Biogenesis of Medium-Chain-Length Polyhydroxyalkanoates

  • Ryan Kniewel
  • Olga Revelles Lopez
  • M. Auxiliadora Prieto
Living reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)

Abstract

Medium-chain-length polyhydroxyalkanoates (mcl-PHA) are biotechnologically useful natural products found in many bacteria. This biopolymer functions as a carbon and energy storage reservoir in cells but has physical and mechanical properties that make it a promising bioplastic with applications ranging from adhesives to medical implants. Therefore, there is much interest in understanding the biology of mcl-PHA synthesis and metabolism. Increased knowledge of PHA biology serves as a foundation for the bioengineering of PHA and its eventual use as a biologically derived product. This chapter covers the state of knowledge on mcl-PHA, including its synthesis and its central role in cellular metabolism. Moreover, this chapter discusses methods for bioengineering mcl-PHA production in bacteria as well as synthetic biology methods for its study and production in the natural mcl-PHA producer, Pseudomonas putida.

Keywords

Synthetic Biology Pseudomonas Putida Cupriavidus Necator Synthetic Biology Tool Multiplex Automate Genomic Engineering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Research on polymer biotechnology in the laboratory of M. Auxiliadora Prieto is supported by funding from the European Union’s Horizon 2020 research and innovation program under grant agreements number 633962 and 679050. We also acknowledge support from the Community of Madrid (P2013/MIT2807) and the Spanish Ministry of Economy (BIO201344878R, BIO2014-61515-EXP).

References

  1. Alper H, Stephanopoulos G (2007) Global transcription machinery engineering: a new approach for improving cellular phenotype. Metab Eng 9:258–267. doi:10.1016/j.ymben.2006.12.002PubMedCrossRefGoogle Scholar
  2. Antonio RV, Steinbüchel A, Rehm BH (2000) Analysis of in vivo substrate specificity of the PHA synthase from Ralstonia eutropha: formation of novel copolyesters in recombinant Escherichia coli. FEMS Microbiol Lett 182:111–117PubMedCrossRefGoogle Scholar
  3. Aparicio T, Jensen SI, Nielsen AT et al (2016) The Ssr protein (T1E_1405) from Pseudomonas putida DOT-T1E enables oligonucleotide-based recombineering in platform strain P. putida EM42. Biotechnol J 11(10):1309–1319. doi:10.1002/biot.201600317PubMedCrossRefGoogle Scholar
  4. Arias S, Bassas-Galia M, Molinari G, Timmis KN (2013) Tight coupling of polymerization and depolymerization of polyhydroxyalkanoates ensures efficient management of carbon resources in Pseudomonas putida. Microb Biotechnol 6:551–563. doi:10.1111/1751-7915.12040PubMedPubMedCentralCrossRefGoogle Scholar
  5. Ayub ND, Tribelli PM, López NI (2009) Polyhydroxyalkanoates are essential for maintenance of redox state in the Antarctic bacterium Pseudomonas sp. 14-3 during low temperature adaptation. Extrem Life Extreme Cond 13:59–66. doi:10.1007/s00792-008-0197-zCrossRefGoogle Scholar
  6. Beeby M, Cho M, Stubbe J, Jensen GJ (2012) Growth and localization of polyhydroxybutyrate granules in Ralstonia eutropha. J Bacteriol 194:1092–1099. doi:10.1128/JB.06125-11PubMedPubMedCentralCrossRefGoogle Scholar
  7. Brandl H, Knee EJ, Fuller RC et al (1989) Ability of the phototrophic bacterium Rhodospirillum rubrum to produce various poly (beta-hydroxyalkanoates): potential sources for biodegradable polyesters. Int J Biol Macromol 11:49–55PubMedCrossRefGoogle Scholar
  8. Bresan S, Sznajder A, Hauf W et al (2016) Polyhydroxyalkanoate (PHA) granules have no phospholipids. Sci Rep 6:26612. doi:10.1038/srep26612PubMedPubMedCentralCrossRefGoogle Scholar
  9. Budde CF, Mahan AE, Lu J et al (2010) Roles of multiple acetoacetyl coenzyme A reductases in polyhydroxybutyrate Biosynthesis in Ralstonia eutropha H16. J Bacteriol 192:5319–5328. doi:10.1128/JB.00207-10PubMedPubMedCentralCrossRefGoogle Scholar
  10. Carr PA, Wang HH, Sterling B et al (2012) Enhanced multiplex genome engineering through co-operative oligonucleotide co-selection. Nucleic Acids Res 40:e132. doi:10.1093/nar/gks455PubMedPubMedCentralCrossRefGoogle Scholar
  11. Chen G-Q, Hajnal I (2015) The “PHAome.”. Trends Biotechnol 33:559–564. doi:10.1016/j.tibtech.2015.07.006PubMedCrossRefGoogle Scholar
  12. Chen G-Q, Hajnal I, Wu H et al (2015) Engineering biosynthesis mechanisms for diversifying polyhydroxyalkanoates. Trends Biotechnol 33:565–574. doi:10.1016/j.tibtech.2015.07.007PubMedCrossRefGoogle Scholar
  13. Choi K-H, Schweizer HP (2006) mini-Tn7 insertion in bacteria with single attTn7 sites: example Pseudomonas aeruginosa. Nat Protoc 1:153–161. doi:10.1038/nprot.2006.24PubMedCrossRefGoogle Scholar
  14. de Eugenio LI, Escapa IF, Morales V et al (2010a) The turnover of medium-chain-length polyhydroxyalkanoates in Pseudomonas putida KT2442 and the fundamental role of PhaZ depolymerase for the metabolic balance. Environ Microbiol 12:207–221. doi:10.1111/j.1462-2920.2009.02061.xPubMedCrossRefGoogle Scholar
  15. de Eugenio LI, Galán B, Escapa IF et al (2010b) The PhaD regulator controls the simultaneous expression of the pha genes involved in polyhydroxyalkanoate metabolism and turnover in Pseudomonas putida KT2442. Environ Microbiol 12:1591–1603. doi:10.1111/j.1462-2920.2010.02199.xPubMedCrossRefGoogle Scholar
  16. de las Heras A, Carreño CA, de Lorenzo V (2008) Stable implantation of orthogonal sensor circuits in Gram-negative bacteria for environmental release. Environ Microbiol 10:3305–3316. doi:10.1111/j.1462-2920.2008.01722.xPubMedCrossRefGoogle Scholar
  17. de Lorenzo V, Timmis KN (1994) Analysis and construction of stable phenotypes in gram-negative bacteria with Tn5- and Tn10-derived minitransposons. Methods Enzymol 235:386–405PubMedCrossRefGoogle Scholar
  18. Dennis D, Liebig C, Holley T et al (2003) Preliminary analysis of polyhydroxyalkanoate inclusions using atomic force microscopy. FEMS Microbiol Lett 226:113–119PubMedCrossRefGoogle Scholar
  19. Dennis D, Sein V, Martinez E, Augustine B (2008) PhaP is involved in the formation of a network on the surface of polyhydroxyalkanoate inclusions in Cupriavidus necator H16. J Bacteriol 190:555–563. doi:10.1128/JB.01668-07PubMedCrossRefGoogle Scholar
  20. Dinjaski N, Prieto MA (2013) Swapping of phasin modules to optimize the in vivo immobilization of proteins to medium-chain-length polyhydroxyalkanoate granules in Pseudomonas putida. Biomacromolecules 14:3285–3293. doi:10.1021/bm4008937PubMedCrossRefGoogle Scholar
  21. Doi Y, Kitamura S, Abe H (1995) Microbial synthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Macromolecules 28:4822–4828. doi:10.1021/ma00118a007CrossRefGoogle Scholar
  22. Eggers J, Steinbüchel A (2014) Impact of Ralstonia eutropha’s poly(3-Hydroxybutyrate) (PHB) depolymerases and phasins on PHB storage in recombinant Escherichia coli. Appl Environ Microbiol 80:7702–7709. doi:10.1128/AEM.02666-14PubMedPubMedCentralCrossRefGoogle Scholar
  23. Escapa IF, Morales V, Martino VP et al (2011) Disruption of β-oxidation pathway in Pseudomonas putida KT2442 to produce new functionalized PHAs with thioester groups. Appl Microbiol Biotechnol 89:1583–1598. doi:10.1007/s00253-011-3099-4PubMedCrossRefGoogle Scholar
  24. Escapa IF, García JL, Bühler B et al (2012) The polyhydroxyalkanoate metabolism controls carbon and energy spillage in Pseudomonas putida. Environ Microbiol 14:1049–1063. doi:10.1111/j.1462-2920.2011.02684.xPubMedCrossRefGoogle Scholar
  25. Escapa IF, del Cerro C, García JL, Prieto MA (2013) The role of GlpR repressor in Pseudomonas putida KT2440 growth and PHA production from glycerol. Environ Microbiol 15:93–110. doi:10.1111/j.1462-2920.2012.02790.xPubMedCrossRefGoogle Scholar
  26. Fonseca P, de la Peña F, Prieto MA (2014) A role for the regulator PsrA in the polyhydroxyalkanoate metabolism of Pseudomonas putida KT2440. Int J Biol Macromol 71:14–20. doi:10.1016/j.ijbiomac.2014.04.014PubMedCrossRefGoogle Scholar
  27. Fukui T, Doi Y (1997) Cloning and analysis of the poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) biosynthesis genes of Aeromonas caviae. J Bacteriol 179:4821–4830PubMedPubMedCentralCrossRefGoogle Scholar
  28. Fuller RC, O’Donnell JP, Saulnier J et al (1992) The supramolecular architecture of the polyhydroxyalkanoate inclusions in Pseudomonas oleovorans. FEMS Microbiol Rev 103:279–288. doi:10.1111/j.1574-6968.1992.tb05849.xCrossRefGoogle Scholar
  29. Galán B, Dinjaski N, Maestro B et al (2011) Nucleoid-associated PhaF phasin drives intracellular location and segregation of polyhydroxyalkanoate granules in Pseudomonas putida KT2442. Mol Microbiol 79:402–418. doi:10.1111/j.1365-2958.2010.07450.xPubMedCrossRefGoogle Scholar
  30. Gorenflo V, Schmack G, Vogel R, Steinbüchel A (2001) Development of a process for the biotechnological large-scale production of 4-hydroxyvalerate-containing polyesters and characterization of their physical and mechanical properties. Biomacromolecules 2:45–57PubMedCrossRefGoogle Scholar
  31. Griebel R, Smith Z, Merrick JM (1968) Metabolism of poly-beta-hydroxybutyrate. I. Purification, composition, and properties of native poly-beta-hydroxybutyrate granules from Bacillus megaterium. Biochemistry (Mosc) 7:3676–3681CrossRefGoogle Scholar
  32. Guzik MW, Kenny ST, Duane GF et al (2014) Conversion of post consumer polyethylene to the biodegradable polymer polyhydroxyalkanoate. Appl Microbiol Biotechnol 98:4223–4232. doi:10.1007/s00253-013-5489-2PubMedCrossRefGoogle Scholar
  33. Han J, Hou J, Liu H et al (2010) Wide distribution among halophilic archaea of a novel polyhydroxyalkanoate synthase subtype with homology to bacterial type III synthases. Appl Environ Microbiol 76:7811–7819. doi:10.1128/AEM.01117-10PubMedPubMedCentralCrossRefGoogle Scholar
  34. Hori K, Kaneko M, Tanji Y et al (2002) Construction of self-disruptive Bacillus megaterium in response to substrate exhaustion for polyhydroxybutyrate production. Appl Microbiol Biotechnol 59:211–216. doi:10.1007/s00253-002-0986-8PubMedCrossRefGoogle Scholar
  35. Hosokawa K, Park N-H, Inaoka T et al (2002) Streptomycin-resistant (rpsL) or rifampicin-resistant (rpoB) mutation in Pseudomonas putida KH146-2 confers enhanced tolerance to organic chemicals. Environ Microbiol 4:703–712PubMedCrossRefGoogle Scholar
  36. Huijberts GN, Eggink G, de Waard P et al (1992) Pseudomonas putida KT2442 cultivated on glucose accumulates poly(3-hydroxyalkanoates) consisting of saturated and unsaturated monomers. Appl Environ Microbiol 58:536–544PubMedPubMedCentralGoogle Scholar
  37. Huisman GW, de Leeuw O, Eggink G, Witholt B (1989) Synthesis of poly-3-hydroxyalkanoates is a common feature of fluorescent pseudomonads. Appl Environ Microbiol 55:1949–1954PubMedPubMedCentralGoogle Scholar
  38. Huisman GW, Wonink E, de Koning G et al (1992) Synthesis of poly(3-hydroxyalkanoates) by mutant and recombinant Pseudomonas. Appl Microbiol Biotechnol 38:1–5. doi:10.1007/BF00169409CrossRefGoogle Scholar
  39. Ibarra RU, Edwards JS, Palsson BO (2002) Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth. Nature 420:186–189. doi:10.1038/nature01149PubMedCrossRefGoogle Scholar
  40. Jambunathan P, Zhang K (2016) Engineered biosynthesis of biodegradable polymers. J Ind Microbiol Biotechnol 43:1037–1058. doi:10.1007/s10295-016-1785-zPubMedCrossRefGoogle Scholar
  41. Jendrossek D (2009) Polyhydroxyalkanoate granules are complex subcellular organelles (carbonosomes). J Bacteriol 191:3195–3202. doi:10.1128/JB.01723-08PubMedPubMedCentralCrossRefGoogle Scholar
  42. Jendrossek D, Pfeiffer D (2014) New insights in the formation of polyhydroxyalkanoate granules (carbonosomes) and novel functions of poly(3-hydroxybutyrate). Environ Microbiol 16:2357–2373. doi:10.1111/1462-2920.12356PubMedCrossRefGoogle Scholar
  43. Jiang X, Sun Z, Marchessault RH et al (2012) Biosynthesis and properties of medium-chain-length polyhydroxyalkanoates with enriched content of the dominant monomer. Biomacromolecules 13:2926–2932. doi:10.1021/bm3009507PubMedCrossRefGoogle Scholar
  44. Jiang X-R, Wang H, Shen R, Chen G-Q (2015) Engineering the bacterial shapes for enhanced inclusion bodies accumulation. Metab Eng 29:227–237. doi:10.1016/j.ymben.2015.03.017PubMedCrossRefGoogle Scholar
  45. Jin H, Nikolau BJ (2012) Role of genetic redundancy in polyhydroxyalkanoate (PHA) polymerases in PHA biosynthesis in Rhodospirillum rubrum. J Bacteriol 194:5522–5529. doi:10.1128/JB.01111-12PubMedPubMedCentralCrossRefGoogle Scholar
  46. Kadoya R, Matsumoto K, Ooi T, Taguchi S (2015) MtgA deletion-triggered cell enlargement of Escherichia coli for enhanced intracellular polyester accumulation. PLoS One 10(6):e0125163. doi:10.1371/journal.pone.0125163PubMedPubMedCentralCrossRefGoogle Scholar
  47. Kenny ST, Runic JN, Kaminsky W et al (2008) Up-cycling of PET (polyethylene terephthalate) to the biodegradable plastic PHA (polyhydroxyalkanoate). Environ Sci Technol 42:7696–7701PubMedCrossRefGoogle Scholar
  48. Kenny ST, Runic JN, Kaminsky W et al (2012) Development of a bioprocess to convert PET derived terephthalic acid and biodiesel derived glycerol to medium chain length polyhydroxyalkanoate. Appl Microbiol Biotechnol 95:623–633. doi:10.1007/s00253-012-4058-4PubMedCrossRefGoogle Scholar
  49. Kim YB, Lenz RW (2001) Polyesters from microorganisms. Adv Biochem Eng Biotechnol 71:51–79PubMedGoogle Scholar
  50. Klinke S, Ren Q, Witholt B, Kessler B (1999) Production of medium-chain-length poly(3-hydroxyalkanoates) from gluconate by recombinant Escherichia coli. Appl Environ Microbiol 65:540–548PubMedPubMedCentralGoogle Scholar
  51. Klinke S, de Roo G, Witholt B, Kessler B (2000) Role of phaD in accumulation of medium-chain-length poly(3-Hydroxyalkanoates) in Pseudomonas oleovorans. Appl Environ Microbiol 66:3705–3710PubMedPubMedCentralCrossRefGoogle Scholar
  52. Kuchta K, Chi L, Fuchs H et al (2007) Studies on the influence of phasins on accumulation and degradation of PHB and nanostructure of PHB granules in ralstonia eutropha H16. Biomacromolecules 8:657–662. doi:10.1021/bm060912ePubMedCrossRefGoogle Scholar
  53. La Rosa R, de la Peña F, Prieto MA, Rojo F (2014) The Crc protein inhibits the production of polyhydroxyalkanoates in Pseudomonas putida under balanced carbon/nitrogen growth conditions. Environ Microbiol 16:278–290. doi:10.1111/1462-2920.12303PubMedCrossRefGoogle Scholar
  54. Lageveen RG, Huisman GW, Preusting H et al (1988) Formation of polyesters by Pseudomonas oleovorans: effect of substrates on formation and composition of poly-(R)-3-hydroxyalkanoates and poly-(R)-3-hydroxyalkenoates. Appl Environ Microbiol 54:2924–2932PubMedPubMedCentralGoogle Scholar
  55. Lambertsen L, Sternberg C, Molin S (2004) Mini-Tn7 transposons for site-specific tagging of bacteria with fluorescent proteins. Environ Microbiol 6:726–732. doi:10.1111/j.1462-2920.2004.00605.xPubMedCrossRefGoogle Scholar
  56. Langenbach S, Rehm BH, Steinbüchel A (1997) Functional expression of the PHA synthase gene phaC1 from Pseudomonas aeruginosa in Escherichia coli results in poly(3-hydroxyalkanoate) synthesis. FEMS Microbiol Lett 150:303–309PubMedCrossRefGoogle Scholar
  57. Leprince A, de Lorenzo V, Völler P et al (2012) Random and cyclical deletion of large DNA segments in the genome of Pseudomonas putida. Environ Microbiol 14:1444–1453. doi:10.1111/j.1462-2920.2012.02730.xPubMedPubMedCentralCrossRefGoogle Scholar
  58. Liebergesell M, Steinbüchel A (1992) Cloning and nucleotide sequences of genes relevant for biosynthesis of poly(3-hydroxybutyric acid) in Chromatium vinosum strain D. Eur J Biochem FEBS 209:135–150CrossRefGoogle Scholar
  59. Liebergesell M, Rahalkar S, Steinbüchel A (2000) Analysis of the Thiocapsa pfennigii polyhydroxyalkanoate synthase: subcloning, molecular characterization and generation of hybrid synthases with the corresponding Chromatium vinosum enzyme. Appl Microbiol Biotechnol 54:186–194PubMedCrossRefGoogle Scholar
  60. Liu Q, Luo G, Zhou XR, Chen G-Q (2011) Biosynthesis of poly(3-hydroxydecanoate) and 3-hydroxydodecanoate dominating polyhydroxyalkanoates by β-oxidation pathway inhibited Pseudomonas putida. Metab Eng 13:11–17. doi:10.1016/j.ymben.2010.10.004PubMedCrossRefGoogle Scholar
  61. Loeschcke A, Thies S (2015) Pseudomonas putida—a versatile host for the production of natural products. Appl Microbiol Biotechnol 99:6197–6214. doi:10.1007/s00253-015-6745-4PubMedPubMedCentralCrossRefGoogle Scholar
  62. Lu J, Tappel RC, Nomura CT (2009) Mini-review: biosynthesis of poly(hydroxyalkanoates). Polym Rev 49:226–248. doi:10.1080/15583720903048243CrossRefGoogle Scholar
  63. Luo X, Yang Y, Ling W et al (2016) Pseudomonas putida KT2440 markerless gene deletion using a combination of λ Red recombineering and Cre/loxP site-specific recombination. FEMS Microbiol Lett. doi:10.1093/femsle/fnw014Google Scholar
  64. Lv L, Ren Y-L, Chen J-C et al (2015) Application of CRISPRi for prokaryotic metabolic engineering involving multiple genes, a case study: Controllable P(3HB-co-4HB) biosynthesis. Metab Eng 29:160–168. doi:10.1016/j.ymben.2015.03.013PubMedCrossRefGoogle Scholar
  65. Madison LL, Huisman GW (1999) Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol Rev 63:21–53PubMedPubMedCentralGoogle Scholar
  66. Maestro B, Galán B, Alfonso C et al (2013) A new family of intrinsically disordered proteins: structural characterization of the major phasin PhaF from Pseudomonas putida KT2440. PLoS One 8:e56904. doi:10.1371/journal.pone.0056904PubMedPubMedCentralCrossRefGoogle Scholar
  67. Martínez V, García P, García JL, Prieto MA (2011) Controlled autolysis facilitates the polyhydroxyalkanoate recovery in Pseudomonas putida KT2440. Microb Biotechnol 4:533–547. doi:10.1111/j.1751-7915.2011.00257.xPubMedPubMedCentralCrossRefGoogle Scholar
  68. Martínez V, Jurkevitch E, García JL, Prieto MA (2013) Reward for Bdellovibrio bacteriovorus for preying on a polyhydroxyalkanoate producer. Environ Microbiol 15:1204–1215. doi:10.1111/1462-2920.12047PubMedCrossRefGoogle Scholar
  69. Martínez V, Herencias C, Jurkevitch E, Prieto MA (2016) Engineering a predatory bacterium as a proficient killer agent for intracellular bio-products recovery: the case of the polyhydroxyalkanoates. Sci Rep 6:24381. doi:10.1038/srep24381PubMedPubMedCentralCrossRefGoogle Scholar
  70. Martínez-García E, de Lorenzo V (2011) Engineering multiple genomic deletions in Gram-negative bacteria: analysis of the multi-resistant antibiotic profile of Pseudomonas putida KT2440. Environ Microbiol 13:2702–2716. doi:10.1111/j.1462-2920.2011.02538.xPubMedCrossRefGoogle Scholar
  71. Martínez-García E, Aparicio T, de Lorenzo V, Nikel PI (2014a) New transposon tools tailored for metabolic engineering of Gram-negative microbial cell factories. Front Bioeng Biotechnol. doi:10.3389/fbioe.2014.00046PubMedPubMedCentralGoogle Scholar
  72. Martínez-García E, Nikel PI, Aparicio T, de Lorenzo V (2014b) Pseudomonas 2.0: genetic upgrading of P. putida KT2440 as an enhanced host for heterologous gene expression. Microb Cell Factories 13:159. doi:10.1186/s12934–014–0159-3CrossRefGoogle Scholar
  73. Matsusaki H, Manji S, Taguchi K et al (1998) Cloning and molecular analysis of the poly(3-hydroxybutyrate) and Poly(3-hydroxybutyrate-co-3-hydroxyalkanoate) biosynthesis genes in Pseudomonas sp. strain 61-3. J Bacteriol 180:6459–6467PubMedPubMedCentralGoogle Scholar
  74. Mayer F, Hoppert M (1997) Determination of the thickness of the boundary layer surrounding bacterial PHA inclusion bodies, and implications for models describing the molecular architecture of this layer. J Basic Microbiol 37:45–52. doi:10.1002/jobm.3620370108CrossRefGoogle Scholar
  75. McCool GJ, Cannon MC (2001) PhaC and PhaR are required for polyhydroxyalkanoic acid synthase activity in Bacillus megaterium. J Bacteriol 183:4235–4243. doi:10.1128/JB.183.14.4235-4243.2001PubMedPubMedCentralCrossRefGoogle Scholar
  76. Moldes C, García P, García JL, Prieto MA (2004) In vivo immobilization of fusion proteins on bioplastics by the novel tag BioF. Appl Environ Microbiol 70:3205–3212. doi:10.1128/AEM.70.6.3205-3212.2004PubMedPubMedCentralCrossRefGoogle Scholar
  77. Muhr A, Rechberger EM, Salerno A et al (2013) Novel description of mcl-PHA biosynthesis by Pseudomonas chlororaphis from animal-derived waste. J Biotechnol 165:45–51. doi:10.1016/j.jbiotec.2013.02.003PubMedCrossRefGoogle Scholar
  78. Neumann L, Spinozzi F, Sinibaldi R et al (2008) Binding of the major phasin, PhaP1, from Ralstonia eutropha H16 to poly(3-hydroxybutyrate) granules. J Bacteriol 190:2911–2919. doi:10.1128/JB.01486-07PubMedPubMedCentralCrossRefGoogle Scholar
  79. Nikel PI, Martínez-García E, de Lorenzo V (2014) Biotechnological domestication of pseudomonads using synthetic biology. Nat Rev Microbiol 12:368–379. doi:10.1038/nrmicro3253PubMedCrossRefGoogle Scholar
  80. Nikodinovic-Runic J, Guzik M, Kenny ST et al (2013) Carbon-rich wastes as feedstocks for biodegradable polymer (polyhydroxyalkanoate) production using bacteria. Adv Appl Microbiol 84:139–200. doi:10.1016/B978-0-12-407673-0.00004-7PubMedCrossRefGoogle Scholar
  81. Nogales J, Palsson BØ, Thiele I (2008) A genome-scale metabolic reconstruction of Pseudomonas putida KT2440: iJN746 as a cell factory. BMC Syst Biol 2:79. doi:10.1186/1752-0509-2-79PubMedPubMedCentralCrossRefGoogle Scholar
  82. Nomura CT, Taguchi S (2007) PHA synthase engineering toward superbiocatalysts for custom-made biopolymers. Appl Microbiol Biotechnol 73:969–979. doi:10.1007/s00253-006-0566-4PubMedCrossRefGoogle Scholar
  83. Nyerges Á, Csörgő B, Nagy I et al (2016) A highly precise and portable genome engineering method allows comparison of mutational effects across bacterial species. Proc Natl Acad Sci U S A 113:2502–2507. doi:10.1073/pnas.1520040113PubMedPubMedCentralCrossRefGoogle Scholar
  84. Obruca S, Sedlacek P, Mravec F et al (2016) Evaluation of 3-hydroxybutyrate as an enzyme-protective agent against heating and oxidative damage and its potential role in stress response of poly(3-hydroxybutyrate) accumulating cells. Appl Microbiol Biotechnol 100:1365–1376. doi:10.1007/s00253-015-7162-4PubMedCrossRefGoogle Scholar
  85. Olivera ER, Carnicero D, Jodra R et al (2001) Genetically engineered Pseudomonas: a factory of new bioplastics with broad applications. Environ Microbiol 3:612–618PubMedCrossRefGoogle Scholar
  86. Park SJ, Lee SY (2004) Biosynthesis of poly(3-hydroxybutyrate- co-3-hydroxyalkanoates) by metabolically engineered Escherichia coli strains. Appl Biochem Biotechnol 113–116:335–346PubMedCrossRefGoogle Scholar
  87. Peplinski K, Ehrenreich A, Döring C et al (2010) Genome-wide transcriptome analyses of the “Knallgas” bacterium Ralstonia eutropha H16 with regard to polyhydroxyalkanoate metabolism. Microbiol Read Engl 156:2136–2152. doi:10.1099/mic.0.038380-0CrossRefGoogle Scholar
  88. Pfeiffer D, Jendrossek D (2011) Interaction between poly(3-hydroxybutyrate) granule-associated proteins as revealed by two-hybrid analysis and identification of a new phasin in Ralstonia eutropha H16. Microbiol Read Engl 157:2795–2807. doi:10.1099/mic.0.051508-0CrossRefGoogle Scholar
  89. Pfeiffer D, Jendrossek D (2012) Localization of poly(3-hydroxybutyrate) (PHB) granule-associated proteins during PHB granule formation and identification of two new phasins, PhaP6 and PhaP7, in Ralstonia eutropha H16. J Bacteriol 194:5909–5921. doi:10.1128/JB.00779-12PubMedPubMedCentralCrossRefGoogle Scholar
  90. Pfeiffer D, Wahl A, Jendrossek D (2011) Identification of a multifunctional protein, PhaM, that determines number, surface to volume ratio, subcellular localization and distribution to daughter cells of poly(3-hydroxybutyrate), PHB, granules in Ralstonia eutropha H16. Mol Microbiol 82:936–951. doi:10.1111/j.1365-2958.2011.07869.xPubMedCrossRefGoogle Scholar
  91. Phithakrotchanakoon C, Champreda V, Aiba S et al (2013) Engineered Escherichia coli for short-chain-length medium-chain-length polyhydroxyalkanoate copolymer biosynthesis from glycerol and dodecanoate. Biosci Biotechnol Biochem 77:1262–1268. doi:10.1271/bbb.130073PubMedCrossRefGoogle Scholar
  92. Poblete-Castro I, Binger D, Rodrigues A et al (2013) In-silico-driven metabolic engineering of Pseudomonas putida for enhanced production of poly-hydroxyalkanoates. Metab Eng 15:113–123. doi:10.1016/j.ymben.2012.10.004PubMedCrossRefGoogle Scholar
  93. Poblete-Castro I, Rodriguez AL, Lam CMC, Kessler W (2014) Improved production of medium-chain-length polyhydroxyalkanoates in glucose-based fed-batch cultivations of metabolically engineered Pseudomonas putida strains. J Microbiol Biotechnol 24:59–69PubMedCrossRefGoogle Scholar
  94. Pötter M, Müller H, Reinecke F et al (2004) The complex structure of polyhydroxybutyrate (PHB) granules: four orthologous and paralogous phasins occur in Ralstonia eutropha. Microbiol Read Engl 150:2301–2311. doi:10.1099/mic.0.26970-0CrossRefGoogle Scholar
  95. Prieto MA, Bühler B, Jung K et al (1999) PhaF, a polyhydroxyalkanoate-granule-associated protein of Pseudomonas oleovorans GPo1 involved in the regulatory expression system for pha genes. J Bacteriol 181:858–868PubMedPubMedCentralGoogle Scholar
  96. Prieto A, Escapa IF, Martínez V et al (2016) A holistic view of polyhydroxyalkanoate metabolism in Pseudomonas putida: polyhydroxyalkanoate metabolism in Pseudomonas putida. Environ Microbiol 18:341–357. doi:10.1111/1462-2920.12760PubMedCrossRefGoogle Scholar
  97. Puchałka J, Oberhardt MA, Godinho M et al (2008) Genome-scale reconstruction and analysis of the Pseudomonas putida KT2440 metabolic network facilitates applications in biotechnology. PLoS Comput Biol 4(10):e1000210. doi:10.1371/journal.pcbi.1000210PubMedPubMedCentralCrossRefGoogle Scholar
  98. Qi Q, Rehm BH, Steinbüchel A (1997) Synthesis of poly(3-hydroxyalkanoates) in Escherichia coli expressing the PHA synthase gene phaC2 from Pseudomonas aeruginosa: comparison of PhaC1 and PhaC2. FEMS Microbiol Lett 157:155–162. doi:10.1111/j.1574-6968.1997.tb12767.xPubMedCrossRefGoogle Scholar
  99. Qi Q, Steinbüchel A, Rehm BH (2000) In vitro synthesis of poly(3-hydroxydecanoate): purification and enzymatic characterization of type II polyhydroxyalkanoate synthases PhaC1 and PhaC2 from Pseudomonas aeruginosa. Appl Microbiol Biotechnol 54:37–43PubMedCrossRefGoogle Scholar
  100. Rehm BH, Krüger N, Steinbüchel A (1998) A new metabolic link between fatty acid de novo synthesis and polyhydroxyalkanoic acid synthesis. The PHAG gene from Pseudomonas putida KT2440 encodes a 3-hydroxyacyl-acyl carrier protein-coenzyme a transferase. J Biol Chem 273:24044–24051PubMedCrossRefGoogle Scholar
  101. Reinecke F, Steinbüchel A (2009) Ralstonia eutropha strain H16 as model organism for PHA metabolism and for biotechnological production of technically interesting biopolymers. J Mol Microbiol Biotechnol 16:91–108. doi:10.1159/000142897PubMedCrossRefGoogle Scholar
  102. Ren Q, Sierro N, Kellerhals M et al (2000) Properties of engineered poly-3-hydroxyalkanoates produced in recombinant Escherichia coli strains. Appl Environ Microbiol 66:1311–1320PubMedPubMedCentralCrossRefGoogle Scholar
  103. Ren Q, de Roo G, Ruth K et al (2009a) Simultaneous accumulation and degradation of polyhydroxyalkanoates: futile cycle or clever regulation? Biomacromolecules 10:916–922. doi:10.1021/bm801431cPubMedCrossRefGoogle Scholar
  104. Ren Q, de Roo G, Witholt B et al (2009b) Overexpression and characterization of medium-chain-length polyhydroxyalkanoate granule bound polymerases from Pseudomonas putida GPo1. Microb Cell Factories 8:60. doi:10.1186/1475-2859-8-60CrossRefGoogle Scholar
  105. Ruiz JA, López NI, Méndez BS (2004) rpoS gene expression in carbon-starved cultures of the Polyhydroxyalkanoate-accumulating species Pseudomonas oleovorans. Curr Microbiol 48:396–400. doi:10.1007/s00284-003-4183-5PubMedCrossRefGoogle Scholar
  106. Ruth K, de Roo G, Egli T, Ren Q (2008) Identification of two acyl-CoA synthetases from Pseudomonas putida GPo1: one is located at the surface of polyhydroxyalkanoates granules. Biomacromolecules 9:1652–1659. doi:10.1021/bm8001655PubMedCrossRefGoogle Scholar
  107. Saito Y, Nakamura S, Hiramitsu M, Doi Y (1996) Microbial synthesis and properties of poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Polym Int 39:169–174. doi:10.1002/(SICI)1097-0126(199603)39:3<169::AID-PI453>3.0.CO;2-ZCrossRefGoogle Scholar
  108. Sandoval A, Arias-Barrau E, Arcos M et al (2007) Genetic and ultrastructural analysis of different mutants of Pseudomonas putida affected in the poly-3-hydroxy-n-alkanoate gene cluster. Environ Microbiol 9:737–751. doi:10.1111/j.1462-2920.2006.01196.xPubMedCrossRefGoogle Scholar
  109. Schlegel HG, Gottschalk G (1962) Poly-β-hydroxybuttersäure, ihre verbreitung, funktion und biosynthese. Angew Chem 74:342–347. doi:10.1002/ange.19620741003CrossRefGoogle Scholar
  110. Schubert P, Steinbüchel A, Schlegel HG (1988) Cloning of the Alcaligenes eutrophus genes for synthesis of poly-beta-hydroxybutyric acid (PHB) and synthesis of PHB in Escherichia coli. J Bacteriol 170:5837–5847PubMedPubMedCentralCrossRefGoogle Scholar
  111. Schweizer HP (1992) Allelic exchange in Pseudomonas aeruginosa using novel ColE1-type vectors and a family of cassettes containing a portable oriT and the counter-selectable Bacillus subtilis sacB marker. Mol Microbiol 6:1195–1204PubMedCrossRefGoogle Scholar
  112. Shamala TR, Chandrashekar A, Vijayendra SVN, Kshama L (2003) Identification of polyhydroxyalkanoate (PHA)-producing Bacillus spp. using the polymerase chain reaction (PCR). J Appl Microbiol 94:369–374PubMedCrossRefGoogle Scholar
  113. Singh M, Patel SK, Kalia VC (2009) Bacillus subtilis as potential producer for polyhydroxyalkanoates. Microb Cell Factories 8:38. doi:10.1186/1475-2859-8-38CrossRefGoogle Scholar
  114. Slater SC, Voige WH, Dennis DE (1988) Cloning and expression in Escherichia coli of the Alcaligenes eutrophus H16 poly-beta-hydroxybutyrate biosynthetic pathway. J Bacteriol 170:4431–4436PubMedPubMedCentralCrossRefGoogle Scholar
  115. Sohn SB, Kim TY, Park JM, Lee SY (2010) In silico genome-scale metabolic analysis of Pseudomonas putida KT2440 for polyhydroxyalkanoate synthesis, degradation of aromatics and anaerobic survival. Biotechnol J 5:739–750. doi:10.1002/biot.201000124PubMedCrossRefGoogle Scholar
  116. Steinbuchel A, Aerts K, Babel W et al (1995) Considerations on the structure and biochemistry of bacterial polyhydroxyalkanoic acid inclusions. Can J Microbiol 41(Suppl 1):94–105PubMedCrossRefGoogle Scholar
  117. Stuart ES, Foster LJ, Lenz RW, Fuller RC (1996) Intracellular depolymerase functionality and location in Pseudomonas oleovorans inclusions containing polyhydroxyoctanoate. Int J Biol Macromol 19:171–176PubMedCrossRefGoogle Scholar
  118. Stuart ES, Tehrani A, Valentin HE et al (1998) Protein organization on the PHA inclusion cytoplasmic boundary. J Biotechnol 64:137–144PubMedCrossRefGoogle Scholar
  119. Sudesh K, Abe H, Doi Y (2000) Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Sci 25:1503–1555. doi:10.1016/S0079-6700(00)00035-6CrossRefGoogle Scholar
  120. Sun Z, Ramsay JA, Guay M, Ramsay B (2007) Increasing the yield of MCL-PHA from nonanoic acid by co-feeding glucose during the PHA accumulation stage in two-stage fed-batch fermentations of Pseudomonas putida KT2440. J Biotechnol 132:280–282. doi:10.1016/j.jbiotec.2007.02.023PubMedCrossRefGoogle Scholar
  121. Taguchi S, Doi Y (2004) Evolution of polyhydroxyalkanoate (PHA) production system by “enzyme evolution”: successful case studies of directed evolution. Macromol Biosci 4:146–156. doi:10.1002/mabi.200300111PubMedCrossRefGoogle Scholar
  122. Taguchi K, Taguchi S, Sudesh K, et al. (2005) Metabolic pathways and engineering of polyhydroxyalkanoate biosynthesis. In: Biopolymers online. Wiley-VCH Verlag GmbH & Co. KGaA,Google Scholar
  123. Taguchi S, Yamada M, K’ichiro M et al (2008) A microbial factory for lactate-based polyesters using a lactate-polymerizing enzyme. Proc Natl Acad Sci U S A 105:17323–17327. doi:10.1073/pnas.0805653105PubMedPubMedCentralCrossRefGoogle Scholar
