Skip to main content

Gonadotropins

  • Reference work entry
  • First Online:

Part of the book series: Endocrinology ((ENDOCR))

Abstract

The gonadotropins, luteinizing hormone (LH), follicle-stimulating hormone (FSH), and chorionic gonadotropin hormone (CG) play an essential role in reproduction. LH and FSH are synthesized in the gonadotropes of the anterior pituitary gland, while CG is synthesized by the placental syncytiotrophoblasts. Gonadotropins, together with thyroid-stimulating hormone (TSH) synthesized by the thyrotropes of the adenohypophysis, belong to the glycoprotein hormone family. The glycoprotein hormones are complex heterodimers consisting of a common α-subunit non-covalently associated with a β-subunit, which is structurally unique in its peptide sequence to each member of the family and that confers binding specificity at the receptor level. Both subunits are decorated with oligosaccharide chains, whose number vary depending on the particular glycoprotein hormone, and that are involved in many functional aspects, including folding and secretion of the heterodimer, as well as plasma half-life and bioactivity of the hormone at the target cell. The synthesis and secretion of gonadotropins are regulated by the concerted action of several endocrine, paracrine, and autocrine factors of diverse chemical structure, the main player being the hypothalamic decapeptide gonadotropin-releasing hormone (GnRH). Gonadotropins interact with their cognate receptors (the FSH receptor and the LH/CG receptor) in the ovary and the testes. In the ovary, FSH regulates the growth and maturation of the ovarian follicles as well as estrogen production by the granulosa cells, whereas in the testes FSH stimulates the Sertoli cells lining the seminiferous tubules to influence spermatogenesis. The target cells of LH are the theca cells of the ovarian follicles and the corpus luteum, where it promotes the synthesis of sex steroid hormones and the ovulatory process. In the testes, LH stimulates Leydig cell steroidogenesis, mainly testosterone production, to promote sexual maturation and function, and spermatogenesis. Mutations in the β-subunit genes of LH and FSH leading to gonadotropin deficiency are very rare. When they occur in LHβ, they are clinically manifested by lack of pubertal maturation and infertility in men and infertility in women, whereas mutations in FSHβ may lead to azoospermia in men and absent or partial puberty and infertility in women. Several natural and recombinant preparations of gonadotropins are currently available for therapeutic purposes. Given that glycosylation is well known to vary in a cell- and tissue-specific manner, the main difference between natural and the currently available recombinant preparations massively produced in Chinese hamster ovary cells for commercial purposes lies in the abundance of some of the carbohydrates that comprise the complex glycans attached to the protein core. Because of the functional and pharmacological similarities between natural and recombinant compounds, both may be employed in the clinical arena to treat diseases characterized by gonadotropin deficiency as well as infertility.

This is a preview of subscription content, log in via an institution.

References

  • Achard C, et al. Normal spermatogenesis in a man with mutant luteinizing hormone. N Engl J Med. 2009;361:1856–63.

    Article  CAS  PubMed  Google Scholar 

  • Adams JM, Taylor AE, Schoenfeld DA, Crowley Jr WF, Hall JE. The midcycle gonadotropin surge in normal women occurs in the face of an unchanging gonadotropin-releasing hormone pulse frequency. J Clin Endocrinol Metab. 1994;79:858–64.

    CAS  PubMed  Google Scholar 

  • Ambrus G, Rao CV. Novel regulation of pregnant human myometrial smooth muscle cell gap junctions by human chorionic gonadotropin. Endocrinology. 1994;135:2772–9.

    Article  CAS  PubMed  Google Scholar 

  • Armstrong SP, Caunt CJ, Fowkes RC, Tsaneva-Atanasova K, McArdle CA. Pulsatile and sustained gonadotropin-releasing hormone (GnRH) receptor signaling: does the Ca2+/NFAT signaling pathway decode GnRH pulse frequency? J Biol Chem. 2009;284:35746–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnhold IJ, Lofrano-Porto A, Latronico AC. Inactivating mutations of luteinizing hormone beta-subunit or luteinizing hormone receptor cause oligo-amenorrhea and infertility in women. Horm Res. 2009;71:75–82.

    CAS  PubMed  Google Scholar 

  • Arnold CJ, Liu C, Lindau-Shepard B, Losavio ML, Patrascu MT, Dias JA. The human follitropin α-subunit C terminus collaborates with a β-subunit cystine noose and an α-subunit loop to assemble a receptor-binding domain competent for signal transduction. Biochemistry. 1998;37:1762–8.

    Article  CAS  PubMed  Google Scholar 

  • Ascoli M, Fanelli F, Segaloff DL. The lutropin/choriogonadotropin receptor, a 2002 perspective. Endocr Rev. 2002;23:141–74.

    Article  CAS  PubMed  Google Scholar 

  • Baenziger JU, Green ED. Pituitary glycoprotein hormone oligosaccharides: structure, synthesis and function of the asparagine-linked oligosaccharides on lutropin, follitropin and thyrotropin. Biochim Biophys Acta. 1988;947:287–306.

    Article  CAS  PubMed  Google Scholar 

  • Barnhart KM, Mellon PL. The orphan nuclear receptor, steroidogenic factor-1, regulates the glycoprotein hormone alpha-subunit gene in pituitary gonadotropes. Mol Endocrinol. 1994;8:878–85.

    CAS  PubMed  Google Scholar 

  • Barrios-De-Tomasi J, et al. Assessment of the in vitro and in vivo biological activities of the human follicle-stimulating isohormones. Mol Cell Endocrinol. 2002;186:189–98.

    Article  CAS  PubMed  Google Scholar 

  • Basciani S, et al. Hypogonadism in a patient with two novel mutations of the luteinizing hormone beta-subunit gene expressed in a compound heterozygous form. J Clin Endocrinol Metab. 2012;97:3031–8.

    Article  CAS  PubMed  Google Scholar 

  • Bedows E, Huth JR, Ruddon RW. Kinetics of folding and assembly of the human chorionic gonadotropin β subunit in transfected chinese hamster ovary cells. J Biol Chem. 1992;267:8880–6.

    CAS  PubMed  Google Scholar 

  • Bernard DJ, Tran S. Mechanisms of activin-stimulated FSH synthesis: the story of a pig and a FOX. Biol Reprod. 2013;88:78.

    Article  PubMed  CAS  Google Scholar 

  • Bernard DJ, Fortin J, Wang Y, Lamba P. Mechanisms of FSH synthesis: what we know, what we don’t, and why you should care. Fertil Steril. 2010;93:2465–85.

    Article  CAS  PubMed  Google Scholar 

  • Bernard MP, Lin W, Kholodovych V, Moyle WR. Human lutropin (hLH) and choriogonadotropin (CG) are assembled by different pathways: a model of LH assembly. J Biol Chem. 2014;289:14360–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berndt S, et al. Chorionic gonadotropin stimulation of angiogenesis and pericyte recruitment. J Clin Endocrinol Metab. 2009;94:4567–74.

    Article  CAS  PubMed  Google Scholar 

  • Bielinska M, Matzuk MM, Boime I. Site-specific processing of the N-linked oligosacharides of the human chorionic gonadotropin α subunit. J Biol Chem. 1989;264:17113–8.

    CAS  PubMed  Google Scholar 

  • Bilezikjian LM, Blount AL, Leal AM, Donaldson CJ, Fischer WH, Vale WW. Autocrine/paracrine regulation of pituitary function by activin, inhibin and follistatin. Mol Cell Endocrinol. 2004;225:29–36.

    Article  CAS  PubMed  Google Scholar 

  • Birken S, Canfield RE. Isolation and amino acid sequence of COOH-terminal fragments from the β subunit of human choriogonadotropin. J Biol Chem. 1977;252:5386–92.

    CAS  PubMed  Google Scholar 

  • Bishop LA, Robertson DM, Cahir N, Schofield PR. Specific roles for the asparagine–linked carbohydrate residues of recombinant human follicle stimulating hormone in receptor binding and signal transduction. J Mol Endocrinol. 1994;8:722–31.

    CAS  Google Scholar 

  • Bishop LA, Nguyen TV, Schofield PR. Both of the β-subunit carbohydrate residues of follicle-stimulating hormone determine the metabolic clearance rate and in vivo potency. Endocrinology. 1995;136:2635–40.

    Article  CAS  PubMed  Google Scholar 

  • Blount AL, Vaughan JM, Vale WW, Bilezikjian LM. A Smad-binding element in intron 1 participates in activin-dependent regulation of the follistatin gene. J Biol Chem. 2008;283:7016–26.

    Article  CAS  PubMed  Google Scholar 

  • Blount AL, Schmidt K, Justice NJ, Vale WW, Fischer WH, Bilezikjian LM. FoxL2 and Smad3 coordinately regulate follistatin gene transcription. J Biol Chem. 2009;284:7631–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bokar JA, et al. Expression of the glycoprotein hormone a-subunit gene in the placenta requires a functional cyclic AMP response element, whereas a different cis-acting element mediates pituitary-specific expression. Mol Cell Biol. 1989;9:5113–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boorstein WR, Vamvakopolous NC, Fiddes JC. Human chorionic gonadotropin ß-subunit is encoded by at least eight genes arranged in tandem and inverted pairs. Nature. 1982;300:419–22.

    Article  CAS  PubMed  Google Scholar 

  • Bouloux PM, et al. First human exposure to FSH-CTP in hypogonadotrophic hypogonadal males. Hum Reprod. 2001;16:1592–7.

    Article  CAS  PubMed  Google Scholar 

  • Bousfield GR, Dias JA. Synthesis and secretion of gonadotropins including structure-function correlates. Rev Endocr Metab Disord. 2011;12:289–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bousfield GR, Ward DN. Selective proteolysis of ovine lutropin or its b subunit by endoproteinase Arg-C. J Biol Chem. 1988;263:12602–7.

    CAS  PubMed  Google Scholar 

  • Bousfield GR, Baker VL, Gotschall RR, Butnev VY, Butnev VY. Carbohydrate analysis of glycoprotein hormones. Methods. 2000;21:15–39.

    Article  CAS  PubMed  Google Scholar 

  • Bousfield GR, Butnev VY, Butnev VY. Identification of twelve-O-glycosylation sites in eCGβ and eLHβ by solid-phase Edman degradation. Biol Reprod. 2001;64:136–47.

