Skip to main content

Minimally Invasive Spine Surgery

  • Reference work entry
  • First Online:
Handbook of Spine Technology

Abstract

This chapter explores the basic principles and concepts of minimally invasive spine surgery (MIS). It provides technical insight into how these procedures are performed safely. By utilizing MIS techniques, one can largely treat the same conditions, which historically have been treated in the open fashion. Both short- and long-term advantages will be discussed including but not limited to decreased blood loss, decreased postoperative pain, and faster return to baseline. The application of these methods to deformity correction surgery and interbody fusions will also be explored. The roles of navigation and robotics in this rapidly expanding field and how they can be utilized to improve accuracy are investigated. This chapter is targeted toward junior faculty members, residents, midlevel providers, and other individuals who wish to expand their knowledge base on MIS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Acosta FL et al (2011) Changes in coronal and sagittal plane alignment following minimally invasive direct lateral interbody fusion for the treatment of degenerative lumbar disease in adults: a radiographic study. J Neurosurg Spine 15(1):92–96. https://doi.org/10.3171/2011.3.spine10425

    Article  PubMed  Google Scholar 

  • Ahmad FU, Wang MY (2014) Use of anteroposterior view fluoroscopy for targeting percutaneous pedicle screws in cases of spinal deformity with axial rotation. J Neurosurg Spine 21(5):826–832. https://doi.org/10.3171/2014.7.spine13846

    Article  PubMed  Google Scholar 

  • Aleem IS, Park P, La Marca F, Patel R (2017) Minimally invasive pedicle screw placement for applications in trauma and tumor surgery. Oper Tech Orthop 27(4):217–222

    Article  Google Scholar 

  • Alvi MA et al (2018) Operative approaches for lumbar disc herniation: a systematic review and multiple treatment meta-analysis of conventional and minimally invasive surgeries. World Neurosurg 114:391

    Article  Google Scholar 

  • Anand N et al (2008) Minimally invasive multilevel percutaneous correction and fusion for adult lumbar degenerative scoliosis. J Spinal Disord Tech 21(7):459–467. https://doi.org/10.1097/bsd.0b013e318167b06b

    Article  PubMed  Google Scholar 

  • Anand N et al (2014a) Evidence basis/outcomes in minimally invasive spinal scoliosis surgery. Neurosurg Clin N Am 25(2):361–375. https://doi.org/10.1016/j.nec.2013.12.014

    Article  PubMed  Google Scholar 

  • Anand N et al (2014b) Limitations and ceiling effects with circumferential minimally invasive correction techniques for adult scoliosis: analysis of radiological outcomes over a 7-year experience. Neurosurg Focus 36(5). https://doi.org/10.3171/2014.3.focus13585

  • Anand N et al (2017) A staged protocol for circumferential minimally invasive surgical correction of adult spinal deformity. Neurosurgery 81(5):733–739. https://doi.org/10.1093/neuros/nyx353

    Article  PubMed  Google Scholar 

  • Anderson DG (2014) Lumbar decompression using a tubular retractor system. In: Minimally invasive spine surgery: surgical techniques and disease management, by Sapan D Gandhi. Springer, New York

    Google Scholar 

  • Anderson DG, Samartzis D, Shen FH et al (2007) Percutaneous instrumentation of the thoracic and lumbar spine. Orthop Clin North Am 38:401–408. [abstract vii]

    Article  Google Scholar 

  • Anderson MO et al (2017) Return to work after lumbar disc surgery is related to the length of preoperative sick leave. Dan Med J 64(7). pii:A5392

    Google Scholar 

  • Auerbach JD et al (2016) Delayed postoperative neurologic deficits in spinal deformity surgery. Spine 41(3). https://doi.org/10.1097/brs.0000000000001194

  • Bresnahan LE et al (2017) Assessment of paraspinal muscle cross-sectional area after lumbar decompression. Clin Spine Surg 30(3):E162

    Article  Google Scholar 

  • Cawley DT et al (2013) Multifidus innervation and muscle assessment post-spinal surgery. Eur Spine J 23(2):320–327

    Article  Google Scholar 

  • Chachan S et al (2018) Cervical pedicle screw instrumentation is more reliable with O-arm-based 3D navigation: analysis of cervical pedicle screw placement accuracy with O-arm-based 3D navigation. Eur Spine J. https://doi.org/10.1007/s00586-018-5585-1