  124. Tajima K, Han X, Hashimoto Y et al (2016) In vitro synthesis of polyhydroxyalkanoates using thermostable acetyl-CoA synthetase, CoA transferase, and PHA synthase from thermotorelant bacteria. J Biosci Bioeng. doi:10.1016/j.jbiosc.2016.06.001Google Scholar
  125. Takase K, K’ichiro M, Taguchi S, Doi Y (2004) Alteration of substrate chain-length specificity of type II synthase for polyhydroxyalkanoate biosynthesis by in vitro evolution: in vivo and in vitro enzyme assays. Biomacromolecules 5:480–485. doi:10.1021/bm034323+PubMedCrossRefGoogle Scholar
  126. Tappel RC, Pan W, Bergey NS et al (2014) Engineering Escherichia coli for improved production of short-chain-length-co-medium-chain-length poly[(R)-3-hydroxyalkanoate] (SCL-co-MCL PHA) copolymers from renewable nonfatty acid feedstocks. ACS Sustain Chem Eng 2:1879–1887. doi:10.1021/sc500217pCrossRefGoogle Scholar
  127. Timm A, Steinbüchel A (1990) Formation of polyesters consisting of medium-chain-length 3-hydroxyalkanoic acids from gluconate by Pseudomonas aeruginosa and other fluorescent pseudomonads. Appl Environ Microbiol 56:3360–3367PubMedPubMedCentralGoogle Scholar
  128. Timm A, Steinbüchel A (1992) Cloning and molecular analysis of the poly(3-hydroxyalkanoic acid) gene locus of Pseudomonas aeruginosa PAO1. Eur J Biochem FEBS 209:15–30CrossRefGoogle Scholar
  129. Timmis KN (2002) Pseudomonas putida: a cosmopolitan opportunist par excellence. Environ Microbiol 4:779–781. doi:10.1046/j.1462-2920.2002.00365.xPubMedCrossRefGoogle Scholar
  130. Tortajada M, da Silva LF, Prieto MA (2013) Second-generation functionalized medium-chain-length polyhydroxyalkanoates: the gateway to high-value bioplastic applications. Int Microbiol Off J Span Soc Microbiol 16:1–15. doi:10.2436/20.1501.01.175Google Scholar
  131. Wang H, Zhou X, Liu Q, Chen G-Q (2011) Biosynthesis of polyhydroxyalkanoate homopolymers by Pseudomonas putida. Appl Microbiol Biotechnol 89:1497–1507. doi:10.1007/s00253-010-2964-xPubMedCrossRefGoogle Scholar
  132. Wang Q, Tappel RC, Zhu C, Nomura CT (2012) Development of a new strategy for production of medium-chain-length polyhydroxyalkanoates by recombinant Escherichia coli via inexpensive non-fatty acid feedstocks. Appl Environ Microbiol 78:519–527. doi:10.1128/AEM.07020-11PubMedPubMedCentralCrossRefGoogle Scholar
  133. Wang Q, Zhuang Q, Liang Q, Qi Q (2013) Polyhydroxyalkanoic acids from structurally-unrelated carbon sources in Escherichia coli. Appl Microbiol Biotechnol 97:3301–3307. doi:10.1007/s00253-013-4809-xPubMedCrossRefGoogle Scholar
  134. Wang Y, Zhang C, Gong T et al (2015) An upp-based markerless gene replacement method for genome reduction and metabolic pathway engineering in Pseudomonas mendocina NK-01 and Pseudomonas putida KT2440. J Microbiol Methods 113:27–33. doi:10.1016/j.mimet.2015.03.022PubMedCrossRefGoogle Scholar
  135. Ward PG, Goff M, Donner M et al (2006) A two step chemo-biotechnological conversion of polystyrene to a biodegradable thermoplastic. Environ Sci Technol 40:2433–2437PubMedCrossRefGoogle Scholar
  136. Yang TH, Kim TW, Kang HO et al (2010) Biosynthesis of polylactic acid and its copolymers using evolved propionate CoA transferase and PHA synthase. Biotechnol Bioeng 105:150–160. doi:10.1002/bit.22547PubMedCrossRefGoogle Scholar
  137. Yuan W, Jia Y, Tian J et al (2001) Class I and III polyhydroxyalkanoate synthases from Ralstonia eutropha and Allochromatium vinosum: characterization and substrate specificity studies. Arch Biochem Biophys 394:87–98. doi:10.1006/abbi.2001.2522PubMedCrossRefGoogle Scholar
  138. Zhang S, Kamachi M, Takagi Y et al (2001) Comparative study of the relationship between monomer structure and reactivity for two polyhydroxyalkanoate synthases. Appl Microbiol Biotechnol 56:131–136PubMedCrossRefGoogle Scholar
  139. Zinn M, Durner R, Zinn H et al (2011) Growth and accumulation dynamics of poly(3-hydroxyalkanoate) (PHA) in Pseudomonas putida GPo1 cultivated in continuous culture under transient feed conditions. Biotechnol J 6:1240–1252. doi:10.1002/biot.201100219PubMedCrossRefGoogle Scholar
  140. Zobel S, Benedetti I, Eisenbach L et al (2015) Tn7-based device for calibrated heterologous gene expression in Pseudomonas putida. ACS Synth Biol 4:1341–1351. doi:10.1021/acssynbio.5b00058PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Ryan Kniewel
    • 1
  • Olga Revelles Lopez
    • 2
  • M. Auxiliadora Prieto
    • 1
  1. 1.Department of Environmental BiologyCentro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain
  2. 2.Bioprocess Laboratory D-BSSEETH ZürichBaselSwitzerland

Personalised recommendations