    Article  CAS  PubMed  Google Scholar 

  • Bousfield GR, Jia L, Ward DN. Gonadotropins: chemistry and biosynthesis. In: Neill JD, editor. Knobil and Neill: physiology of reproduction. San Diego: Elsevier; 2006. p. 1581–634.

    Chapter  Google Scholar 

  • Bousfield GR, et al. All-or-none N-glycosylation in primate follicle-stimulating hormone beta-subunits. Mol Cell Endocrinol. 2007;260-262:40–8.

    Article  CAS  PubMed  Google Scholar 

  • Bousfield GR, Butnev VY, Rueda-Santos MA, Brown A, Smalter Hall A, Harvey DJ. Macro and micro heterogeneity in pituitary and urinary follicle-stimulating hormone glycosylation. J Glycomics Lipidomics. 2014a;4:125.

    Google Scholar 

  • Bousfield GR, Butnev VY, Butnev VY, Hiromasa Y, Harvey DJ, May JV. Hypo-glycosylated human follicle-stimulating hormone (hFSH21/18) is much more active in vitro than fully-glycosylated hFSH (hFSH24). Mol Cell Endocrinol. 2014b;382:989–97.

    Article  CAS  PubMed  Google Scholar 

  • Bousfield GR, Butnev VY, White WK, Smalter Hall A, Harvey DJ. Comparison of follicle-stimulating hormone glycosylation microheterogeneity by quantitative negative mode nano-electrospray mass spectrometry of peptide-N-glycanase-released oligosaccharides. J Glycomics Lipidomics. 2015;5:129.

    Article  PubMed  PubMed Central  Google Scholar 

  • Budworth PR, Quinn PG, Nilson JH. Multiple characteristics of a pentameric regulatory array endow the human alpha-subunit glycoprotein hormone promoter with trophoblast specificity and maximal activity. Mol Endocrinol. 1997;11:1669–80.

    CAS  PubMed  Google Scholar 

  • Bukovsky A, et al. Multiple luteinizing hormone receptor (LHR) protein variants, interspecies reactivity of anti-LHR mAb clone 3B5, subcellular localization of LHR in human placenta, pelvic floor and brain, and possible role for LHR in the development of abnormal pregnancy, pelvic floor disorders and Alzheimer’s disease. Reprod Biol Endocrinol. 2003;1:46.

    Article  PubMed  PubMed Central  Google Scholar 

  • Butnev VY, et al. Production, purification, and characterization of recombinant hFSH glycoforms for functional studies. Mol Cell Endocrinol. 2015;405:41–52.

    Article  CAS  Google Scholar 

  • Calvo FO, Keutmann HT, Bergert ER, Ryan RJ. Deglycosylated human follitropin: characterization and effects on adenosine cyclic 3′,5′-phosphate production in porcine granulosa cells. Biochemistry. 1986;25:3938–43.

    Article  CAS  PubMed  Google Scholar 

  • Campbell RK. Molecular pharmacology of gonadotropins. Endocrine. 2005;26:291–6.

    Article  CAS  PubMed  Google Scholar 

  • Cheng K-W. Properties of follicle-stimulating-hormone receptor in cell membranes of bovine testes. Biochem J. 1975;149:123–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chin WW, Maizel Jr JV, Habener JF. Difference in sizes of human compared to murine α-subunits of the glycoprotein hormones arises by a four-codon gene deletion or insertion. Endocrinology. 1983;112:482–5.

    Article  CAS  PubMed  Google Scholar 

  • Choi SG, Wang Q, Jia J, Pincas H, Turgeon JL, Sealfon SC. Growth differentiation factor 9 (GDF9) forms an incoherent feed-forward loop modulating follicle-stimulating hormone beta-subunit (FSHbeta) gene expression. J Biol Chem. 2014;289:16164–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chou SH, Mantzoros C. 20 years of leptin: role of leptin in human reproductive disorders. J Endocrinol. 2014;223:T49–62.

    Article  CAS  PubMed  Google Scholar 

  • Ciccone NA, Kaiser UB. The biology of gonadotroph regulation. Curr Opin Endocrinol Diabetes Obes. 2009;16:321–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciccone NA, Xu S, Lacza CT, Carroll RS, Kaiser UB. Frequency-dependent regulation of follicle-stimulating hormone beta by pulsatile gonadotropin-releasing hormone is mediated by functional antagonism of bZIP transcription factors. Mol Cell Biol. 2010;30:1028–40.

    Article  CAS  PubMed  Google Scholar 

  • Clement K, et al. A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature. 1998;392:398–401.

    Article  CAS  PubMed  Google Scholar 

  • Cocquebert M, et al. Comparative expression of hCG β-genes in human trophoblast from early and late first-trimester placentas. Am J Physiol Endocrinol Metab. 2012;303:E950–8.

    Article  CAS  PubMed  Google Scholar 

  • Colacurci N, et al. Sequential protocol with urinary-FSH/recombinant-FSH versus standard protocol with recombinant-FSH in women of advanced age undergoing IVF. Gynecol Endocrinol. 2014;30:730–3.

    Article  CAS  PubMed  Google Scholar 

  • Cole LA. Hyperglycosylated hCG, a review. Placenta. 2010;31:653–64.

    Article  CAS  PubMed  Google Scholar 

  • Corless CL, et al. Gonadotropin alpha subunit. Differential processing of free and combined forms in human trophoblast and transfected mouse cells. J Biol Chem. 1987;262:14197–203.

    CAS  PubMed  Google Scholar 

  • Costagliola S, et al. Tyrosine sulfation is required for agonist recognition by glycoprotein hormone receptors. EMBO J. 2002;21:504–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Creus S, Chaia, Z, Pellizzari ER, Cigorraga SB, Ulloa-Aguirre A, Campo S. Human FSH isoforms: carbohydrate complexity as determinant of in-vitro bioactivity. Mol Cell Endocrinol. 2001;174: 41–49.

    Article  CAS  PubMed  Google Scholar 

  • Cunningham F, et al. Ensembl 2015. Nucleic Acids Res. 2015;43:D662–9.

    Article  CAS  PubMed  Google Scholar 

  • Dalpathado DS, et al. Comparative glycomics of the glycoprotein follicle stimulating hormone: glycopeptide analysis of isolates from two mammalian species. Biochemistry. 2006;45:8665–73.

    Article  CAS  PubMed  Google Scholar 

  • Damian-Matsumura P, Zaga V, Maldonado A, Sanchez-Hernandez C, Timossi C, Ulloa-Aguirre A. Oestrogens regulate pituitary alpha2,3-sialyltransferase messenger ribonucleic acid levels in the female rat. J Mol Endocrinol. 1999;23:153–65.

    Article  CAS  PubMed  Google Scholar 

  • Darling RJ, et al. Functional contributions of noncysteine residues within the cystine knots of human chorionic gonadotropin subunits. J Biol Chem. 2001;276:10692–9.

    Article  CAS  PubMed  Google Scholar 

  • Davis JS, Kumar TR, May JV, Bousfield GR. Naturally occurring follicle-stimulating hormone glycosylation variants. J Glycomics Lipidomics. 2014;4:e117.

    PubMed  PubMed Central  Google Scholar 

  • Dayhoff MO. Atlas of protein sequence and structure (Volume 5, Suppl. 2). Washington, DC: National Biomedical Research Foundation; 1976. p. 122.

    Google Scholar 

  • Dharmesh SM, Skelton TP, Baenziger JU. Co-ordinate and restricted expression of the ProXaaArg/Lys-specific GalNAc-transferase and the GalNAcb1,4GlcNAcb1,2Mana-4-sulfotransferase. J Biol Chem. 1993;268:17096–102.

    CAS  PubMed  Google Scholar 

  • Dias JA. Endocrinology: fertility hormone in repose. Nature. 2005;433:203–4.

    Article  CAS  PubMed  Google Scholar 

  • Diaz-Cueto L, Barrios-de-Tomasi J, Timossi C, Mendez JP, Ulloa-Aguirre A. More in-vitro bioactive, shorter-lived human chorionic gonadotrophin charge isoforms increase at the end of the first and during the third trimesters of gestation. Mol Hum Reprod. 1996;2:643–50.

    Article  CAS  PubMed  Google Scholar 

  • Doheny HC, Houlihan DD, Ravikumar N, Smith TJ, Morrison JJ. Human chorionic gonadotrophin relaxation of human pregnant myometrium and activation of the BKCa channel. J Clin Endocrinol Metab. 2003;88:4310–5.

    Article  CAS  PubMed  Google Scholar 

  • Duijkers IJ, Klipping C, Boerrigter PJ, Machielsen CS, De Bie JJ, Voortman G. Single dose pharmacokinetics and effects on follicular growth and serum hormones of a long-acting recombinant FSH preparation (FSH-CTP) in healthy pituitary-suppressed females. Hum Reprod. 2002;17:1987–93.

    Article  CAS  PubMed  Google Scholar 

  • Endo Y, Yamashita K, Tachibana Y, Tojo S, Kobata A. Structures of the asparagine-linked sugar chains of human chorionic gonadotropin. J Biochem. 1979;85:669–79.

    CAS  PubMed  Google Scholar 

  • Endo T, Nishimura R, Mochizuki M, Kochibe N, Kobatat A. Altered glycosylation is induced in both α- and β-subunits of human chorionic gonadotropin produced by choriocarcinoma. J Biochem. 1988;103:1035–8.

    Article  CAS  PubMed  Google Scholar 

  • Eta E, Ambrus G, Rao CV. Direct regulation of human myometrial contractions by human chorionic gonadotropin. J Clin Endocrinol Metab. 1994;79:1582–6.

    CAS  PubMed  Google Scholar 

  • Evans WS, et al. Contemporary aspects of discrete peak-detection algorithms. II. The paradigm of the luteinizing hormone pulse signal in women. Endocr Rev. 1992;13:81–104.

    CAS  PubMed  Google Scholar 

  • Fan QR, Hendrickson WA. Structure of human follicle-stimulating hormone in complex with its receptor. Nature. 2005;433:269–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faria AC, et al. Pulsatile growth hormone release in normal women during the menstrual cycle. Clin Endocrinol. 1992;36:591–6.

    Article  CAS  Google Scholar 

  • Ferris HA, Shupnik MA. Mechanisms for pulsatile regulation of the gonadotropin subunit genes by GNRH1. Biol Reprod. 2006;74:993–8.