  • Costanzo G et al (2014) The role of minimally invasive lateral lumbar interbody fusion in sagittal balance correction and spinal deformity. Eur Spine J 23(S6):699–704. https://doi.org/10.1007/s00586-014-3561-y

    Article  PubMed  Google Scholar 

  • Dasenbrock HH et al (2012) The efficacy of minimally invasive discectomy compared with open discectomy: a meta-analysis of prospective randomized controlled trials. J Neurosurg Spine 16(5):452–462

    Article  Google Scholar 

  • Deukmedjian AR et al (2012) Early outcomes of minimally invasive anterior longitudinal ligament release for correction of sagittal imbalance in patients with adult spinal deformity. Sci World J 2012:1–7. https://doi.org/10.1100/2012/789698

    Article  Google Scholar 

  • Ditsworth DA (1998) Endoscopic transforaminal lumbar discectomy and reconfiguration: a postero-lateral approach into the spinal canal. Surg Neurol 49(6):588–598

    Article  CAS  Google Scholar 

  • Faubert C, Caspar W (1991) Lumbar percutaneous discectomy. Neuroradiology 33(5):407–410. https://doi.org/10.1007/bf00598613

    Article  CAS  PubMed  Google Scholar 

  • Foley KT (2015) Microendoscopic discectomy for lumbar disc herniations: paramedian and far lateral approaches. In: Surgical approaches to the spine. Springer, New York

    Google Scholar 

  • Foley KT, Smith MM (1997) Microendoscopic discectomy. Techn Neurosurg 3:3017

    Google Scholar 

  • Fujibayashi S et al (2017) Complications associated with lateral interbody fusion. Spine 42(19):1478–1484. https://doi.org/10.1097/brs.0000000000002139

    Article  PubMed  Google Scholar 

  • Glassman S et al (2004) P90. The impact of positive sagittal balance in adult spinal deformity. Spine J 4(5). https://doi.org/10.1016/j.spinee.2004.05.231

  • Glassman SD et al (2007) The impact of perioperative complications on clinical outcome in adult deformity surgery. Spine 32(24):2764–2770. https://doi.org/10.1097/brs.0b013e31815a7644

    Article  PubMed  Google Scholar 

  • Guiroy A et al (2018) How to perform the wiltse posterolateral spinal approach: technical note. Surg Neurol Int 9(1):38

    Article  CAS  Google Scholar 

  • Hartl R, Gelb D (2017) Step-by-step guide: key steps in a MIS TLIF procedure. AO Spine. https://aospine.aofoundation.org/Structure/education/online-education/mis-material/Pages/mis-material.aspx

  • Heffner Rr, Barron Sa (1978) The early effects of ischemia upon skeletal muscle mitochondria. J Neurol Sci 38(3):295–315

    Article  CAS  Google Scholar 

  • Huang T-J et al (2005) Less systemic cytokine response in patients following microendoscopic versus open lumbar discectomy. J Orthop Res 23(2):406–411

    Article  CAS  Google Scholar 

  • Hungerford B et al (2003) Evidence of altered lumbopelvic muscle recruitment in the presence of sacroiliac joint pain. Spine 28(14):1593–1600

    PubMed  Google Scholar 

  • Hyun S-J et al (2017) Minimally invasive robotic versus open fluoroscopic-guided spinal instrumented fusions. Spine 42(6):353–358. https://doi.org/10.1097/brs.0000000000001778

    Article  PubMed  Google Scholar 

  • Isaacs RE et al (2005) Minimally invasive microendoscopy-assisted transforaminal lumbar interbody fusion with instrumentation. J Neurosurg Spine 3(2):98–105. https://doi.org/10.3171/spi.2005.3.2.0098

    Article  PubMed  Google Scholar 

  • Isaacs RE et al (2010) A prospective, nonrandomized, multicenter evaluation of extreme lateral interbody fusion for the treatment of adult degenerative scoliosis. Spine 35(Supplement):S322

    Article  Google Scholar 

  • Kawaguchi Y et al (1996) Back muscle injury after posterior lumbar spine surgery. Spine 21(8):941–944

    Article  CAS  Google Scholar 

  • Kim K-T et al (2006) The quantitative analysis of tissue injury markers after mini-open lumbar fusion. Spine 31(6):712–716

    Article  Google Scholar 

  • Kimball J, Yew A (2013) Minimally invasive surgery for lumbar microdiscectomy. Neurosurg Focus 35(2 Suppl): Video 15

    Google Scholar 

  • Kleck CJ et al (2018) One-step minimally invasive pedicle screw instrumentation using O-arm and stealth navigation. Clin Spine Surg:1. https://doi.org/10.1097/bsd.0000000000000616

  • Kotil K et al (2007) Serum creatine phosphokinase activity and histological changes in the multifidus muscle: a prospective randomized controlled comparative study of discectomy with or without retraction. J Neurosurg Spine 6(2):121–125

    Article  Google Scholar 

  • Kube R. et al (2016) Sacroiliac joint fusion: one year clinical and radiographic results from minimally invasive sacroiliac joint fusion surgery. Open Ortho J 10:679–689

    Google Scholar 

  • Kulkarni A et al (2014) Microendoscopic lumbar discectomy: technique and results of 188 cases. Indian J Orthop 48(1):81

    Article  Google Scholar 

  • Lafage V et al (2009) Pelvic tilt and truncal inclination. Spine 34(17). https://doi.org/10.1097/brs.0b013e3181aad219

  • Lombardi G et al (2014) Is minimally invasive spine surgery also minimally pro-inflammatory? Muscular markers, inflammatory parameters and cytokines to quantify the operative invasiveness assessment in spine fusion. Eur J Inflamm 12(2):237–249

    Article  Google Scholar 

  • Manwaring JC et al (2014) Management of sagittal balance in adult spinal deformity with minimally invasive anterolateral lumbar interbody fusion: a preliminary radiographic study. J Neurosurg Spine 20(5):515–522. https://doi.org/10.3171/2014.2.spine1347

    Article  PubMed  Google Scholar 

  • Miller LE, Block JE (2014) Minimally invasive arthrodesis for chronic sacroiliac joint dysfunction using the SImmetry SI Joint Fusion system. Med Dvices May 7;7:125–30

    Google Scholar 

  • Moore MR (1997) Surgical treatment of chronic painful sacroiliac joint dysfunction. In: Movement, stability, and low back pain: the essential role of the pelvis. Churchill Livingstone, New York, pp 563–572

    Google Scholar 

  • Moskowitz A (2002) Transforaminal lumbar interbody fusion. Orthop Clin N Am 33(2):359–366. https://doi.org/10.1016/s0030-5898(01)00008-6

    Article  Google Scholar 

  • Mummaneni PV et al (2014) The minimally invasive spinal deformity surgery algorithm: a reproducible rational framework for decision making in minimally invasive spinal deformity surgery. Neurosurg Focus 36(5). https://doi.org/10.3171/2014.3.focus1413

  • Obenchain TG (1991) Laparoscopic lumbar discectomy: case report. J Laparoendosc Surg. https://doi.org/10.1089/lps.1991.1.145

  • Ozgur BM et al (2006) Extreme lateral interbody fusion (XLIF): a novel surgical technique for anterior lumbar interbody fusion. Spine J 6(4):435–443. https://doi.org/10.1016/j.spinee.2005.08.012

    Article  PubMed  Google Scholar 

  • Parajon A, Hartl R (2017) Step-by-step guide: minimally invasive tubular approaches to lumbar spine decompression and dural repair – surgical techniques. AO Spine. https://aospine.aofoundation.org/Structure/education/online-education/mis-material/Pages/mis-material.aspx

  • Park P, Foley KT, Cowan JA et al (2010) Minimally invasive pedicle screw fixation utilizing O-arm fluoroscopy with computer-assisted navigation: feasibility, technique, and preliminary results. Surg Neurol Int 1:44

    Article  Google Scholar 

  • Pawar A et al (2015) Lateral lumbar interbody fusion. Asian Spine J 9(6):978

    Article  Google Scholar 

  • Phan K, Mobbs RJ (2016) Minimally invasive versus open laminectomy for lumbar stenosis. Spine 41(2):E91

    Article  Google Scholar 

  • Phillips FM et al (2014) Minimally invasive spine surgery: surgical techniques and disease management. Springer, New York

