMedCrossRefGoogle Scholar
  203. Wildt L, Häusler A, Marshall G, et al. Frequency and amplitude of gonadotropin-releasing hormone stimulation and gonadotropin secretion in the rhesus monkey. Endocrinology. 1981a;109(2):376–85.PubMedCrossRefGoogle Scholar
  204. Wildt L, Hutchison JS, Marshall G, Pohl CR, Knobil E. On the site of action of progesterone in the blockade of the estradiol-induced gonadotropin discharge in the rhesus monkey. Endocrinology. 1981b;109(4):1293–4.PubMedCrossRefGoogle Scholar
  205. Wolfahrt S, Kleine B, Jarry H, Rossmanith WG. Endogenous regulation of the GnRH receptor by GnRH in the human placenta. Mol Hum Reprod. 2001;7(1):89–95.PubMedCrossRefGoogle Scholar
  206. Xu M, Hill JW, Levine JE. Attenuation of luteinizing hormone surges in neuropeptide Y knockout mice. Neuroendocrinology. 2000;72:263–71.PubMedCrossRefGoogle Scholar
  207. Yahalom D, Chen A, Ben-Aroya N, et al. The gonadotropin-releasing hormone family of neuropeptides in the brain of human, bovine and rat: identification of a third isoform. FEBS Lett. 1999;463(3):289–94.PubMedCrossRefGoogle Scholar
  208. Yao B, Liu HY, YC G, et al. Gonadotropin releasing hormone positively regulates steroidogenesis via extracellular signal-regulated kinase in rat Leydig cells. Asian J Androl. 2011;13(3):438–45.PubMedPubMedCentralCrossRefGoogle Scholar
  209. Yen SS, Tsai CC. The biphasic pattern in the feedback action of Ethinyl Estradiol on the release of pituitary FSH and LH. J Clin Endocrinol Metab. 1971;33(6):882–7.PubMedCrossRefGoogle Scholar
  210. Yen SS, Tsai CC, Naftolin F, Vandenberg G, Ajabor L. Pulsatile patterns of gonadotropin release in subjects with and without ovarian function. J Clin Endocrinol Metab. 1972;34(4):671–5.PubMedCrossRefGoogle Scholar
  211. Yen SSC, Jaffe RB, Barbieri RL. Reproductive endocrinology. Philadelphia/London/Toronto/Montreal/Sidney/Tokyo: W.B. Saunders Company; 1999.Google Scholar
  212. Young J, Metay C, Bouligand J, et al. SEMA3A deletion in a family with Kallmann syndrome validates the role of semaphorin 3A in human puberty and olfactory system development. Hum Reprod. 2012;27:1460–5.PubMedCrossRefGoogle Scholar
  213. Zanaria E, Muscatelli F, Bardoni B, et al. An unusual member of the nuclear hormone receptor superfamily responsible for X-linked adrenal hypoplasia congenita. Nature. 1994;372(6507):635–41.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Athanasios Antoniou-Tsigkos
    • 1
  • Djuro Macut
    • 2
  • George Mastorakos
    • 1
  1. 1.Endocrine Unit, ARETAIEION University HospitalNational and Kapodistrian University of AthensAthensGreece
  2. 2.Clinic of Endocrinology, Diabetes and Metabolic DiseasesUniversity of BelgradeBelgradeSerbia

Personalised recommendations