    Article  CAS  PubMed  Google Scholar 

  • Fiddes JC, Goodman HM. The cDNA for the ß-subunit of human chorionic gonadotropin suggests evolution of a gene by readthrough into the 3′-untranslated region. Nature. 1980;286:684–7.

    Article  CAS  PubMed  Google Scholar 

  • Fiete D, Baenziger JU. Isolation of the SO4-4-GalNAcb1,4GlcNAcb1,2Mana-specific receptor from rat liver. J Biol Chem. 1997;272:14629–37.

    Article  CAS  PubMed  Google Scholar 

  • Fiete D, Srivastava V, Hindsgaul O, Baenziger JU. A hepatic reticuloendothelial cell receptor specific for SO4–4GalNAcβ1,4GlcNAcβ1,2Manα that mediates rapid clearance of lutropin. Cell. 1991;67:1103–10.

    Article  CAS  PubMed  Google Scholar 

  • Filicori M, Santoro N, Merriam GR, Crowley Jr WF. Characterization of the physiological pattern of episodic gonadotropin secretion throughout the human menstrual cycle. J Clin Endocrinol Metab. 1986;62:1136–44.

    Article  CAS  PubMed  Google Scholar 

  • Flack MR, Froehlich J, Bennet AP, Anasti J, Nisula BC. Site-directed mutagenesis defines the individual roles of the glycosylation sites on follicle-stimulating hormone. J Biol Chem. 1994;269:14015–20.

    CAS  PubMed  Google Scholar 

  • Flores JA, Veldhuis JD, Leong DA. Follicle-stimulating hormone evokes an increase in intracellular free calcium ion concentrations in single ovarian (granulosa) cells. Endocrinology. 1990;127:3172–9.

    Article  CAS  PubMed  Google Scholar 

  • Fortin J, et al. Minireview: activin signaling in gonadotropes: what does the FOX say... to the SMAD? Mol Endocrinol. 2015;29:963–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fournier T, Guibourdenche J, Evain-Brion D. Review: hCGs: different sources of production, different glycoforms and functions. Placenta. 2015;36(Suppl 1):S60–5.

    Article  CAS  PubMed  Google Scholar 

  • Fox KM, Dias JA, Van Roey P. Three-dimensional structure of human follicle-stimulating hormone. Mol Endocrinol. 2001;15:378–89.

    Article  CAS  PubMed  Google Scholar 

  • Furui K, et al. Identification of two point mutations in the gene encoding luteinizing hormone (LH) b-subunit, associated with immunologically anomalous LH variants. J Clin Endocrinol Metab. 1994;78:107–13.

    CAS  PubMed  Google Scholar 

  • Garcia-Galiano D, Pinilla L, Tena-Sempere M. Sex steroids and the control of the Kiss1 system: developmental roles and major regulatory actions. J Neuroendocrinol. 2012;24:22–33.

    Article  CAS  PubMed  Google Scholar 

  • Gervais A, et al. Glycosylation of human recombinant gonadotrophins: characterization and batch-to-batch consistency. Glycobiology. 2003;13:179–89.

    Article  CAS  PubMed  Google Scholar 

  • Gotschall RR, Bousfield GR. Oligosaccharide mapping reveals hormone-specific glycosylation patterns on equine gonadotropin α-subunit Asn56. Endocrinology. 1996;137:2543–57.

    Article  CAS  PubMed  Google Scholar 

  • Green ED, Baenziger JU. Asparagine-linked oligosaccharides on lutropin, follitropin, and thyrotropin. II. Distributions of sulfated and sialylated oligosaccharides on bovine, ovine, and human pituitary glycoprotein hormones. J Biol Chem. 1988;263:36–44.

    CAS  PubMed  Google Scholar 

  • Gregory SJ, Kaiser UB. Regulation of gonadotropins by inhibin and activin. Semin Reprod Med. 2004;22:253–67.

    Article  CAS  PubMed  Google Scholar 

  • Grosse R, et al. Gonadotropin-releasing hormone receptor initiates multiple signaling pathways by exclusively coupling to G(q/11) proteins. J Biol Chem. 2000;275:9193–200.

    Article  CAS  PubMed  Google Scholar 

  • Haavisto A-M, Pettersson K, Bergendahl M, Virkamaki A, Huhtaniemi I. Occurrence and biological properties of a common genetic variant of luteinizing hormone. J Clin Endocrinol Metab. 1995;80:1257–63.

    CAS  PubMed  Google Scholar 

  • Haisenleder DJ, Dalkin AC, Ortolano GA, Marshall JC, Shupnik MA. A pulsatile gonadotropin-releasing hormone stimulus is required to increase transcription of the gonadotropin subunit genes: evidence for differential regulation of transcription by pulse frequency in vivo. Endocrinology. 1991;128:509–17.

    Article  CAS  PubMed  Google Scholar 

  • Haisenleder DJ, Yasin M, Marshall JC. Enhanced effectiveness of pulsatile 3′,5′-cyclic adenosine monophosphate in stimulating prolactin and alpha-subunit gene expression. Endocrinology. 1992;131:3027–33.

    Article  CAS  PubMed  Google Scholar 

  • Hall JE, Schoenfeld DA, Martin KA, Crowley Jr WF. Hypothalamic gonadotropin-releasing hormone secretion and follicle-stimulating hormone dynamics during the luteal-follicular transition. J Clin Endocrinol Metab. 1992;74:600–7.

    CAS  PubMed  Google Scholar 

  • Han XB, Conn PM. The role of protein kinases A and C pathways in the regulation of mitogen-activated protein kinase activation in response to gonadotropin-releasing hormone receptor activation. Endocrinology. 1999;140:2241–51.

    Article  CAS  PubMed  Google Scholar 

  • Hartree AS, Showkeen RC. Studies of human pituitary lutropin containing internally cleaved beta subunit. J Mol Endocrinol. 1991;6:101–9.

    Article  CAS  Google Scholar 

  • Heckert LL, Schultz K, Nilson JH. Different composite regulatory elements direct expression of the human a subunit gene to pituitary and placenta. J Biol Chem. 1995;270:26497–504.

    Article  CAS  PubMed  Google Scholar 

  • Heckert LL, Wilson EM, Nilson JH. Transcriptional repression of the alpha-subunit gene by androgen receptor occurs independently of DNA binding but requires the DNA-binding and ligand-binding domains of the receptor. Mol Endocrinol. 1997;11:1497–506.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Helenius A, Aebi M. Intracellular functions of N-linked glycans. Science. 2001;291:2364–9.

    Article  CAS  PubMed  Google Scholar 

  • Herr F, et al. HCG in the regulation of placental angiogenesis. Results of an in vitro study. Placenta. 2007; 28 Suppl A:S85–93.

    Google Scholar 

  • Hiyama J, Weisshaar G, Renwick AGC. The asparagine-linked oligosaccharides at individual glycosylation sites in human thyrotropin. Glycobiology. 1992;2:401–9.

    Article  CAS  PubMed  Google Scholar 

  • Horn F, Windle JJ, Barnhart KM, Mellon PL. Tissue-specific gene expression in the pituitary: the glycoprotein hormone alpha-subunit gene is regulated by a gonadotrope-specific protein. Mol Cell Biol. 1992;12:2143–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huhtaniemi I. A short evolutionary history of FSH-stimulated spermatogenesis. Hormones (Athens). 2015; 14:468–478.

    Google Scholar 

  • Huth JR, Mountjoy K, Perini F, Bedows E, Ruddon RW. Domain–dependent protein folding is indicated by the intracellular kinetics of disulfide bond formation of human chorionic gonadotropin β subunit. J Biol Chem. 1992;267:21396–403.

    CAS  PubMed  Google Scholar 

  • Ingraham HA, et al. The nuclear receptor steroidogenic factor 1 acts at multiple levels of the reproductive axis. Genes Dev. 1994;8:2302–12.

    Article  CAS  PubMed  Google Scholar 

  • Issad T, Strobel A, Camoin L, Ozata M, Strosberg AD. Leptin and puberty in humans: hypothesis of the critical adipose mass revisited. Diabete Metab. 1998;24:376–8.

    CAS  PubMed  Google Scholar 

  • Jablonka-Shariff A, Boime I. Luteinizing hormone and follicle-stimulating hormone exhibit different secretion patterns from cultured Madin-Darby canine kidney cells. Biol Reprod. 2004;70:649–55.

    Article  CAS  PubMed  Google Scholar 

  • Jablonka-Shariff A, Boime I. Secretory trafficking signal encoded in the carboxyl-terminal region of the CGbeta-subunit. Mol Endocrinol. 2009;23:316–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jablonka-Shariff A, Garcia-Campayo V, Boime I. Evolution of lutropin to chorionic gonadotropin generates a specific routing signal for apical release in vivo. J Biol Chem. 2002;277:879–82.

    Article  CAS  PubMed  Google Scholar 

  • Jablonka-Shariff A, Pearl CA, Comstock A, Boime I. A carboxyl-terminal sequence in the lutropin beta subunit contributes to the sorting of lutropin to the regulated pathway. J Biol Chem. 2008;283:11485–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jameson JL, Lindell CM, Habener JF. Evolution of different transcriptional start sites in the human luteinizing hormone and chorionic gonadotropin beta-subunit genes. DNA. 1986;5:227–34.

    Article  CAS  PubMed  Google Scholar 

  • Jiang M, et al. A novel Ala(−3)Thr mutation in the signal peptide of human luteinizing hormone beta-subunit: potentiation of the inositol phosphate signalling pathway and attenuation of the adenylate cyclase pathway by recombinant variant hormone. Mol Hum Reprod. 2002;8:201–12.

    Article  CAS  PubMed  Google Scholar 

  • Jiang X, et al. Structure of follicle-stimulating hormone in complex with the entire ectodomain of its receptor. Proc Natl Acad Sci U S A. 2012;109:12491–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang X, Dias JA, He X. Structural biology of glycoprotein hormones and their receptors: insights to signaling. Mol Cell Endocrinol. 2013;108:7172–6.

    Google Scholar 

  • Jiang X, Dias JA, He X. Structural biology of glycoprotein hormones and their receptors: Insights to signaling. Mol Cell Endocrinol. 2014a;382:424–51.

    Article  CAS  PubMed  Google Scholar 

  • Jiang X, et al. Evidence for follicle-stimulating hormone receptor as a functional trimer. J Biol Chem. 2014b;289:14273–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang C, et al. Hypo-glycosylated hFSH has greater bioactivity than fully-glycosylated recombinant hFSH in human granulosa cells. J Clin Endocrinol Metab. 2015;100:E852–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson W, Albanese C, Handwerger S, Williams T, Pestell RG, Jameson JL. Regulation of the human chorionic gonadotropin alpha- and beta-subunit promoters by AP-2. J Biol Chem. 1997;272:15405–12.

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen JS, Quirk CC, Nilson JH. Multiple and overlapping combinatorial codes orchestrate hormonal responsiveness and dictate cell-specific expression of the genes encoding luteinizing hormone. Endocr Rev. 2004;25:521–42.

    Article  CAS  PubMed  Google Scholar 

  • Kanasaki H, Bedecarrats GY, Kam KY, Xu S, Kaiser UB. Gonadotropin-releasing hormone pulse frequency-dependent activation of extracellular signal-regulated kinase pathways in perifused LbetaT2 cells. Endocrinology. 2005;146:5503–13.

    Article  CAS  PubMed  Google Scholar 

  • Kanasaki H, Mutiara S, Oride A, Purwana IN, Miyazaki K. Pulse frequency-dependent gonadotropin gene expression by adenylate cyclase-activating polypeptide 1 in perifused mouse pituitary gonadotroph LbetaT2 cells. Biol Reprod. 2009;81:465–72.

    Article  CAS  PubMed  Google Scholar 

  • Kanasaki H, Purwana IN, Miyazaki K. Possible role of PACAP and its PAC1 receptor in the differential regulation of pituitary LHbeta- and FSHbeta-subunit gene expression by pulsatile GnRH stimulation. Biol Reprod. 2013;88:35.

    Article  PubMed  CAS  Google Scholar 

  • Kane N, Kelly R, Saunders PT, Critchley HO. Proliferation of uterine natural killer cells is induced by human chorionic gonadotropin and mediated via the mannose receptor. Endocrinology. 2009;150:2882–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kessler MJ, Mise T, Ghai RD, Bahl OP. Structure and location of the O-glycosidic carbohydrate units of human chorionic gonadotropin. J Biol Chem. 1979a;254:7909–14.

    CAS  PubMed  Google Scholar 

  • Kessler MJ, Reddy MS, Shah RH, Bahl OP. Structures of the N-Glycosidic carbohydrate units of human chorionic gonadotropin. J Biol Chem. 1979b;254:7901–8.

    CAS  PubMed  Google Scholar 

  • Keutmann HT, Dawsom B, Bishop WH, Ryan RJ. Structure of human luteinizing hormone alpha subunit. Endocr Res Commun. 1978;5:57–70.

    Article  CAS  PubMed  Google Scholar 

  • Keutmann HT, Williams RM, Ryan RJ. Structure of human luteinizing hormone beta subunit: evidence for a related carboxy-terminal squence amoung certain peptide hormones. Biochem Biophys Res Commun. 1979;90:842–8.

    Article  CAS  PubMed  Google Scholar 

  • Knight PG, Glister C. Potential local regulatory functions of inhibins, activins and follistatin in the ovary. Reproduction. 2001;121:503–12.

    Article  CAS  PubMed  Google Scholar 

  • Knobil E. The neuroendocrine control of the menstrual cycle. Recent Prog Horm Res. 1980;36:53–88.

    CAS  PubMed  Google Scholar 

  • Knofler M, et al. Promoter elements and transcription factors involved in differentiation-dependent human chorionic gonadotrophin-alpha messenger ribonucleic acid expression of term villous trophoblasts. Endocrinology. 2000;141:3737–48.

    Article  CAS  PubMed  Google Scholar 

  • Knofler M, Vasicek R, Schreiber M. Key regulatory transcription factors involved in placental trophoblast development – a review. Placenta. 2001; 22 Suppl A:S83–92.

    Google Scholar 

  • Knofler M, et al. Transcriptional regulation of the human chorionic gonadotropin beta gene during villous trophoblast differentiation. Endocrinology. 2004;145:1685–94.

    Article  PubMed  CAS  Google Scholar 

  • Kottler ML, et al. A new FSHbeta mutation in a 29-year-old woman with primary amenorrhea and isolated FSH deficiency: functional characterization and ovarian response to human recombinant FSH. Eur J Endocrinol. 2010;162:633–41.

    Article  CAS  PubMed  Google Scholar 

  • Kowase T, Walsh HE, Darling DS, Shupnik MA. Estrogen enhances gonadotropin-releasing hormone-stimulated transcription of the luteinizing hormone subunit promoters via altered expression of stimulatory and suppressive transcription factors. Endocrinology. 2007;148:6083–91.

    Article  CAS  PubMed  Google Scholar 

  • Kraus S, Naor Z, Seger R. Intracellular signaling pathways mediated by the gonadotropin-releasing hormone (GnRH) receptor. Arch Med Res. 2001;32:499–509.

    Article  CAS  PubMed  Google Scholar 

  • Krishnamurthy H, Galet C, Ascoli M. The association of arrestin-3 with the follitropin receptor depends on receptor activation and phosphorylation. Mol Cell Endocrinol. 2003;204:127–40.

    Article  CAS  PubMed  Google Scholar 

  • Kumar TR. Extragonadal FSH receptor: is it real? Biol Reprod 2014; 91:99.

    Google Scholar 

  • Kumar TR, Wang Y, Lu N, Matzuk MM. Follicle stimulating hormone is required for ovarian follicle maturation but not male fertility. Nat Genet. 1997;15:201–4.

    Article  CAS  PubMed  Google Scholar 

  • Kumar TR, et al. Transgenic models to study gonadotropin function: the role of follicle-stimulating hormone in gonadal growth and tumorigenesis. Mol Endocrinol. 1999;13:851–65.

    Article  CAS  PubMed  Google Scholar 

  • Lamba P, Fortin J, Tran S, Wang Y, Bernard DJ. A novel role for the forkhead transcription factor FOXL2 in activin A-regulated follicle-stimulating hormone beta subunit transcription. Mol Endocrinol. 2009;23:1001–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamminen T, Huhtaniemi I. A common genetic variant of luteinizing hormone; relation to normal and aberrant pituitary-gonadal function. Eur J Pharmacol. 2001;414:1–7.

    Article  CAS  PubMed  Google Scholar 

  • Lamminen T, et al. Functional study of a recombinant form of human LHbeta-subunit variant carrying the Gly(102)Ser mutation found in Asian populations. Mol Hum Reprod. 2002;8:887–92.

    Article  CAS  PubMed  Google Scholar 

  • Lapthorn AJ, et al. Crystal structure of human chorionic gonadotropin. Nature. 1994;369:455–61.

    Article  CAS  PubMed  Google Scholar 

  • Lawson MA, et al. Pulse sensitivity of the luteinizing hormone beta promoter is determined by a negative feedback loop Involving early growth response-1 and Ngfi-A binding protein 1 and 2. Mol Endocrinol. 2007;21:1175–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Layman LC, et al. FSH beta gene mutations in a female with partial breast development and a male sibling with normal puberty and azoospermia. J Clin Endocrinol Metab. 2002;87:3702–7.

    CAS  PubMed  Google Scholar 

  • le Cotonnec JY, Porchet HC, Beltrami V, Howles C. Comparative pharmacokinetics of two urinary human follicle stimulating hormone preparations in healthy female and male volunteers. Hum Reprod. 1993;8:1604–11.

    Article  PubMed  Google Scholar 

  • le Cotonnec JY, Porchet HC, Beltrami V, Khan A, Toon S, Rowland M. Clinical pharmacology of recombinant human follicle-stimulating hormone (FSH). I. Comparative pharmacokinetics with urinary human FSH. Fertil Steril. 1994;61:669–78.

    Article  PubMed  Google Scholar 

  • le Cotonnec JY, Porchet HC, Beltrami V, Khan A, Toon S, Rowland M. Comprehensive pharmacokinetics of urinary human follicle stimulating hormone in healthy female volunteers. Pharm Res. 1995;12:844–50.

    Article  PubMed  Google Scholar 

  • le Cotonnec JY, Porchet HC, Beltrami V, Munafo A. Clinical pharmacology of recombinant human luteinizing hormone: Part II. Bioavailability of recombinant human luteinizing hormone assessed with an immunoassay and an in vitro bioassay. Fertil Steril. 1998a;69:195–200.

    Article  PubMed  Google Scholar 

  • le Cotonnec JY, Porchet HC, Beltrami V, Munafo A. Clinical pharmacology of recombinant human luteinizing hormone: Part I. Pharmacokinetics after intravenous administration to healthy female volunteers and comparison with urinary human luteinizing hormone. Fertil Steril. 1998b;69:189–94.

    Article  PubMed  Google Scholar 

  • le Cotonnec JY, Loumaye E, Porchet HC, Beltrami V, Munafo A. Pharmacokinetic and pharmacodynamic interactions between recombinant human luteinizing hormone and recombinant human follicle-stimulating hormone. Fertil Steril. 1998c;69:201–9.

    Article  PubMed  Google Scholar 

  • Lefort GP, Stolk JM, Nisula BC. Evidence that desialylation and uptake by hepatic receptors for galactose-terminated glycoproteins are immaterial to the metabolism of human choriogonadotropin in the rat. Endocrinology. 1984;115:1551–7.

    Article  CAS  PubMed  Google Scholar 

  • Legardinier S, Duonor-Cerutti M, Devauchelle G, Combarnous Y, Cahoreau C. Biological activities of recombinant equine luteinizing hormone/chorionic gonadotropin (eLH/CG) expressed in Sf9 and Mimic insect cell lines. J Mol Endocrinol. 2005;34:47–60.

    Article  CAS  PubMed  Google Scholar 

  • Lewis KA, et al. Betaglycan binds inhibin and can mediate functional antagonism of activin signalling. Nature. 2000;404:411–4.

    Article  CAS  PubMed  Google Scholar 

  • Lim S, et al. Distinct mechanisms involving diverse histone deacetylases repress expression of the two gonadotropin beta-subunit genes in immature gonadotropes, and their actions are overcome by gonadotropin-releasing hormone. Mol Cell Biol. 2007;27:4105–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindstedt G, Nystrom E, Matthews C, Ernest I, Janson PO, Chatterjee K. Follitropin (FSH) deficiency in an infertile male due to FSHbeta gene mutation. A syndrome of normal puberty and virilization but underdeveloped testicles with azoospermia, low FSH but high lutropin and normal serum testosterone concentrations. Clin Chem Lab Med. 1998;36:663–5.

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Bowers LD. Mass spectrometric characterization of the beta-subunit of human chorionic gonadotropin. J Mass Spectrom. 1997;32:33–42.

    Article  CAS  PubMed  Google Scholar 

  • Liu F, et al. Involvement of both G(q/11) and G(s) proteins in gonadotropin-releasing hormone receptor-mediated signaling in L beta T2 cells. J Biol Chem. 2002;277:32099–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lofrano-Porto A, et al. Luteinizing hormone beta mutation and hypogonadism in men and women. N Engl J Med. 2007;357:897–904.

    Article  CAS  PubMed  Google Scholar 

  • Luo M, Koh M, Feng J, Wu Q, Melamed P. Cross talk in hormonally regulated gene transcription through induction of estrogen receptor ubiquitylation. Mol Cell Biol. 2005;25:7386–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lustbader JW, et al. The expression, characterization, and crystallization of wild-type and selenomethionyl human chorionic gonadotropin. Endocrinology. 1995;136:640–50.

    Article  CAS  PubMed  Google Scholar 

  • MacConell LA, Leal AM, Vale WW. The distribution of betaglycan protein and mRNA in rat brain, pituitary, and gonads: implications for a role for betaglycan in inhibin-mediated reproductive functions. Endocrinology. 2002;143:1066–75.

    Article  CAS  PubMed  Google Scholar 

  • Marshall JC, Dalkin AC, Haisenleder DJ, Paul SJ, Ortolano GA, Kelch RP. Gonadotropin-releasing hormone pulses: regulators of gonadotropin synthesis and ovulatory cycles. Recent Prog Horm Res. 1991;47:155–87.discussion 188-9

    CAS  PubMed  Google Scholar 

  • Maston GA, Ruvolo M. Chorionic gonadotropin has a recent origin within primates and an evolutionary history of selection. Mol Biol Evol. 2002;19:320–35.

    Google Scholar 

  • Matthews CH, et al. Primary amenorrhoea and infertility due to a mutation in the beta-subunit of follicle-stimulating hormone. Nat Genet. 1993;5:83–6.

    Article  CAS  PubMed  Google Scholar 

  • Matzuk MM, Boime I. The role of the asparagine-linked oligosaccharides of the α subunit in the secretion and assembly of human chorionic gonadotropin. J Cell Biol. 1988b;106:1049–59.

    Article  CAS  PubMed  Google Scholar 

  • Matzuk MM, Boime I. Site-specific mutagenesis defines the intracellular role of the asparagine-linked oligosaccharides of chorionic gonadotropin beta subunit. J Biol Chem. 1988a;263:17106–11.

    CAS  PubMed  Google Scholar 

  • Matzuk MM, Boime I. Mutagenesis and gene transfer define site-specific roles of the gonadotropin oligosaccharides. Biol Reprod. 1989;40:48–53.

    Article  CAS  PubMed  Google Scholar 

  • Matzuk MM, Keene JL, Boime I. Site specificity of the chorionic gonadotropin N-linked oligosaccharides in signal transduction. J Biol Chem. 1989;264:2409–14.

    CAS  PubMed  Google Scholar 

  • McDonald NQ, Lapatto R, Murray-Rust J, Gunning J, Wlodawer A, Blundell TL. New protein fold revealed by a 2.3-Å resolution crystal structure of nerve growth factor. Nature. 1991;354:411–4.

    Article  CAS  PubMed  Google Scholar 

  • Meher BR, Dixit A, Bousfield GR, Lushington GH. Glycosylation effects on FSH-FSHR interaction dynamics: a case study of different FSH glycoforms by molecular dynamics simulations. PLoS ONE. 2015;10:e0137897.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mellquist JL, Kasturi L, Spitalnik SL, Shakin-Eshleman SH. The amino acid following an asn-X-Ser/Thr sequon is an important determinant of N-linked core glycosylation efficiency. Biochemistry. 1998;37:6833–7.

    Article  CAS  PubMed  Google Scholar 

  • Meunier L, Usherwood YK, Chung KT, Hendershot LM. A subset of chaperones and folding enzymes form multiprotein complexes in endoplasmic reticulum to bind nascent proteins. Mol Biol Cell. 2002;13:4456–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mise T, Bahl OP. Assignment of disulfide bonds in the α subunit of human chorionic gonadotropin. J Biol Chem. 1980;255:8516–22.

    CAS  PubMed  Google Scholar 

  • Mistry DS, et al. Gonadotropin-releasing hormone pulse sensitivity of follicle-stimulating hormone-beta gene is mediated by differential expression of positive regulatory activator protein 1 factors and corepressors SKIL and TGIF1. Mol Endocrinol. 2011;25:1387–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizuochi T, et al. Structures of the asparagine-linked sugar chains of human chorionic gonadotropin produced in choriocarcinoma: appearance of triantennary sugar chains and unique biantennary sugar chains. J Biol Chem. 1983;258:14126–9.

    CAS  PubMed  Google Scholar 

  • Moore Jr WT, Burleigh BD, Ward DN. Chorionic gonadotropins: comparative studies and comments on relationships to other glycoprotein hormones. In: Segal SJ, editor. Chorionic gonadotropin. New York: Plenum Press; 1980. p. 89–126.

    Chapter  Google Scholar 

  • Morell AG, Gregoriadis G, Scheinberg IH, Hickman J, Ashwell G. The role of sialic acid in determining the survival of glycoproteins in the circulation. J Biol Chem. 1971;246:1461–7.

    CAS  PubMed  Google Scholar 

  • Morgan FJ, Birken S, Canfield RE. The amino acid sequence of human chorionic gonadotropin. The alpha subunit and beta subunit. J Biol Chem. 1975;250:5247–58.

    CAS  PubMed  Google Scholar 

  • Mouillet JF, Sonnenberg-Hirche C, Yan X, Sadovsky Y. p300 regulates the synergy of steroidogenic factor-1 and early growth response-1 in activating luteinizing hormone-beta subunit gene. J Biol Chem. 2004;279:7832–9.

    Article  CAS  PubMed  Google Scholar 

  • Moyle WR, Campbell RK, Myers RV, Bernard MP, Han Y, Wang X. Co-evolution of ligand-receptor pairs. Nature. 1994;368:251–5.

    Article  CAS  PubMed  Google Scholar 

  • Müller T, et al. Chorionic gonadotrophin beta subunit mRNA but not luteinising hormone beta subunit mRNA is expressed in the pituitary of the common marmoset (Callithrix jacchus). J Mol Endocrinol. 2004;32:115–28.

    Article  PubMed  Google Scholar 

  • Muyan M, Ryzmkiewicz DM, Boime I. Secretion of lutropin and follitropin from transfected GH3 cells: evidence for separate secretory pathways. Mol Endocrinol. 1994;8:1789–97.

    CAS  PubMed  Google Scholar 

  • Muzzio D, Zygmunt M, Jensen F. The role of pregnancy-associated hormones in the development and function of regulatory B cells. Front Endocrinol (Lausanne). 2014;5(39).

    Google Scholar 

  • Nagirnaja L, Rull K, Uusküla L, Hallast P, Grigorova M, Laan M. Genomics and genetics of gonadotropin beta-subunit genes: Unique FSHB and duplicated LHB/CGB loci. Mol Cell Endocrinol. 2010;329:4–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naor Z. Signaling by G-protein-coupled receptor (GPCR): studies on the GnRH receptor. Front Neuroendocrinol. 2009;30:10–29.

    Article  CAS  PubMed  Google Scholar 

  • Naor Z, Huhtaniemi I. Interactions of the GnRH receptor with heterotrimeric G proteins. Front Neuroendocrinol. 2013;34:88–94.

    Article  CAS  PubMed  Google Scholar 

  • Nayudu PL, Vitt UA, Barrios De Tomasi J, Pancharatna K, Ulloa-Aguirre A. Intact follicle culture: what it can tell us about the roles of FSH glycoforms during follicle development. Reprod BioMed Online. 2002;5:240–53.

    Article  CAS  PubMed  Google Scholar 

  • Nicol L, Faure MO, McNeilly JR, Fontaine J, Taragnat C, McNeilly AS. Bone morphogenetic protein-4 interacts with activin and GnRH to modulate gonadotrophin secretion in LbetaT2 gonadotrophs. J Endocrinol. 2008;196:497–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nilson JH, et al. CRE-binding proteins interact cooperatively to enhance placental-specific expression of the glycoprotein hormone alpha-subunit gene. Ann N Y Acad Sci. 1989;564:77–85.

    Article  CAS  PubMed  Google Scholar 

  • Nisula BC, Blithe DL, Akar A, Lefort G, Wehmann RE. Metabolic fate of human choriogonadotropin. J Steroid Biochem. 1989;33:733–7.

    Article  CAS  PubMed  Google Scholar 

  • Okuda K, Takamatsu J, Okazaki T, Yamada T, Saeki M, Sugimoto O. Hereditary abnormality of luteinizing hormone resulting in discrepant serum concentrations determined by different assays. Endocr J. 1994;41:639–44.

    Article  CAS  PubMed  Google Scholar 

  • Olivares A, Cardenas M, Timossi C, Zarinan T, Diaz-Sanchez V, Ulloa-Aguirre A. Reactivity of different LH and FSH standards and preparations in the world health organization matched reagents for enzyme-linked immunoassays of gonadotrophins. Hum Reprod. 2000;15:2285–91.

    Article  CAS  PubMed  Google Scholar 

  • Padmanabhan V, McFadden K, Mauger DT, Karsch FJ, Midgley ARJ. Neuroendocrine control of follicle-stimulating hormone (FSH) secretion. I. Direct evidence for separate episodic and basal components of FSH secretion. Endocrinology. 1997;138:424–32.

    Article  CAS  PubMed  Google Scholar 

  • Pearl CA, Jablonka-Shariff A, Boime I. Rerouting of a follicle-stimulating hormone analog to the regulated secretory pathway. Endocrinology. 2010;151:388–93.

    Article  CAS  PubMed  Google Scholar 

  • Perlman S, et al. Glycosylation of an N-terminal extension prolongs the half-life and increases the in vivo activity of follicle stimulating hormone. J Clin Endocrinol Metab. 2003;88:3227–35.

    Article  CAS  PubMed  Google Scholar 

  • Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods. 2011;8:785–6.