    Book  Google Scholar 

  • Pishnamaz M, Schemmann U (2018) Muscular changes after minimally invasive versus open spinal stabilization of thoracolumbar fractures: a literature review. J Musculoskelet Nueronal Interact 18(1):62–70

    Google Scholar 

  • Rasouli MR et al (2013) Minimally invasive discectomy versus microdiscectomy/discectomy for symptomatic lumbar disc herniation. Cochrane Database Syst Rev Sept 4;(9) CD010328

    Google Scholar 

  • Rosenberg WS, Mummaneni PV (2001) Transforaminal lumbar interbody fusion: technique, complications, and early results. Neurosurgery 48(3):569–575. https://doi.org/10.1097/00006123-200103000-00022

    Article  CAS  PubMed  Google Scholar 

  • Schwender JD, Shafa E (2018) Minimally invasive posterior lumbar instrumentation. In: Rothman and Simeone the spine 7e, Chapter 55, by Elsevier, Inc

    Google Scholar 

  • Sclafani JA, Kim CW (2014) Complications associated with the initial learning curve of minimally invasive spine surgery: a systematic review. Clin Orthop Relat Res 472(6):1711–1717. https://doi.org/10.1007/s11999-014-3495-z

    Article  PubMed  PubMed Central  Google Scholar 

  • Shamji MF et al (2015) Minimally invasive spinal surgery in the elderly. Neurosurgery 77:S108

    Article  Google Scholar 

  • Smith A et al (2013) Open versus minimally invasive sacroiliac joint fusion: a multi-center comparison of perioperative measures and clinical outcomes. Ann Surg Innov Res 7(1):14

    Article  Google Scholar 

  • Smith-Petersen MN (1921) Arthrodesis of the sacroiliac joint. A new method of approach. J Bone Joint Surg Am 3(8):400–405

    Google Scholar 

  • Stevens KJ et al (2006) Comparison of minimally invasive and conventional open posterolateral lumbar fusion using magnetic resonance imaging and retraction pressure studies. J Spinal Disord Tech 19(2):77–86

    Article  Google Scholar 

  • Tajsic T et al (2018) Spinal navigation for minimally invasive thoracic and lumbosacral spine fixation: implications for radiation exposure, operative time, and accuracy of pedicle screw placement. Eur Spine J. https://doi.org/10.1007/s00586-018-5587-z

  • Terman SW et al (2014) Minimally invasive versus open transforaminal lumbar interbody fusion: comparison of clinical outcomes among obese patients. J Neurosurg Spine 20(6):644–652

    Article  Google Scholar 

  • Tinelli M et al (2014) Correct positioning of pedicle screws with a percutaneous minimal invasive system in spine trauma. Orthop Traumatol Surg Res 100(4):389–393. https://doi.org/10.1016/j.otsr.2014.03.015

    Article  CAS  PubMed  Google Scholar 

  • Tullberg T et al (1993) Does microscopic removal of lumbar disc herniation lead to better results than the standard procedure? Spine 18(1):24–27

    Article  CAS  Google Scholar 

  • Wang HL, FZ LU (2011) Minimally invasive lumbar interbody fusion via MAST Quadrant retractor versus open surgery: a prospective randomized clinical trial. Chin Med J 124:3868–3874

    PubMed  Google Scholar 

  • Wang MY et al (2014) Less invasive surgery for treating adult spinal deformities: ceiling effects for deformity correction with 3 different techniques. Neurosurg Focus 36(5). https://doi.org/10.3171/2014.3.focus1423

  • Wang Y-P et al (2017) Comparison of outcomes between minimally invasive transforaminal lumbar interbody fusion and traditional posterior lumbar intervertebral fusion in obese patients with lumbar disk prolapse. Ther Clin Risk Manag 13:87–94

    Article  Google Scholar 

  • Watkins RG III, Watkins RG IV (2015) Surgical approaches to the spine. Springer, New York

    Google Scholar 

  • Wiltse LL (1973) The paraspinal sacrospinalis-splitting approach to the lumbar spine. Clin Orthop Relat Res 91:48–57

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilyas Aleem .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Butt, B.B., Patel, R., Aleem, I. (2021). Minimally Invasive Spine Surgery. In: Cheng, B.C. (eds) Handbook of Spine Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-44424-6_129

Download citation

Publish with us

Policies and ethics