Functional Roles of Non-membrane Lipids in Bacterial Signaling

  • M. J. Soto
  • N. Calatrava-Morales
  • I. M. López-Lara
Living reference work entry

Later version available View entry history

Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)


Bacteria produce some lipids and lipid-related compounds that function as signals for intercellular communication among prokaryotes or even in inter-kingdom communication (i.e., between prokaryotes and eukaryotes). Most of these lipidic signals participate in quorum-sensing regulation, a process that is dependent on cell density and enables a coordinated response within the population. The number and variety of bacterial non-membrane lipids that have been found to function as molecular signals is increasing and includes unsaturated fatty acids, fatty acid esters, acyl-based molecules such as N-acylhomoserine lactones and γ-butyrolactones, alkyl-based compounds such as quinolones and dialkylresorcinols, or alkane-derived signals such as α-hydroxyketones. Most of these signals are amphipathic and can diffuse through membranes and some of them are volatile. They are synthesized from common metabolites including intermediates of lipid metabolism and are recognized by membrane-bound or cytosolic receptors that trigger specific signal transduction responses. These signals regulate important bacterial traits such as motility, production of antimicrobials, expression of virulence factors, and biofilm formation. Some of these bacterial lipids induce immune responses in eukaryotic organisms.


Quorum Sense Fatty Acid Ester Quorum Sense System Methyl Ketone Diffusible Signal Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Work on MJS’s lab was funded by Grant BIO2013-42801-P. NCM was supported by an FPU fellowship from the Spanish Ministry of Education and Science. Work on IMLL’s lab was funded by Dirección General de Asuntos del Personal Académico-Universidad Nacional Autónoma de México (DGAPA-UNAM; PAPIIT IN202616).


  1. Audrain B, Farag MA, Ryu CM, Ghigo JM (2015) Role of bacterial volatile compounds in bacterial biology. FEMS Microbiol Rev 39:222–233CrossRefPubMedGoogle Scholar
  2. Bi H, Christensen QH, Feng Y, Wang H, Cronan JE (2012) The Burkholderia cenocepacia BDSF quorum sensing fatty acid is synthesized by a bifunctional crotonase homologue having both dehydratase and thioesterase activities. Mol Microbiol 83:840–855CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bi H, Yu Y, Dong H, Wang H, Cronan JE (2014) Xanthomonas campestris RpfB is a fatty acyl-CoA ligase required to counteract the thioesterase activity of the RpfF Diffusible Signal Factor (DSF) synthase. Mol Microbiol 93:262–275CrossRefPubMedPubMedCentralGoogle Scholar
  4. Biarnes-Carrera M, Breitling R, Takano E (2015) Butyrolactone signalling circuits for synthetic biology. Curr Opin Chem Biol 28:91–98CrossRefPubMedGoogle Scholar
  5. Brameyer S, Kresovic D, Bode HB, Heermann R (2015) Dialkylresorcinols as bacterial signaling molecules. Proc Natl Acad Sci U S A 112:572–577CrossRefPubMedGoogle Scholar
  6. Drees SL, Li C, Prasetya F, Saleem M, Dreveny I, Williams P, Hennecke U, Emsley J, Fetzner S (2016) PqsBC, a condensing enzyme in the biosynthesis of the Pseudomonas aeruginosa quinolone signal: crystal structure, inhibition, and reaction mechanism. J Biol Chem 291:6610–6624CrossRefPubMedPubMedCentralGoogle Scholar
  7. Flavier AB, Clough SJ, Schell MA, Denny TP (1997) Identification of 3-hydroxypalmitic acid methyl ester as a novel autoregulator controlling virulence in Ralstonia solanacearum. Mol Microbiol 26:251–259CrossRefPubMedGoogle Scholar
  8. Fuqua C, Greenberg EP (2002) Listening in on bacteria: acylhomoserine lactone signalling. Nat Rev Mol Cell Biol 3:685–695CrossRefPubMedGoogle Scholar
  9. Galloway WRJD, Hodgkinson JT, Bowden SD, Welch M, Spring DR (2011) Quorum sensing in Gram-negative bacteria: small-molecule modulation of AHL and AI-2 quorum sensing pathways. Chem Rev 111:28–67CrossRefPubMedGoogle Scholar
  10. Heeb S, Fletcher MP, Chhabra SR, Diggle SP, Williams P, Cámara M (2011) Quinolones: from antibiotics to autoinducers. FEMS Microbiol Rev 35:247–274CrossRefPubMedGoogle Scholar
  11. Henry JT, Crosson S (2011) Ligand-binding PAS domains in a genomic, cellular, and structural context. Annu Rev Microbiol 65:261–286CrossRefPubMedPubMedCentralGoogle Scholar
  12. Kai K, Ohnishi H, Shimatani M, Ishikawa S, Mori Y, Kiba A, Ohnishi K, Tabuchi M, Hikichi Y (2015) Methyl 3-hydroxymyristate, a diffusible signal mediating phc quorum sensing in Ralstonia solanacearum. Chembiochem 16:2309–2318CrossRefPubMedGoogle Scholar
  13. Kakkar A, Nizampatnam NR, Kondreddy A, Pradhan BB, Chatterjee S (2015) Xanthomonas campestris cell-cell signalling molecule DSF (diffusible signal factor) elicits innate immunity in plants and is suppressed by the exopolysaccharide xanthan. J Exp Bot 66:6697–6714CrossRefPubMedPubMedCentralGoogle Scholar
  14. Mathesius U, Mulders S, Gao M, Teplitski M, Caetano-Anolles G, Rolfe BG et al (2003) Extensive and specific responses of a eukaryote to bacterial quorum-sensing signals. Proc Natl Acad Sci U S A 100:1444–1449CrossRefPubMedPubMedCentralGoogle Scholar
  15. Miller MB, Skorupski K, Lenz DH, Taylor RK, Bassler BL (2002) Parallel quorum sensing systems converge to regulate virulence in Vibrio cholerae. Cell 110:303–314CrossRefPubMedGoogle Scholar
  16. Ng WL, Bassler BL (2009) Bacterial quorum-sensing network architectures. Annu Rev Genet 43(1):97–222CrossRefGoogle Scholar
  17. Niu G, Chater KF, Tian Y, Zhang J, Tan H (2016) Specialised metabolites regulating antibiotic biosynthesis in Streptomyces spp. FEMS Microbiol Rev 40:554–573CrossRefPubMedGoogle Scholar
  18. Papenfort K, Bassler BL (2016) Quorum sensing signal-response systems in Gram-negative bacteria. Nat Rev Microbiol 14:576–588CrossRefPubMedPubMedCentralGoogle Scholar
  19. Park HB, Lee B, Kloepper JW, Ryu CM (2013) One shot-two pathogens blocked: exposure of Arabidopsis to hexadecane, a long chain volatile organic compound, confers induced resistance against both Pectobacterium carotovorum and Pseudomonas syringae. Plant Signal Behav 8:e24619CrossRefPubMedGoogle Scholar
  20. Pesci EC, Milbank JB, Pearson JP, McKnight S, Kende AS, Greenberg EP, Iglewski BH (1999) Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 96:11229–11234CrossRefPubMedPubMedCentralGoogle Scholar
  21. Ryan RP, Dow JM (2011) Communication with a growing family: diffusible signal factor (DSF) signaling in bacteria. Trends Microbiol 19:145–152CrossRefPubMedGoogle Scholar
  22. Ryan RP, An SQ, Allan JH, McCarthy Y, Dow JM (2015) The DSF family of cell-cell signals: an expanding class of bacterial virulence regulators. PLoS Pathog 11(7):e1004986CrossRefPubMedPubMedCentralGoogle Scholar
  23. Schaefer AL, Greenberg EP, Oliver CM, Oda Y, Huang JJ, Bittan-Banin G, Peres CM, Schmidt S, Juhaszova K, Sufrin JR, Harwood CS (2008) A new class of homoserine lactone quorum-sensing signals. Nature 454:595–599CrossRefPubMedGoogle Scholar
  24. Schell U, Simon S, Sahr T, Hager D, Albers MF, Kessler A, Fahrnbauer F, Trauner D, Hedberg C, Buchrieser C, Hilbi H (2016) The alpha-hydroxyketone LAI-1 regulates motility, Lqs-dependent phosphorylation signalling and gene expression of Legionella pneumophila. Mol Microbiol 99:778–793CrossRefPubMedGoogle Scholar
  25. Schenk ST, Hernandez-Reyes C, Samans B, Stein E, Neumann C, Schikora M, Reichelt M, Mithofer A, Becker A, Kogel KH, Schikora A (2014) N-acyl-homoserine lactone primes plants for cell wall reinforcement and induces resistance to bacterial pathogens via the salicylic acid/oxylipin pathway. Plant Cell 26:2708–2723CrossRefPubMedPubMedCentralGoogle Scholar
  26. Schöner TA, Kresovic D, Bode H (2015) Biosynthesis and function of bacterial dialkylresorcinol compounds. Appl Microbiol Biotechnol 99:8323–8328CrossRefPubMedGoogle Scholar
  27. Schulz S, Dickschat JS (2007) Bacterial volatiles: the smell of small organisms. Nat Prod Rep 24:814–842CrossRefPubMedGoogle Scholar
  28. Spirig T, Tiaden A, Kiefer P, Buchrieser C, Vorholt JA, Hilbi H (2008) The Legionella autoinducer synthase LqsA produces an α-hydroxyketone signaling molecule. J Biol Chem 283:18113–18123CrossRefPubMedPubMedCentralGoogle Scholar
  29. Takano E (2006) Gamma-butyrolactones: Streptomyces signalling molecules regulating antibiotic production and differentiation. Curr Opin Microbiol 9:287–294CrossRefPubMedGoogle Scholar
  30. Tiaden A, Spirig T, Hilbi H (2010) Bacterial gene regulation by α-hydroxyketone signaling. Trends Microbiol 18:288–297CrossRefPubMedGoogle Scholar
  31. Tiaden A, Hilbi H (2012) α-Hydroxyketone synthesis and sensing by Legionella and Vibrio. Sensors 12:2899–2919CrossRefPubMedPubMedCentralGoogle Scholar
  32. Zhou L, Yu Y, Chen X, Diab AA, Ruan L, He J, Wang H, He YW (2015a) The multiple DSF-family QS signals are synthesized from carbohydrate and branched-chain amino acids via the FAS elongation cycle. Sci Rep 5:13294CrossRefPubMedPubMedCentralGoogle Scholar
  33. Zhou L, Wang XY, Sun S, Yang LC, Jiang BL, He YW (2015b) Identification and characterization of naturally occurring DSF-family quorum sensing signal turnover system in the phytopathogen Xanthomonas. Environ Microbiol 17:4646–4658CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • M. J. Soto
    • 1
  • N. Calatrava-Morales
    • 1
  • I. M. López-Lara
    • 2
  1. 1.Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC)GranadaSpain
  2. 2.Centro de Ciencias GenómicasUniversidad Nacional Autónoma de MéxicoCuernavacaMexico

Personalised recommendations