    Article  CAS  PubMed  Google Scholar 

  • Phillip M, Arbelle JE, Segev Y, Parvari R. Male hypogonadism due to a mutation in the gene for the beta-subunit of follicle-stimulating hormone. N Engl J Med. 1998;338:1729–32.

    Article  CAS  PubMed  Google Scholar 

  • Pincas H, Choi SG, Wang Q, Jia J, Turgeon JL, Sealfon SC. Outside the box signaling: secreted factors modulate GnRH receptor-mediated gonadotropin regulation. Mol Cell Endocrinol. 2014;385:56–61.

    Article  CAS  PubMed  Google Scholar 

  • Pittman RH, Clay CM, Farmerie TA, Nilson JH. Functional analysis of the placenta-specific enhancer of the human glycoprotein hormone alpha subunit gene. Emergence of a new element. J Biol Chem. 1994;269:19360–8.

    CAS  PubMed  Google Scholar 

  • Policastro P, Ovitt CE, Hoshima M, Fukuoka H, Boothby MR, Boime I. The ß subunit of human chorionic gonadotropin is encoded by multiple genes. J Biol Chem. 1983;258:11492–9.

    CAS  PubMed  Google Scholar 

  • Porchet HC, Le Cotonnec JY, Canali S, Zanolo G. Pharmacokinetics of recombinant human follicle stimulating hormone after intravenous, intramuscular, and subcutaneous administration in monkeys, and comparison with intravenous administration of urinary follicle stimulating hormone. Drug Metab Dispos. 1993;21:144–50.

    CAS  PubMed  Google Scholar 

  • Porchet HC, le Cotonnec JY, Loumaye E. Clinical pharmacology of recombinant human follicle-stimulating hormone. III. Pharmacokinetic-pharmacodynamic modeling after repeated subcutaneous administration. Fertil Steril. 1994;61:687–95.

    Article  CAS  PubMed  Google Scholar 

  • Porchet HC, Le Cotonnec JY, Neuteboom B, Canali S, Zanolo G. Pharmacokinetics of recombinant human luteinizing hormone after intravenous, intramuscular, and subcutaneous administration in monkeys and comparison with intravenous administration of pituitary human luteinizing hormone. J Clin Endocrinol Metab. 1995;80:667–73.

    CAS  PubMed  Google Scholar 

  • Posillico EG, Handwerger S, Tyrey L. Demonstration of intracellular and secreted forms of large human chorionic gonadotrophin alpha subunit in cultures of normal placental tissue. Placenta. 1983;4:439–48.

    CAS  PubMed  Google Scholar 

  • Potorac I, et al. A vital region for human glycoprotein hormone trafficking revealed by an LHB mutation. J Endocrinol 2016;231:197–207.

    Google Scholar 

  • Purwana IN, Kanasaki H, Mijiddorj T, Oride A, Miyazaki K. Induction of dual-specificity phosphatase 1 (DUSP1) by pulsatile gonadotropin-releasing hormone stimulation: role for gonadotropin subunit expression in mouse pituitary LbetaT2 cells. Biol Reprod. 2011;84:996–1004.

    Article  CAS  PubMed  Google Scholar 

  • Quirk CC, Lozada KL, Keri RA, Nilson JH. A single Pitx1 binding site is essential for activity of the LHbeta promoter in transgenic mice. Mol Endocrinol. 2001;15:734–46.

    CAS  PubMed  Google Scholar 

  • Raivio T, et al. The role of luteinizing hormone-beta gene polymorphism in the onset and progression of puberty in healthy boys. J Clin Endocrinol Metab. 1996;81:3278–82.

    CAS  PubMed  Google Scholar 

  • Ramanujam LN, Liao WX, Roy AC, Loganath A, Goh HH, Ng SC. Association of molecular variants of luteinizing hormone with menstrual disorders. Clin Endocrinol. 1999;51:243–6.

    Article  CAS  Google Scholar 

  • Ramanujam LN, Liao WX, Roy AC, Ng SC. Association of molecular variants of luteinizing hormone with male infertility. Hum Reprod. 2000;15:925–8.

    Article  CAS  PubMed  Google Scholar 

  • Renwick AGC, Mizuochi T, Kochibe N, Kobata A. The asparagine-linked sugar chains of human follicle-stimulating hormone. J Biochem. 1987;101:1209–21.

    Article  CAS  PubMed  Google Scholar 

  • Richards JS, Pangas SA. The ovary: basic biology and clinical implications. J Clin Invest. 2010;120:963–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richards JS, et al. Novel signaling pathways that control ovarian follicular development, ovulation, and luteinization. Recent Prog Horm Res. 2002;57:195–220.

    Article  CAS  PubMed  Google Scholar 

  • Roch GJ, Sherwood NM. Glycoprotein hormones and their receptors emerged at the origin of metazoans. Genome Biol Evol. 2014;6:1466–79.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ruddon RW, Sherman SA, Bedows E. Protein folding in the endoplasmic reticulum: lessons from the human chorionic gonadotropin β subunit. Protein Sci. 1996;5:1443–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rull K, Laan M. Expression of beta-subunit of HCG genes during normal and failed pregnancy. Hum Reprod. 2005;20:3360–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rull K, et al. Chorionic gonadotropin beta-gene variants are associated with recurrent miscarriage in two European populations. J Clin Endocrinol Metab. 2008;93:4697–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sairam MR. Role of carbohydrates in glycoprotein hormone signal transduction. FASEB J. 1989;3:1915–26.

    CAS  PubMed  Google Scholar 

  • Sairam MR, Bhargavi GN. A role for glycosylation of the alpha subunit in transduction of biological signal in glycoprotein hormones. Science. 1985;229:65–7.

    Article  CAS  PubMed  Google Scholar 

  • Sairam MR, Li CH. Human pituitary lutropin: isolation, properties, and the complete amino acid sequence of the β-subunit. Biochim Biophys Acta. 1975;412:70–81.

    Article  CAS  PubMed  Google Scholar 

  • Sairam MR, Manjunath P. Studies on pituitary follitropin. XI. Induction of hormonal antagonistic activity by chemical deglycosylation. Mol Cell Endocrinol. 1982;28:139–50.

    Article  CAS  PubMed  Google Scholar 

  • Sairam MR, Papkoff H, Li CH. Human pituitary interstitial cell stimulating hormone: primary structure of the α subunit. Biochem Biophys Res Commun. 1972;48:530–7.

    Article  CAS  PubMed  Google Scholar 

  • Salisbury TB, Binder AK, Nilson JH. Welcoming beta-catenin to the gonadotropin-releasing hormone transcriptional network in gonadotropes. Mol Endocrinol. 2008;22:1295–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scammell JG, Funkhouser JD, Moyer FS, Gibson SV, Willis DL. Molecular cloning of pituitary glycoprotein alpha-subunit and follicle stimulating hormone and chorionic gonadotropin beta-subunits from New World squirrel monkey and owl monkey. Gen Comp Endocrinol. 2008;155:534–41.

    Article  CAS  PubMed  Google Scholar 

  • Schumacher A, et al. Human chorionic gonadotropin as a central regulator of pregnancy immune tolerance. J Immunol. 2013;190:2650–8.

    Article  CAS  PubMed  Google Scholar 

  • Selman H, Pacchiarotti A, El-Danasouri I. Ovarian stimulation protocols based on follicle-stimulating hormone glycosylation pattern: impact on oocyte quality and clinical outcome. Fertil Steril. 2010;94:1782–6.

    Article  CAS  PubMed  Google Scholar 

  • Selman H, et al. Simultaneous administration of human acidic and recombinant less acidic follicle-stimulating hormone for ovarin stimulation improves oocyte and embryo quality and clinical outcome in patients with repeated IVF failures. Eur Rev Med Pharmacol Sci. 2013;17:1814–9.

    CAS  PubMed  Google Scholar 

  • Shakin-Eshleman SH, Spitalnik SL, Kasturi L. The amino acid at the X position of an Asn-X-Ser sequon is an important determinant of N-linked core glycosylation efficiency. J Biol Chem. 1986;271:6363–6.

    Article  Google Scholar 

  • Sharpless JL, Supko JG, Martin KA, Hall JE. Disappearance of endogenous luteinizing hormone is prolonged in postmenopausal women. J Clin Endocrinol Metab. 1999;84:688–94.

    CAS  PubMed  Google Scholar 

  • Sherman GB, et al. A single gene encodes the β-subunits of equine luteinizing hormone and chorionic gonadotropin. Mol Endocrinol. 1992;6:951–9.

    CAS  PubMed  Google Scholar 

  • Shi QJ, Lei ZM, Rao CV, Lin J. Novel role of human chorionic gonadotropin in differentiation of human cytotrophoblasts. Endocrinology. 1993;132:1387–95.

    Article  CAS  PubMed  Google Scholar 

  • Shiraishi K, Ascoli M. Lutropin/choriogonadotropin stimulate the proliferation of primary cultures of rat Leydig cells through a pathway that involves activation of the extracellularly regulated kinase 1/2 cascade. Endocrinology. 2007;148:3214–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shome B, Parlow AF. The primary structure of the hormone-specific, beta subunit of human pituitary luteinizing hormone (hLH). J Clin Endocrinol Metab. 1973;36:618–21.

    Article  CAS  PubMed  Google Scholar 

  • Shome B, Parlow AF. Human follicle stimulating hormone (hFSH): first proposal for the amino acid sequence of the α-subunit (hFSHα) and first demonstration of its identity with the α-subunit of human luteinizing hormone (hLHα). J Clin Endocrinol Metab. 1974;39:199–202.

    Article  CAS  PubMed  Google Scholar 

  • Shupnik MA. Effects of gonadotropin-releasing hormone on rat gonadotropin gene transcription in vitro: requirement for pulsatile administration for luteinizing hormone-beta gene stimulation. Mol Endocrinol. 1990;4:1444–50.

    Article  CAS  PubMed  Google Scholar 

  • Shupnik MA. Gonadotropin gene modulation by steroids and gonadotropin-releasing hormone. Biol Reprod. 1996;54:279–86.

    Article  CAS  PubMed  Google Scholar 

  • Shupnik MA, Fallest PC. Pulsatile GnRH regulation of gonadotropin subunit gene transcription. Neurosci Biobehav Rev. 1994;18:597–9.

    Article  CAS  PubMed  Google Scholar 

  • Shupnik MA, Rosenzweig BA. Identification of an estrogen-responsive element in the rat LH beta gene. DNA-estrogen receptor interactions and functional analysis. J Biol Chem. 1991;266:17084–91.

    CAS  PubMed  Google Scholar 

  • Simoni M, Casarini L. Mechanisms in endocrinology: genetics of FSH action: a 2014-and-beyond view. Eur J Endocrinol. 2014;170:R91–107.

    Article  CAS  PubMed  Google Scholar 

  • Simoni M, Gromoll J, Nieschlag E. The follicle-stimulating hormone receptor: biochemistry, molecular biology, physiology, and pathophysiology. Endocr Rev. 1997;18:739–73.

    CAS  PubMed  Google Scholar 

  • Simsek E, Montenegro LR, Binay C, Demiral M, Acikalin MF, Latronico AC. Clinical and hormonal features of a male adolescent with congenital isolated follicle-stimulating hormone deficiency. Horm Res Paediatr. 2016;85:207–12.

    Article  CAS  PubMed  Google Scholar 

  • Skorupskaite K, George JT, Anderson RA. The kisspeptin-GnRH pathway in human reproductive health and disease. Hum Reprod Update. 2014;20:485–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith PL, Baenziger JU. A pituitary N-acetylgalactosamine transferase that specifically recognizes glycoprotein hormones. Science. 1988;242:930–3.

    Article  CAS  PubMed  Google Scholar 

  • Smith PL, Baenziger JU. Recognition by the glycoprotein hormone–specific N–acetylgalactosaminetransferase is independent of hormone native conformation. Proc Natl Acad Sci U S A. 1990;87:7275–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith PL, Baenziger JU. Molecular basis of recognition by the glycoprotein hormone-specific N-acetylgalactosamine-transferase. Proc Natl Acad Sci U S A. 1992;89:329–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smitz J, Wolfenson C, Chappel S, Ruman J. Follicle-stimulating hormone: a review of form and function in the treatment of infertility. Reprod Sci. 2015.

    Google Scholar 

  • Spady TJ, Shayya R, Thackray VG, Ehrensberger L, Bailey JS, Mellon PL. Androgen regulates follicle-stimulating hormone beta gene expression in an activin-dependent manner in immortalized gonadotropes. Mol Endocrinol. 2004;18:925–40.

    Article  CAS  PubMed  Google Scholar 

  • Spratt DI, Carr DB, Merriam GR, Scully RE, Rao PN, Crowley Jr WF. The spectrum of abnormal patterns of gonadotropin-releasing hormone secretion in men with idiopathic hypogonadotropic hypogonadism: clinical and laboratory correlations. J Clin Endocrinol Metab. 1987;64:283–91.

    Article  CAS  PubMed  Google Scholar 

  • Stanislaus D, Janovick JA, Brothers S, Conn PM. Regulation of G(q/11)alpha by the gonadotropin-releasing hormone receptor. Mol Endocrinol. 1997;11:738–46.

    CAS  PubMed  Google Scholar 

  • Stanislaus D, Ponder S, Ji TH, Conn PM. Gonadotropin-releasing hormone receptor couples to multiple G proteins in rat gonadotrophs and in GGH3 cells: evidence from palmitoylation and overexpression of G proteins. Biol Reprod. 1998;59:579–86.

    Article  CAS  PubMed  Google Scholar 

  • Steger DJ, Hecht JH, Mellon PL. GATA-binding proteins regulate the human gonadotropin alpha-subunit gene in the placenta and pituitary gland. Mol Cell Biol. 1994;14:5592–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart F, Thomson JA, Leigh SEA, Warwick JM. Nucleotide (cDNA) sequence encoding the horse gonadotropin α-subunit. J Endocrinol. 1987;115:341–6.

    Article  CAS  PubMed  Google Scholar 

  • Strobel A, Issad T, Camoin L, Ozata M, Strosberg AD. A leptin missense mutation associated with hypogonadism and morbid obesity. Nat Genet. 1998;18:213–5.

    Article  CAS  PubMed  Google Scholar 

  • Suganuma N, Furui K, Kikkawa F, Tomoda Y, Furuhashi M. Effects of the mutations (Trp(8)->Arg and Ile(15)->Thr) in human luteinizing hormone (LH) beta-subunit on LH bioactivity in vitro and in vivo. Endocrinology. 1996;137:831–8.

    Google Scholar 

  • Sviridonov L, et al. Differential signaling of the GnRH receptor in pituitary gonadotrope cell lines and prostate cancer cell lines. Mol Cell Endocrinol. 2013;369:107–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tai P, Shiraishi K, Ascoli M. Activation of the lutropin/choriogonadotropin receptor inhibits apoptosis of immature Leydig cells in primary culture. Endocrinology. 2009;150:3766–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi K, et al. Increased prevalence of luteinizing hormone beta-subunit variant in Japanese infertility patients. Hum Reprod. 1998;13:3338–44.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Ozaki T, Okada M, Kurioka H, Kanasaki H, Miyazaki K. Increased prevalence of luteinizing hormone beta-subunit variant in patients with premature ovarian failure. Fertil Steril. 1999;71:96–101.

    Article  CAS  PubMed  Google Scholar 

  • Takeda M, et al. Interaction between gonadotropin-releasing hormone and bone morphogenetic protein-6 and -7 signaling in LbetaT2 gonadotrope cells. Mol Cell Endocrinol. 2012;348:147–54.

    Article  PubMed  CAS  Google Scholar 

  • Talmadge K, Boorstein WR, Fiddes JC. The human genome contains seven genes for the β-subunit of chorionic gonadotropin but only one gene for the β-subunit of luteinizing hormone. DNA. 1983;2:281–9.

    Article  CAS  PubMed  Google Scholar 

  • Tapanainen JS, Aittomaki K, Min J, Vaskivuo T, Huhtaniemi IT. Men homozygous for an inactivating mutation of the follicle-stimulating hormone (FSH) receptor gene present variable suppression of spermatogenesis and fertility. Nat Genet. 1997;15:205–6.

    Article  CAS  PubMed  Google Scholar 

  • Thackray VG, McGillivray SM, Mellon PL. Androgens, progestins, and glucocorticoids induce follicle-stimulating hormone beta-subunit gene expression at the level of the gonadotrope. Mol Endocrinol. 2006;20:2062–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thackray VG, Hunnicutt JL, Memon AK, Ghochani Y, Mellon PL. Progesterone Inhibits basal and gonadotropin-releasing hormone induction of luteinizing hormone beta-subunit gene expression. Endocrinology. 2009;150:2395–403.

    Article  CAS  PubMed  Google Scholar 

  • Thackray VG, Mellon PL, Coss D. Hormones in synergy: regulation of the pituitary gonadotropin genes. Mol Cell Endocrinol. 2010;314:192–203.

    Article  CAS  PubMed  Google Scholar 

  • Timossi C, Damian-Matsumura P, Dominguez-Gonzalez A, Ulloa-Aguirre A. A less acidic human follicle-stimulating hormone preparation induces tissue-type plasminogen activator enzyme activity earlier than a predominantly acidic analogue in phenobarbital-blocked pro-oestrous rats. Mol Hum Reprod. 1998;4:1032–8.

    Article  CAS  PubMed  Google Scholar 

  • Tran S, et al. Impaired fertility and FSH synthesis in gonadotrope-specific Foxl2 knockout mice. Mol Endocrinol. 2013;27:407–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tremblay JJ, Marcil A, Gauthier Y, Drouin J. Ptx1 regulates SF-1 activity by an interaction that mimics the role of the ligand-binding domain. EMBO J. 1999;18:3431–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsaneva-Atanasova K, Caunt CJ, Armstrong SP, Perrett RM, McArdle CA. Decoding neurohormone pulse frequency by convergent signalling modules. Biochem Soc Trans. 2012;40:273–8.

    Article  CAS  PubMed  Google Scholar 

  • Tsunasawa S, Liu W-K, Burleigh BD, Ward DN. Studies of disulfide bond location in ovine lutropin β subunit. Biochim Biophys Acta. 1977;492:340–56.

    Article  CAS  PubMed  Google Scholar 

  • Tsutsumi R, Mistry D, Webster NJ. Signaling responses to pulsatile gonadotropin-releasing hormone in LbetaT2 gonadotrope cells. J Biol Chem. 2010;285:20262–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ulloa-Aguirre A, Timossi C. Structure-function relationship of follicle-stimulating hormone and its receptor. Hum Reprod Update. 1998;4:260–83.

    Article  CAS  PubMed  Google Scholar 

  • Ulloa-Aguirre A, Timossi C. Biochemical and functional aspects of gonadotrophin-releasing hormone and gonadotrophins. Reprod BioMed Online. 2000;1:48–62.

    Article  CAS  PubMed  Google Scholar 

  • Ulloa-Aguirre A, Cravioto A, Damian-Matsumura P, Jimenez M, Zambrano E, Diaz-Sanchez V. Biological characterization of the naturally occurring analogues of intrapituitary human follicle-stimulating hormone. Hum Reprod. 1992;7:23–30.

    Article  CAS  PubMed  Google Scholar 

  • Ulloa-Aguirre A, Midgley Jr AR, Beitins IZ, Padmanbhan V. Follicle-stimulating isohormones: characterization and physiological relevance. Endocr Rev. 1995;16:765–87.

    Article  CAS  PubMed  Google Scholar 

  • Ulloa-Aguirre A, Timossi C, Damian-Matsumura P, Dias JA. Role of glycosylation in function of follicle-stimulating hormone. Endocrine. 1999;11:205–15.

    Article  CAS  PubMed  Google Scholar 

  • Ulloa-Aguirre A, Janovick JA, Brothers SP, Conn PM. Pharmacologic rescue of conformationally-defective proteins: implications for the treatment of human disease. Traffic. 2004;5:821–37.

    Article  CAS  PubMed  Google Scholar 

  • Ulloa-Aguirre A, Crepieux P, Poupon A, Maurel MC, Reiter E. Novel pathways in gonadotropin receptor signaling and biased agonism. Rev Endocr Metab Disord. 2011;12:259–74.

    Article  CAS  PubMed  Google Scholar 

  • Ulloa-Aguirre A, Zarinan T. The follitropin receptor: matching structure and function. Mol Pharmacol. 2016;90:596–608.

    Google Scholar 

  • Urban RJ, Evans WS, Rogol AD, Kaiser DL, Johnson ML, Veldhuis JD. Contemporary aspects of discrete peak-detection algorithms. I. The paradigm of the luteinizing hormone pulse signal in men. Endocr Rev. 1988;9:3–37.

    Article  CAS  PubMed  Google Scholar 

  • Urizar E, et al. Glycoprotein hormone receptors: link between receptor homodimerization and negative cooperativity. EMBO J. 2005;24:1954–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valdes-Socin H, et al. Hypogonadism in a patient with a mutation in the luteinizing hormone beta-subunit gene. N Engl J Med. 2004;351:2619–25.

    Article  CAS  PubMed  Google Scholar 

  • Valdes-Socin H, et al. Testicular effects of isolated luteinizing hormone deficiency and reversal by long-term human chorionic gonadotropin treatment. J Clin Endocrinol Metab. 2009;94:3–4.

    Article  CAS  PubMed  Google Scholar 

  • Valmu L, Alfthan H, Hotakainen K, Birken S, Stenman UH. Site-specific glycan analysis of human chorionic gonadotropin beta-subunit from malignancies and pregnancy by liquid chromatography – electrospray mass spectrometry. Glycobiology. 2006;16:1207–18.

    Article  CAS  PubMed  Google Scholar 

  • Valove FM, Finch C, Anasti JN, Froehlich J, Flack MR. Receptor binding and signal transduction are dissociable functions requiring different sites on follicle-stimulating hormone. Endocrinology. 1994;135:2657–61.

    Article  CAS  PubMed  Google Scholar 

  • Varki A, et al. Symbol nomenclature for graphical representation of glycans. Glycobiology. 2015;25:1323–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veldhuis JD, Carlson ML, Johnson ML. The pituitary gland secretes in bursts: appraising the nature of glandular secretory impulses by simultaneous multiple-parameter deconvolution of plasma hormone concentrations. Proc Natl Acad Sci U S A. 1987;84:7686–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veldhuis JD, Iranmanesh A, Johnson ML, Lizarralde G. Twenty-four-hour rhythms in plasma concentrations of adenohypophyseal hormones are generated by distinct amplitude and/or frequency modulation of underlying pituitary secretory bursts. J Clin Endocrinol Metab. 1990;71:1616–23.

    Article  CAS  PubMed  Google Scholar 

  • Walton WJ, Nguyen VT, Butnev VY, Singh V, Moore WT, Bousfield GR. Characterization of human follicle-stimulating hormone isoforms reveals a non-glycosylated β-subunit in addition to the conventional glycosylated β-subunit. J Clin Endocrinol Metab. 2001;86:3675–85.

    CAS  PubMed  Google Scholar 

  • Wan H, et al. Chorionic gonadotropin can enhance innate immunity by stimulating macrophage function. J Leukoc Biol. 2007;82:926–33.

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, et al. Extra-ovarian expression and activity of growth differentiation factor 9. J Endocrinol. 2009;202:419–30.

    Article  CAS  PubMed  Google Scholar 

  • Wang H, et al. Redirecting intracellular trafficking and the secrtion of pattern of FSH drmatically enhances ovarian function in mice. Proc Natl Acad Sci U S A. 2014;111:5735–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, et al. Comparative assessment of glycosylation of a recombinant human FSH and a highly purified FSH extracted from human urine. J Proteome Res. 2016a;15:923–32.

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Butnev VY, Bousfield GR, Kumar TR. A human FSHB transgene encoding the double N-glycosylation mutant (Asn7Δ Asn25Δ) FSHb fails to rescue Fshb null mice. Mol Cell Endocrinol. 2016b; xx:1–12.

    Google Scholar 

  • Ward DN, Moore Jr WT, Burleigh BD. Structural studies on equine chorionic gonadotropin. J Protein Chem. 1982;1:263–80.

    Article  CAS  Google Scholar 

  • Ward DN, Glenn SD, Nahm HS, Wen T. Characterization of cleavage products in selected human lutropin preparations. Int J Pept Protein Res. 1986;27:70–8.

    Article  CAS  PubMed  Google Scholar 

  • Ward DN, Bousfield GR, Gordon WL, Sugino H. Chemistry of the peptide components of glycoprotein hormones. In: Keel BA, Grotjan HE Jr, editors. Microheterogeneity of glycoprotein hormones. Boca Raton: CRC Press; 1989. p. 1–21.

    Google Scholar 

  • Weenen C, et al. Long-acting follicle-stimulating hormone analogs containing N-linked glycosylation exhibited increased bioactivity compared with o-linked analogs in female rats. J Clin Endocrinol Metab. 2004;89:5204–12.

    Article  CAS  PubMed  Google Scholar 

  • Weiss J, Axelrod L, Whitcomb RW, Harris PE, Crowley WF, Jameson JL. Hypogonadism caused by a single amino acid substitution in the beta subunit of luteinizing hormone. N Engl J Med. 1992;326:179–83.

    Article  CAS  PubMed  Google Scholar 

  • Weisshaar G, Hiyama J, Renwick AG. Site-specific N-glycosylation of human chorionic gonadotrophin – structural analysis of glycopeptides by one- and two-dimensional 1H NMR spectroscopy. Glycobiology. 1991a;1:393–404.

    Article  CAS  PubMed  Google Scholar 

  • Weisshaar G, Hiyama J, Renwick AG, Nimtz M. NMR investigations of the N-linked oligosaccharides at individual glycosylation sites of human lutropin. Eur J Biochem. 1991b;195:257–68.

    Article  CAS  PubMed  Google Scholar 

  • West CR, et al. Acidic mix of FSH isoforms are better facilitators of ovarian follicular maturation and E2 production than the less acidic. Endocrinology. 2002;143:107–16.

    Article  CAS  PubMed  Google Scholar 

  • Wide L. Median charge and charge heterogeneity of human pituitary FSH, LH and TSH. II. Relationship to sex and age. Acta Endocrinol. 1985a;109:190–7.

    CAS  PubMed  Google Scholar 

  • Wide L. Median charge and charge heterogeneity of human pituitary FSH, LH and TSH. I. Zone electrophoresis in agarose suspension. Acta Endocrinol. 1985b;109:181–9.

    CAS  PubMed  Google Scholar 

  • Wide L. The regulation of metabolic clearance rate of human FSH in mice by variation of the molecular structure of the hormone. Acta Endocrinol. 1986;112:336–44.

    CAS  PubMed  Google Scholar 

  • Wide L, Eriksson K. Dynamic changes in glycosylation and glycan composition of serum FSH and LH during natural ovarian stimulation. Ups J Med Sci. 2013;118:153–64.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wide L, Wide M. Higher plasma disappearance rate in the mouse for pituitary follicle-stimulating hormone of young women compared to that of men and elderly women. J Clin Endocrinol Metab. 1984;58:426–9.

    Article  CAS  PubMed  Google Scholar 

  • Wide L, Naessén T, Sundström-Poromaa I, Eriksson K. Sulfonation and sialylation of gonadotropins in women during the menstrual cycle, after menopause, and with polycystic ovarian syndrome and in men. J Clin Endocrinol Metab. 2007;92:4410–7.

    Article  CAS  PubMed  Google Scholar 

  • Wildt L, et al. Frequency and amplitude of gonadotropin-releasing hormone stimulation and gonadotropin secretion in the rhesus monkey. Endocrinology. 1981;109:376–85.

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Lustbader JW, Liu Y, Canfield RE, Hendrickson WA. Structure of human chorionic gonadotropin at 2.6 Å resolution from MAD analysis of the selenomethionyl protein. Structure. 1994;2:545–58.

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Luo H, Liu J, Kang D, McNeilly AS, Cui S. LIM homeodomain transcription factor Isl-1 enhances follicle stimulating hormone-beta and luteinizing hormone-beta gene expression and mediates the activation of leptin on gonadotropin synthesis. Endocrinology. 2010;151:4787–800.

    Article  CAS  PubMed  Google Scholar 

  • Wurmbach E, Yuen T, Ebersole BJ, Sealfon SC. Gonadotropin-releasing hormone receptor-coupled gene network organization. J Biol Chem. 2001;276:47195–201.

    Article  CAS  PubMed  Google Scholar 

  • Xing Y, et al. Alternatively folded choriogonadotropin analogs. Implications for hormone folding and biological activity. J Biol Chem. 2001a;276:46953–60.

    Article  CAS  PubMed  Google Scholar 

  • Xing Y, et al. Threading of a glycosylated protein loop through a protein hole: implications for combination of human chorionic gonadotropin subunits. Protein Sci. 2001b;10:226–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xing Y, et al. Glycoprotein hormone assembly in the endoplasmic reticulum: IV. Probable mechanism of subunit docking and completion of assembly. J Biol Chem. 2004a;279:35458–68.

    Article  CAS  PubMed  Google Scholar 

  • Xing Y, et al. Glycoprotein hormone assembly in the endoplasmic reticulum: II. Multiple roles of a redox sensitive beta-subunit disulfide switch. J Biol Chem. 2004b;279:35437–48.

    Article  CAS  PubMed  Google Scholar 

  • Xing Y, et al. Glycoprotein hormone assembly in the endoplasmic reticulum: I. The glycosylated end of human alpha-subunit loop 2 is threaded through a beta-subunit hole. J Biol Chem. 2004c;279:35426–36.

    Article  CAS  PubMed  Google Scholar 

  • Zambrano E, et al. Dynamics of basal and gonadotropin-releasing hormone-releasable serum follicle-stimulating hormone charge isoform distribution throughout the human menstrual cycle. J Clin Endocrinol Metab. 1995;80:1647–56.

    CAS  PubMed  Google Scholar 

  • Zawel L, et al. Human Smad3 and Smad4 are sequence-specific transcription activators. Mol Cell. 1998;1:611–7.

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Roberson MS. Role of MAP kinase phosphatases in GnRH-dependent activation of MAP kinases. J Mol Endocrinol. 2006;36:41–50.

    Article  PubMed  CAS  Google Scholar 

  • Zygmunt M, et al. Characterization of human chorionic gonadotropin as a novel angiogenic factor. J Clin Endocrinol Metab. 2002;87:5290–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo Ulloa-Aguirre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Ulloa-Aguirre, A., Dias, J.A., Bousfield, G.R. (2017). Gonadotropins. In: Simoni, M., Huhtaniemi, I. (eds) Endocrinology of the Testis and Male Reproduction. Endocrinology. Springer, Cham. https://doi.org/10.1007/978-3-319-44441-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44441-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44440-6

  • Online ISBN: 978-3-319-44441-3

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics