Skip to main content

TDDFT and Quantum-Classical Dynamics: A Universal Tool Describing the Dynamics of Matter

Book cover Handbook of Materials Modeling

Abstract

Time-dependent density functional theory (TDDFT) is currently the most efficient approach allowing to describe electronic dynamics in complex systems, from isolated molecules to the condensed phase. TDDFT has been employed to investigate an extremely wide range of time-dependent phenomena, as spin dynamics in solids, charge and energy transport in nanoscale devices, and photoinduced exciton transfer in molecular aggregates. It is therefore nearly impossible to give a general account of all developments and applications of TDDFT in material science, as well as in physics and chemistry. A large variety of aspects are covered throughout these volumes. In the present chapter, we will limit our presentation to the description of TDDFT developments and applications in the field of quantum molecular dynamics simulations in combination with trajectory-based approaches for the study of nonadiabatic excited-state phenomena. We will present different quantum-classical strategies used to describe the coupled dynamics of electrons and nuclei underlying nonadiabatic processes. In addition, we will give an account of the most recent applications with the aim of illustrating the nature of the problems that can be addressed with the help of these approaches. The potential, as well as the limitations, of the presented methods is discussed, along with possible avenues for future developments in TDDFT and nonadiabatic dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abedi A, Maitra NT, Gross EKU (2010) Exact factorization of the time-dependent electron-nuclear wave function. Phys Rev Lett 105(12):123002

    Article  ADS  Google Scholar 

  • Abedi A, Maitra NT, Gross EKU (2012) Correlated electron-nuclear dynamics: exact factorization of the molecular wave-function. J Chem Phys 137(22):22A530

    Google Scholar 

  • Abedi A, Agostini F, Suzuki Y, Gross EKU (2013a) Dynamical steps that bridge piecewise adiabatic shapes in the exact time-dependent potential energy surface. Phys Rev Lett 110(26):263001

    Article  ADS  Google Scholar 

  • Abedi A, Maitra NT, Gross EKU (2013b) Reply to comment on “correlated electron-nuclear dynamics: exact factorization of the molecular wave-function”. J Chem Phys 139(8):087102

    Article  ADS  Google Scholar 

  • Abedi A, Agostini F, Gross EKU (2014) Mixed quantum-classical dynamics from the exact decomposition of electron-nuclear motion. Europhys Lett 106(3):33001

    Article  ADS  Google Scholar 

  • Adamo C, Jacquemin D (2013) The calculations of excited-state properties with time-dependent density functional theory. Chem Soc Rev 42(3):845–856

    Article  Google Scholar 

  • Agostini F, Abedi A, Suzuki Y, Gross EKU (2013) Mixed quantum-classical dynamics on the exact time-dependent potential energy surfaces: a novel perspective on non-adiabatic processes. Mol Phys 111(22-23):3625

    Article  ADS  Google Scholar 

  • Agostini F, Abedi A, Gross EKU (2014) Classical nuclear motion coupled to electronic non-adiabatic transitions. J Chem Phys 141(21):214101

    Article  ADS  Google Scholar 

  • Agostini F, Abedi A, Suzuki Y, Min SK, Maitra NT, Gross EKU (2015a) The exact forces on classical nuclei in non-adiabatic charge transfer. J Chem Phys 142(8):084303

    Article  ADS  Google Scholar 

  • Agostini F, Min SK, Gross EKU (2015b) Semiclassical analysis of the electron-nuclear coupling in electronic non-adiabatic processes. Ann Phys 527(9–10):546–555

    Article  MathSciNet  MATH  Google Scholar 

  • Agostini F, Min SK, Abedi A, Gross EKU (2016) Quantum-classical non-adiabatic dynamics: coupled- vs. independent-trajectory methods. J Chem Theory Comput 12(5):2127–2143

    Article  Google Scholar 

  • Agostini F, Tavernelli I, Ciccotti G (2018) Nuclear quantum effects in electronic (non)adiabatic dynamics. Eur Phys J B 91:139

    Article  ADS  MathSciNet  Google Scholar 

  • Akimov AV, Prezhdo OV (2014) Advanced capabilities of the PYXAID program: integration schemes, decoherence effects, multiexcitonic states, and field-matter interaction. J Chem Theory Comput 10:789

    Article  Google Scholar 

  • Alonso JL, Clemente-Gallardo J, Echeniche-Robba P, Jover-Galtier JA (2013) Comment on “correlated electron-nuclear dynamics: exact factorization of the molecular wave-function”. J Chem Phys 139:087101

    Article  ADS  Google Scholar 

  • Andrade X, Castro A, Zueco D, Alonso J, Echenique P, Falceto F, Rubio A (2009) Modified Ehrenfest formalism for efficient large-scale ab initio molecular dynamics. J Chem Theory Comput 5(4):728–742

    Article  Google Scholar 

  • Atkins AJ, González L (2017) Trajectory surface-hopping dynamics including intersystem crossing in [ru (bpy) 3] 2+. J Phys Chem Lett 8(16):3840–3845

    Article  Google Scholar 

  • Baer R (2002) Non-adiabatic couplings by time-dependent density functional theory. Chem Phys Lett 364:75–79

    Article  ADS  Google Scholar 

  • Baer M (2006) Beyond born-oppenheimer: electronic nonadiabatic coupling terms and conical intersections. Wiley, Hoboken, New Jersey

    Book  MATH  Google Scholar 

  • Barbatti M (2011) Nonadiabatic dynamics with trajectory surface hopping method. WIREs Comput Mol Sci 1:620–633

    Article  Google Scholar 

  • Basile FEC, Federica A, Ivano T (2018) CT-MQC-a coupled-trajectory mixed quantum/classical method including nonadiabatic quantum coherence effects. Eur Phys J B, (in press)

    Google Scholar 

  • Ben-Nun M, Martínez TJ (1998) Nonadiabatic molecular dynamics: validation of the multiple spawning method for a multidimensional problem. J Chem Phys 108:7244–7257

    Article  ADS  Google Scholar 

  • Ben-Nun M, Martínez TJ (2002) Ab initio quantum molecular dynamics. Adv Chem Phys 121:439–512

    Google Scholar 

  • Ben-Nun M, Martínez TJ (2000) A multiple spawning approach to tunneling dynamics. J Chem Phys 112(14):6113–6121

    Article  ADS  Google Scholar 

  • Ben-Nun M, Quenneville J, Martínez TJ (2000) Ab initio multiple spawning: photochemistry from first principles quantum molecular dynamics. J Phys Chem A 104:5161–5175

    Article  Google Scholar 

  • Bittner ER, Rossky PJ (1995) Quantum decoherence in mixed quantum-classical systems: nonadiabatic processes. J Chem Phys 103:8130

    Article  ADS  Google Scholar 

  • Böckmann M, Doltsinis N, Marx D (2010) Unraveling a chemically enhanced photoswitch: bridged azobenzene. Angew Chemie Int Ed 49:3382

    Article  Google Scholar 

  • Bonella S, Coker DF (2005) LAND-map, a linearized approach to nonadiabatic dynamics using the mapping formalism. J Chem Phys 122:194102–194113

    Article  ADS  Google Scholar 

  • Burghardt I, Meyer HD, Cederbaum LS (1999) Approaches to the approximate treatment of complex molecular systems by the multiconfiguration time-dependent Hartree method. J Chem Phys 111:2927

    Article  ADS  Google Scholar 

  • Cannizzo A, van Mourik F, Gawelda W, Zgrablic G, Bressler C, Chergui M (2006) Broadband femtosecond fluorescence spectroscopy of [Ru(bpy)3]2+. Angew Chem Int Ed 45:3174–3176

    Article  Google Scholar 

  • Car R, Parrinello M (1985) Unified approach for molecular dynamics and density-functional theory. Phys Rev Lett 55:2471

    Article  ADS  Google Scholar 

  • Casida ME (1995) Time-dependent density-functional response theory for molecules. In: Chong DP (ed) Recent advances in density functional methods. World Scientific, Singapore, p 155

    Chapter  Google Scholar 

  • Casida ME (2009) Time-dependent density-functional theory for molecules and molecular solids. J Mol Struc (Theochem) 914(1–3):3–18

    Article  Google Scholar 

  • Casida M, Huix-Rotllant M (2012) Progress in time-dependent density-functional theory. Annu Rev Phys Chem 63(1):287–323. http://www.annualreviews.org/doi/pdf/10.1146/annurev-physchem-032511-143803

    Article  ADS  Google Scholar 

  • Casida ME, Gutierrez F, Guan J, Gadea FX, Salahub D, Daudey JP (2000) Charge-transfer correction for improved time-dependent local density approximation excited-state potential energy curves: analysis within the two-level model with illustration for H2O and LiH. J Chem Phys 113:7062

    Article  ADS  Google Scholar 

  • Castro A, Marques MAL, Rubio A (2004) Propagators for the time-dependent Kohn-Sham equations. J Chem Phys 121(8):3425–3433. https://doi.org/10.1063/1.1774980

    Article  ADS  Google Scholar 

  • Cave R, Zhang F, Maitra N, Burke K (2004) A dressed TDDFT treatment of the 21Ag states of butadiene and hexatriene. Chem Phys Lett 389(1):39–42

    Article  ADS  Google Scholar 

  • Chernyak V, Mukamel S (1996) Size-consistent quasiparticle representation of nonlinear optical susceptibilities in many-electron systems. J Chem Phys 104(2):444–459. https://doi.org/10.1063/1.470843, http://link.aip.org/link/?JCP/104/444/1

  • Chernyak V, Mukamel S (2000) Density-matrix representation of nonadiabatic couplings in time-dependent density functional (TDDFT) theories. J Chem Phys 112:3572–3579

    Article  ADS  Google Scholar 

  • Cordova F, Doriol LJ, Ipatov A, Casida ME, Filippi C, Vela A (2007) Troubleshooting time-dependent density-functional theory for photochemical applications: Oxirane. J Chem Phys 127:164,111

    Article  Google Scholar 

  • Craig CF, Duncan WR, Prezhdo OV (2005) Trajectory surface hopping in the time-dependent kohn-sham approach for electron-nuclear dynamics. Phys Rev Lett 95:163001

    Article  ADS  Google Scholar 

  • Curchod BFE, Agostini F (2017) On the dynamics through a conical intersection. J Phys Chem Lett 8:831

    Article  Google Scholar 

  • Curchod BFE, Tavernelli I (2013) On trajectory-based nonadiabatic dynamics: Bohmian dynamics versus trajectory surface hopping. J Chem Phys 138:184112

    Article  ADS  Google Scholar 

  • Curchod BFE, Tavernelli I, Rothlisberger U (2011) Trajectory-based solution of the nonadiabatic quantum dynamics equations: an on-the-fly approach for molecular dynamics simulations. Phys Chem Chem Phys 13:3231–3236

    Article  Google Scholar 

  • Curchod BFE, Rothlisberger U, Tavernelli I (2013) Trajectory-based nonadiabatic dynamics with time-dependent density functional theory. Chem Phys Chem 14(7):1314–1340

    Article  Google Scholar 

  • Curchod BFE, Agostini F, Gross EKU (2016a) An exact factorization perspective on quantum interferences in nonadiabatic dynamics. J Chem Phys 145:034103

    Article  ADS  Google Scholar 

  • Curchod BFE, Rauer C, Marquetand P, González L, Martínez T (2016b) Communication: Gaims–generalized ab initio multiple spawning for both internal conversion and intersystem crossing processes. J Chem Phys 144(10):101102

    Article  ADS  Google Scholar 

  • Curchod BFE , Sisto A, Martínez TJ (2016c) Ab initio multiple spawning photochemical dynamics of DMABN using GPUs. J Phys Chem A 121(1):265–276

    Article  Google Scholar 

  • Curchod BFE, Sisto A, Martínez TJ (2017) Ab initio multiple spawning photochemical dynamics of dmabn using GPUs. J Phys Chem A 121(1):265–276

    Article  Google Scholar 

  • Dancoff SM (1950) Non-adiabatic meson theory of nuclear forces. Phys Rev 78:382

    Article  ADS  MATH  Google Scholar 

  • Deglmann P, Furche F, Ahlrichs R (2002) An efficient implementation of second analytical derivatives for density functional methods. Chem Phys Lett 362(5–6):511–518. https://doi.org/10.1016/S0009-2614(02)01084-9, http://www.sciencedirect.com/science/article/pii/S0009261402010849

  • Dimitrov T, Flick J, Ruggenthaler M, Rubio A (2017) Exact functionals for correlated electron-photon systems. New J Phys 19:113036

    Article  Google Scholar 

  • Dobson JF, Bünner MJ, Gross EKU (1997) Time-dependent density functional theory beyond linear response: an exchange-correlation potential with memory. Phys Rev Lett 79(10): 1905

    Article  ADS  Google Scholar 

  • Doltsinis NL, Marx D (2002) Nonadiabatic Car-Parrinello molecular dynamics. Phys Rev Lett 88:166402

    Article  ADS  Google Scholar 

  • Dreuw A, Head-Gordon M (2004) Failure of time-dependent density functional theory for long-range charge-transfer excited states: the zincbacteriochlorin-bacteriochlorin and bacteriochlorophyll-spheroidene complexes. J Am Chem Soc 126:4007–4016

    Article  Google Scholar 

  • Dreuw A, Head-Gordon M (2005) Single-reference ab initio methods for the calculation of excited states of large molecules. Chem Rev 105:4009

    Article  Google Scholar 

  • Dreuw A, Weisman J, Head-Gordon M (2003) Long-range charge-transfer excited states in time-dependent density functional theory require non-local exchange. J Chem Phys 119:2943

    Article  ADS  Google Scholar 

  • Dunkel ER, Bonella S, Coker DF (2008) Iterative linearized approach to nonadiabatic dynamics. J Chem Phys 129:114106

    Article  ADS  Google Scholar 

  • Eich FG, Agostini F (2016) The adiabatic limit of the exact factorization of the electron-nuclear wave function. J Chem Phys 145:054110

    Article  ADS  Google Scholar 

  • Elliott P, Maitra NT (2012) Propagation of initially excited states in time-dependent density-functional theory. Phys Rev A 85:052510

    Article  ADS  Google Scholar 

  • Elliott P, Furche F, Burke K (2009) 3 excited states from time-dependent density functional theory. Rev Comput Chem 26:91

    Google Scholar 

  • Elliott P, Goldson S, Canahui C, Maitra NT (2011) Perspectives on double-excitations in TDDFT. Chem Phys 391(1):110–119

    Article  Google Scholar 

  • Epstein S (1954) Note on perturbation theory. Am J Phys 22:613

    Article  ADS  MATH  Google Scholar 

  • Fang JY, Hammes-Schiffer S (1999) Improvement of the internal consistency in trajectory surface hopping. J Phys Chem A 103:9399–9407

    Article  Google Scholar 

  • Flick J, Appel H, Ruggenthaler M, Rubio A (2017a) Cavity Born-Oppenheimer approximation for correlated electron-nuclear-photon systems. J Chem Theory Comput 13:1616–1625

    Article  Google Scholar 

  • Flick J, Ruggenthaler M, Appel H, Rubio A (2017b) Atoms and molecules in cavities, from weak to strong coupling in quantum-electrodynamics (QED) chemistry. Proc Nat Ac Sci 114:3026–3034

    Article  Google Scholar 

  • Frenkel J (1934) Wave mechanics. Clarendon, Oxford

    MATH  Google Scholar 

  • Furche F (2001) On the density matrix based approach to time-dependent density functional response theory. J Chem Phys 114:5982–5992

    Article  ADS  Google Scholar 

  • Gaigeot MP, Lopez-Tarifa P, Martin F, Alcami M, Vuilleumier R, Tavernelli I, Hervédu Penhoat MA, Politis MF (2010) Theoretical investigation of the ultrafast dissociation of ionised biomolecules immersed in water: direct and indirect effects. Mutat Res-Rev Mutat 704(1–3): 45–53. http://www.sciencedirect.com/science/article/pii/S1383574210000086

    Article  Google Scholar 

  • Gao X, Thiel W (2017) Non-hermitian surface hopping. Phys Rev E 95:013308

    Article  ADS  Google Scholar 

  • Garashchuk S, Rassolov VA (2003) Quantum dynamics with Bohmian trajectories: energy conserving approximation to the quantum potential. Chem Phys Lett 376:358

    Article  ADS  Google Scholar 

  • Gawelda W, Johnson M, de Groot FMF, Abela R, Bressler C, Chergui M (2006) Electronic and molecular structure of photoexcited [Ru(II)(bpy)3]2+ probed by picosecond x-ray absorption spectroscopy. J Am Chem Soc 128:5001–5009

    Article  Google Scholar 

  • Gómez I, Reguero M, Boggio-Pasqua M, Robb MA (2005) Intramolecular charge transfer in 4-aminobenzonitriles does not necessarily need the twist. J Am Chem Soc 127(19):7119–7129

    Article  Google Scholar 

  • Grabo T, Petersilka M, Gross EKU (2000) Molecular excitation energies from time-dependent density functional theory. J Mol Struc (Theochem) 501–502:353–367

    Article  Google Scholar 

  • Grabowski ZR, Rotkiewicz K, Rettig W (2003) Structural changes accompanying intramolecular electron transfer: focus on twisted intramolecular charge-transfer states and structures. Chem Rev 103(10):3899–4032

    Article  Google Scholar 

  • Granucci G, Persico M (2007) Critical appraisal of the fewest switches algorithm for surface hopping. J Chem Phys 126:134114

    Article  ADS  Google Scholar 

  • Gritsenko O, Baerends E (2004) Asymptotic correction of the exchange–correlation kernel of time-dependent density functional theory for long-range charge-transfer excitations. J Chem Phys 121:655

    Article  ADS  Google Scholar 

  • Gross E, Kohn W (1990) Time-dependent density-functional theory. Adv Quantum Chem 21: 255–291

    Article  ADS  Google Scholar 

  • Gross EKU, Kohn W (1985) Local density-functional theory of frequency-dependent linear response. Phys Rev Lett 55:2850–2852

    Article  ADS  Google Scholar 

  • Gross EKU, Ullrich CA, Gossmann UJ (1994) Density functional theory of time-dependent systems. In: Gross EKU, Dreizler RM (eds) Density functional theory. Plenum, New York, pp 149–171

    Google Scholar 

  • Gross EKU, Dobson J, Petersilka M (1996) Density functional theory of time-dependent phenomena. In: Nalewajski RF (ed) Density functional theory II, topics in current chemistry, vol 181. Springer, Berlin, pp 81–172

    Google Scholar 

  • Hack MD, Wensmann AM, Truhlar DG, Ben-Nun M, Martínez TJ (2001) Comparison of full multiple spawning, trajectory surface hopping, and converged quantum mechanics for electronically nonadiabatic dynamics. J Chem Phys 115:1172

    Article  ADS  Google Scholar 

  • Helgaker T, Jørgensen P (1989) Configuration-interaction energy derivatives in a fully variational formulation. Theor Chem Acc 75:111–127

    Article  Google Scholar 

  • Heller EJ (1981) Frozen gaussians: a very simple semiclassical approximation. J Chem Phys 75(6):2923–2931

    Article  ADS  MathSciNet  Google Scholar 

  • Hellgren M, Gross EKU (2012) Discontinuities of the exchange-correlation kernel and charge-transfer excitations in time-dependent density-functional theory. Phys Rev A 85:022514

    Article  ADS  Google Scholar 

  • Hirata S, Head-Gordon M (1999) Time-dependent density functional theory within the Tamm-Dancoff approximation. Chem Phys Lett 314:291–299

    Article  ADS  Google Scholar 

  • Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev B 136:B864

    Article  ADS  MathSciNet  Google Scholar 

  • Hsu C, Hirata S, Head-Gordon M (2001) Excitation energies from time-dependent density functional theory for linear polyene oligomers: butadiene to decapentaene. J Phys Chem A 105(2):451–458

    Article  Google Scholar 

  • Hu C, Hirai H, Sugino O (2007) Nonadiabatic couplings from time-dependent density functional theory: formulation in the Casida formalism and practical scheme within modified linear response. J Chem Phys 127:064103

    Article  ADS  Google Scholar 

  • Hu C, Hirai H, Sugino O (2008) Nonadiabatic couplings from time-dependent density functional theory. II. Successes and challenges of the pseudopotential approximation. J Chem Phys 128:154111

    Google Scholar 

  • Hu C, Sugino O, Hirai H, Tateyama Y (2010) Nonadiabatic couplings from the Kohn-Sham derivative matrix: formulation by time-dependent density-functional theory and evaluation in the pseudopotential framework. Phys Rev A 82(6):062508

    Article  ADS  Google Scholar 

  • Hu C, Komakura R, Li Z, Watanabe K (2012) TDDFT study on quantization behaviors of nonadiabatic couplings in polyatomic systems. Int J Quantum Chem 113:263–271

    Article  Google Scholar 

  • Huo P, Coker DF (2012) Consistent schemes for non-adiabatic dynamics derived from partial linearized density matrix propagation. J Chem Phys 137:22A535

    Google Scholar 

  • Hutter J (2003) Excited state nuclear forces from the Tamm-Dancoff approximation to time-dependent density functional theory within the plane wave basis set framework. J Chem Phys 118:3928–3934

    Article  ADS  Google Scholar 

  • Iikura H, Tsuneda T, Yanai T, Hirao K (2001) A long-range correction scheme for generalized-gradient-approximation exchange functionals. J Chem Phys 115:3540

    Article  ADS  Google Scholar 

  • Isborn CM, Luehr N, Ufimtsev IS, Martínez TJ (2011) Excited-state electronic structure with configuration interaction singles and Tamm–Dancoff time-dependent density functional theory on graphical processing units. J Chem Theory Comput 7(6):1814

    Article  Google Scholar 

  • Izmaylov AF, Joubert-Doriol L (2017) Quantum nonadiabatic cloning of entangled coherent states. J Phys Chem Lett 8(8):1793–1797

    Article  Google Scholar 

  • Jaeger HM, Fischer S, Prezhdo OV (2012) Decoherence-induced surface hopping. J Chem Phys 137:22A545

    Google Scholar 

  • Jamorski C, Casida ME, Salahub DR (1996) Dynamic polarizabilities and excitation spectra from a molecular implementation of time-dependent density-functional response theory: N2 as a case study. J Chem Phys 104:5134

    Article  ADS  Google Scholar 

  • Jasper AW, Truhlar DG (2007) Electronic decoherence time for non-born-oppenheimer trajectories. J Chem Phys 127:194306

    Article  ADS  Google Scholar 

  • Jasper AW, Zhu C, Nangia S, Truhlar DG (2004) Introductory lecture: nonadiabatic effects in chemical dynamics. Faraday Discuss 127:1

    Article  ADS  Google Scholar 

  • Jasper AW, Nangia S, Zhu C, Truhlar DG (2006) Non-born-oppenheimer molecular dynamics. Acc Chem Res 39:101

    Article  Google Scholar 

  • Joubert-Doriol L, Sivasubramanium J, Ryabinkin IG, Izmaylov AF (2017) Topologically correct quantum nonadiabatic formalism for on-the-fly dynamics. J Phys Chem Lett 8(2):452–456

    Article  Google Scholar 

  • Kapral R (2006) Progress in the theory of mixed quantum-classical dynamics. Annu Rev Phys Chem 57(1):129–157

    Article  ADS  Google Scholar 

  • Kapral R, Ciccotti G (1999) Mixed quantum-classical dynamics. J Chem Phys 110(18):8919–8929. https://doi.org/10.1063/1.478811

    Article  ADS  Google Scholar 

  • Kleinman L, Bylander DM (1982) Efficacious form for model pseudopotentials. Phys Rev Lett 48:1425

    Article  ADS  Google Scholar 

  • Kurzweil Y, Baer R (2004) Time-dependent exchange-correlation current density functionals with memory. J Chem Phys 121(18):8731–8741. https://doi.org/10.1063/1.1802793, http://link.aip.org/link/?JCP/121/8731/1

  • Lara-Astiaso M, Palacios A, Decleva P, Tavernelli I, Martín F (2017) Role of electron-nuclear coupled dynamics on charge migration induced by attosecond pulses in glycine. Cheml Phys Lett 683:357

    Article  ADS  Google Scholar 

  • Lasorne B, Bearpark MJ, Robb MA, Worth GA (2006) Direct quantum dynamics using variational multi-configuration gaussian wavepackets. Chem Phys Lett 432(4):604–609

    Article  ADS  Google Scholar 

  • Lasorne B, Robb M, Worth G (2007) Direct quantum dynamics using variational multi-configuration gaussian wavepackets. implementation details and test case. Phys Chem Chem Phys 9(25):3210–3227

    Article  Google Scholar 

  • Laurent AD, Jacquemin D (2013) Td-dft benchmarks: a review. Int J Quant Chem 113(17): 2019–2039

    Article  Google Scholar 

  • Lauvergnat D, Nauts A (2010) Torsional energy levels of nitric acid in reduced and full dimensionality with elvibrot and tnum. Phys Chem Chem Phys 12:8405

    Article  Google Scholar 

  • Lauvergnat D, Nauts A (2014) Quantum dynamics with sparse grids: a combination of Smolyak scheme and cubature. Application to methanol in full dimensionality. Spectrochim Acta Part A 119:18

    Google Scholar 

  • Leininger T, Stoll H, Werner H, Savin A (1997) Combining long-range configuration interaction with short-range density functionals. Chem Phys Lett 275(3):151–160

    Article  ADS  Google Scholar 

  • Levine BG, Ko C, Quenneville J, Martinez TJ (2006) Conical intersections and double excitations in density functional theory. Mol Phys 104:1039

    Article  ADS  Google Scholar 

  • Levine BG, Coe JD, Virshup AM, Martinez TJ (2008) Implementation of ab initio multiple spawning in the molpro quantum chemistry package. Chem Phys 347(1):3–16

    Article  Google Scholar 

  • Li Z, Liu W (2014) First-order nonadiabatic coupling matrix elements between excited states: a lagrangian formulation at the CIS, RPA, TD-HF, and TD-DFT levels. J Chemi Phys 141(1):014110

    Article  ADS  Google Scholar 

  • Li X, Tully JC, Schlegel HB, Frisch MJ (2005) Ab initio Ehrenfest dynamics. J Chem Phys 123(8):084106. https://doi.org/10.1063/1.2008258, http://link.aip.org/link/?JCP/123/084106/1

  • Li Z, Suo B, Liu W (2014) First order nonadiabatic coupling matrix elements between excited states: implementation and application at the TD-DFT and PP-TDA levels. J Chem Phys 141(24):244105

    Article  ADS  Google Scholar 

  • