Skip to main content

Flip-Flopping Membrane Proteins: How the Charge Balance Rule Governs Dynamic Membrane Protein Topology

  • Living reference work entry
  • First Online:
Biogenesis of Fatty Acids, Lipids and Membranes

Abstract

Transmembrane and lateral phospholipid asymmetries are not absolute as is the case for integral membrane proteins where asymmetry does not have to be actively maintained due to the enormous energy required to flip across the hydrophobic barrier of the membrane. Although the lipid bilayer is widely considered as a non-flipping zone for most proteins, some integral membrane proteins possess the capacity to reversibly reorient themselves during or after insertion if membrane phospholipid composition is changed, the membrane is depolarized or components of the translocon interact with each other during ATP-driven protein substrate translocation. Membrane proteins can be also engineered to flip after assembly if a strong topological retention signal is introduced at the very end of the polypeptide and then removed post-insertionally. Phosphorylation of an extramembrane domain, which alters its charge nature, could also induce post-insertional topological changes. A structural approach for dynamic membrane protein organization is not achievable by X-ray crystallography. Therefore, a set of unique in vivo and in vitro approaches should be used to establish a detailed mechanistic understanding for how lipid-protein interactions govern dynamic membrane protein structure and function. Novel approaches and concepts have been developed to analyze dynamic lipid-protein interactions and mechanisms of membrane protein folding and topogenesis. Such methods have the advantage of probing the dynamics of biological membrane organization, membrane protein structure, and lipid-protein interactions both in vitro and in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Awe K, Lambert C, Prange R (2008) Mammalian BiP controls posttranslational ER translocation of the hepatitis B virus large envelope protein. FEBS Lett 582(21–22):3179–3184

    Article  CAS  PubMed  Google Scholar 

  • Bochud A, Ramachandra N, Conzelmann A (2013) Adaptation of low-resolution methods for the study of yeast microsomal polytopic membrane proteins: a methodological review. Biochem Soc Trans 41(1):35–42

    Article  CAS  PubMed  Google Scholar 

  • Bogdanov M (2017) Mapping of membrane protein topology by substituted cysteine accessibility method (SCAM™). In: Bacterial protein secretion systems: methods and protocols, pp 105–128

    Chapter  Google Scholar 

  • Bogdanov M, Dowhan W (2012) Lipid-dependent generation of a dual topology for a membrane protein. J Biol Chem 287:37939–37948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bogdanov M, Heacock PN, Dowhan W (2002) A polytopic membrane protein displays a reversible topology dependent on membrane lipid composition. EMBO J 21(9):2107–2116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bogdanov M, Zhang W, Xie J, Dowhan W (2005) Transmembrane protein topology mapping by the substituted cysteine accessibility method (SCAM™): application to lipid-specific membrane protein topogenesis. Methods 36(2):148–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bogdanov M, Xie J, Heacock P, Dowhan W (2008) To flip or not to flip: lipid-protein charge interactions are a determinant of final membrane protein topology. J Cell Biol 182(5):925–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bogdanov M, Xie J, Dowhan W (2009) Lipid-protein interactions drive membrane protein topogenesis in accordance with the positive inside rule. J Biol Chem 284(15):9637–9641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bogdanov M, Heacock PN, Dowhan W (2010a) Study of polytopic membrane protein topological organization as a function of membrane lipid composition. Methods Mol Biol 619:79–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bogdanov M, Heacock P, Guan Z, Dowhan W (2010b) Plasticity of lipid-protein interactions in the function and topogenesis of the membrane protein lactose permease from Escherichia coli. Proc Natl Acad Sci U S A 107(34):15057–15062

    Article  PubMed  PubMed Central  Google Scholar 

  • Bogdanov M, Dowhan W, Vitrac H (2014) Lipids and topological rules governing membrane protein assembly. Biochim Biophys Acta 1843(8):1475–1488

    Article  CAS  PubMed  Google Scholar 

  • Bowie JU (2006) Flip-flopping membrane proteins. Nat Struct Mol Biol 13(2):94–96

    Article  CAS  PubMed  Google Scholar 

  • Cheng H-T, London E (2009) Preparation and properties of asymmetric vesicles that mimic cell membranes effect upon lipid raft formation and transmembrane helix orientation. J Biol Chem 284(10):6079–6092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cymer F, von Heijne G, White SH (2015) Mechanisms of integral membrane protein insertion and folding. J Mol Biol 427(5):999–1022

    Article  CAS  PubMed  Google Scholar 

  • Dale H, Angevine CM, Krebs MP (2000) Ordered membrane insertion of an archaeal opsin in vivo. Proc Natl Acad Sci USA 97(14):7847–7852

    Article  CAS  PubMed  Google Scholar 

  • Dorobantu C, Macovei A, Lazar C, Dwek RA, Zitzmann N, Branza-Nichita N (2011) Cholesterol depletion of hepatoma cells impairs hepatitis B virus envelopment by altering the topology of the large envelope protein. J Virol 85(24):13373–13383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dowhan W, Bogdanov M (2009) Lipid-dependent membrane protein topogenesis. Annu Rev Biochem 78:515–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fleishman SJ, Unger VM, Ben-Tal N (2006) Transmembrane protein structures without X-rays. Trends Biochem Sci 31(2):106–113

    Article  CAS  PubMed  Google Scholar 

  • Gafvelin G, von Heijne G (1994) Topological “frustration” in multispanning E. coli inner membrane proteins. Cell 77(3):401–412

    Article  CAS  PubMed  Google Scholar 

  • Goder V, Bieri C, Spiess M (1999) Glycosylation can influence topogenesis of membrane proteins and reveals dynamic reorientation of nascent polypeptides within the translocon. J Cell Biol 147(2):257–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herate C, Ramdani G, Grant NJ, Marion S, Gasman S, Niedergang F, Benichou S, Bouchet J (2016) Phospholipid scramblase 1 modulates FcR-mediated phagocytosis in differentiated macrophages. PLoS One 11(1):e0145617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huggett J, Vaughan-Thomas A, Mason D (2000) The open reading frame of the Na+-dependent glutamate transporter GLAST-1 is expressed in bone and a splice variant of this molecule is expressed in bone and brain. FEBS Lett 485(1):13–18

    Article  CAS  PubMed  Google Scholar 

  • Islam ST, Lam JS (2013) Topological mapping methods for alpha-helical bacterial membrane proteins–an update and a guide. Microbiology 2(2):350–364

    CAS  Google Scholar 

  • Jakes KS, Kienker PK, Slatin SL, Finkelstein A (1998) Translocation of inserted foreign epitopes by a channelforming protein. Proc Natl Acad Sci USA 95(8):4321–4326

    Article  CAS  PubMed  Google Scholar 

  • Karlin A, Akabas MH (1998) Substituted-cysteine accessibility method. Methods Enzymol 293:123–145

    Article  CAS  PubMed  Google Scholar 

  • Kerr JE, Christie PJ (2010) Evidence for VirB4-mediated dislocation of membrane-integrated VirB2 pilin during biogenesis of the agrobacterium VirB/VirD4 type IV secretion system. J Bacteriol 192(19):4923–4934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kienker P, Qiu X-Q, Slatin S, Finkelstein A, Jakes K (1997) Transmembrane insertion of the colicin Ia hydrophobic hairpin. J Membrane Biol 157(1):27–37

    Article  CAS  Google Scholar 

  • Kim SJ, Hegde RS (2002) Cotranslational partitioning of nascent prion protein into multiple populations at the translocation channel. Mol Biol Cell 13(11):3775–3786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lambert C, Prange R (2003) Chaperone action in the posttranslational topological reorientation of the hepatitis B virus large envelope protein: implications for translocational regulation. Proc Natl Acad Sci 100(9):5199–5204

    Article  CAS  PubMed  Google Scholar 

  • Lee H, Kim H (2014) Membrane topology of transmembrane proteins: determinants and experimental tools. Biochem Biophys Res Commun 453(2):268–276

    Article  CAS  PubMed  Google Scholar 

  • Levy D (1996) Membrane proteins which exhibit multiple topological orientations. Essays Biochem 31:49–60

    PubMed  CAS  Google Scholar 

  • Liapakis G (2014) Obtaining structural and functional information for GPCRs using the substituted-cysteine accessibility method (SCAM). Curr Pharm Biotechnol 15(10):980–986

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Turnbull IR, Bragin A, Carveth K, Verkman AS, Skach WR (2000) Reorientation of aquaporin-1 topology during maturation in the endoplasmic reticulum. Mol Biol Cell 11(9):2973–2985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lundin M, Monne M, Widell A, Von Heijne G, Persson MA (2003) Topology of the membrane-associated hepatitis C virus protein NS4B. J Virol 77(9):5428–5438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McIlwain BC, Vandenberg RJ, Ryan RM (2015) Transport rates of a glutamate transporter homologue are influenced by the lipid bilayer. J Biol Chem 290(15):9780–9788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagamori S, Nishiyama K, Tokuda H (2002) Membrane topology inversion of SecG detected by labeling with a membrane-impermeable sulfhydryl reagent that causes a close association of SecG with SecA. J Biochem 132(4):629–634

    Article  CAS  PubMed  Google Scholar 

  • Nilsson I, von Heijne G (1990) Fine-tuning the topology of a polytopic membrane protein: role of positively and negatively charged amino acids. Cell 62(6):1135–1141

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama K-i, Suzuki T, Tokuda H (1996) Inversion of the membrane topology of SecG coupled with SecA-dependent preprotein translocation. Cell 85(1):71–81

    Article  CAS  PubMed  Google Scholar 

  • Rapp M, Granseth E, Seppälä S, Von Heijne G (2006) Identification and evolution of dual-topology membrane proteins. Nat Struct Mol Biol 13(2):112

    Article  CAS  PubMed  Google Scholar 

  • Rutz C, Rosenthal W, Schulein R (1999) A single negatively charged residue affects the orientation of a membrane protein in the inner membrane of Escherichia coli only when it is located adjacent to a transmembrane domain. J Biol Chem 274(47):33757–33763

    Article  CAS  PubMed  Google Scholar 

  • Schlebach JP, Sanders CR (2015) Influence of pathogenic mutations on the energetics of translocon-mediated bilayer integration of transmembrane helices. J Membr Biol 248(3):371–381

    Article  CAS  PubMed  Google Scholar 

  • Schuldiner S (2007) Controversy over EmrE structure. Science 317(5839):748–751

    Article  CAS  PubMed  Google Scholar 

  • Slatin SL, Nardi A, Jakes KS, Baty D, Duché D (2002) Translocation of a functional protein by a voltage-dependent ion channel. Proc Natl Acad Sci 99(3):1286–1291

    Article  CAS  PubMed  Google Scholar 

  • van Klompenburg W, Nilsson I, von Heijne G, de Kruijff B (1997) Anionic phospholipids are determinants of membrane protein topology. EMBO J 16(14):4261–4266

    Article  PubMed  PubMed Central  Google Scholar 

  • Vitrac H, Bogdanov M, Heacock P, Dowhan W (2011) Lipids and topological rules of membrane protein assembly balance between long- and short-range lipid-protein interactions. J Biol Chem 286:15182–15194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vitrac H, Bogdanov M, Dowhan W (2013) In vitro reconstitution of lipid-dependent dual topology and postassembly topological switching of a membrane protein. Proc Natl Acad Sci USA 110(23):9338–9343

    Article  PubMed  Google Scholar 

  • Vitrac H, MacLean DM, Jayaraman V, Bogdanov M, Dowhan W (2015) Dynamic membrane protein topological switching upon changes in phospholipid environment. Proc Natl Acad Sci 112(45):13874–13879

    Article  CAS  PubMed  Google Scholar 

  • Vitrac H, Dowhan W, Bogdanov M (2017a) Effects of mixed proximal and distal topogenic signals on the topological sensitivity of a membrane protein to the lipid environment. Biochim Biophys Acta 1859(7):1291–1300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vitrac H, MacLean DM, Karlstaedt A, Taegtmeyer H, Jayaraman V, Bogdanov M, Dowhan W (2017b) Dynamic lipid-dependent modulation of protein topology by post-translational phosphorylation. J Biol Chem 292(5):1613–1624

    Article  CAS  PubMed  Google Scholar 

  • von Heijne G (2006) Membrane-protein topology. Nat Rev Mol Cell Biol 7(12):909–918

    Article  CAS  Google Scholar 

  • Wang X, Bogdanov M, Dowhan W (2002) Topology of polytopic membrane protein subdomains is dictated by membrane phospholipid composition. EMBO J 21(21):5673–5681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wikstrom M, Xie J, Bogdanov M, Mileykovskaya E, Heacock P, Wieslander A, Dowhan W (2004) Monoglucosyldiacylglycerol, a foreign lipid, can substitute for phosphatidylethanolamine in essential membrane-associated functions in Escherichia coli. J Biol Chem 279(11):10484–10493

    Article  CAS  PubMed  Google Scholar 

  • Wikstrom M, Kelly AA, Georgiev A, Eriksson HM, Klement MR, Bogdanov M, Dowhan W, Wieslander A (2009) Lipid-engineered Escherichia coli membranes reveal critical lipid headgroup size for protein function. J Biol Chem 284(2):954–965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woodall NB, Yin Y, Bowie JU (2015) Dual-topology insertion of a dual-topology membrane protein. Nat Commun 6:8099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woodall NB, Hadley S, Yin Y, Bowie JU (2017) Complete topology inversion can be part of normal membrane protein biogenesis. Protein Sci 26(4):824–833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie J, Bogdanov M, Heacock P, Dowhan W (2006) Phosphatidylethanolamine and monoglucosyldiacylglycerol are interchangeable in supporting topogenesis and function of the polytopic membrane protein lactose permease. J Biol Chem 281(28):19172–19178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao X, Hong M (2006) Effects of anionic lipid and ion concentrations on the topology and segmental mobility of colicin Ia channel domain from solid-state NMR. Biochemistry 45(1):289–295

    Article  CAS  PubMed  Google Scholar 

  • Zakharov SD, Kotova EA, Antonenko YN, Cramer WA (2004) On the role of lipid in colicin pore formation. Biochim Biophys Acta 1666(1):239–249

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Bogdanov M, Pi J, Pittard AJ, Dowhan W (2003) Reversible topological organization within a polytopic membrane protein is governed by a change in membrane phospholipid composition. J Biol Chem 278(50):50128–50135

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Ren Y, Li S, Hayes JD (2014) Transcription factor Nrf1 is topologically repartitioned across membranes to enable target gene transactivation through its acidic glucose-responsive domains. PLoS One 9(4):e93458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao YJ, Lam CMC, Lee HC (2012) The membrane-bound enzyme CD38 exists in two opposing orientations. Sci Signal 5(241):ra67

    Article  CAS  PubMed  Google Scholar 

  • Zhao YJ, Zhu WJ, Wang XW, Zhang L-H, Lee HC (2015) Determinants of the membrane orientation of a calcium signaling enzyme CD38. Biochim Biophys Acta Mol Cell Res 1853(9):2095–2103

    Article  CAS  Google Scholar 

  • Zhu Q, Casey JR (2007) Topology of transmembrane proteins by scanning cysteine accessibility mutagenesis methodology. Methods 41(4):439–450

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail Bogdanov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Bogdanov, M., Vitrac, H., Dowhan, W. (2018). Flip-Flopping Membrane Proteins: How the Charge Balance Rule Governs Dynamic Membrane Protein Topology. In: Geiger, O. (eds) Biogenesis of Fatty Acids, Lipids and Membranes. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-43676-0_62-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43676-0_62-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43676-0

  • Online ISBN: 978-3-319-43676-0

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics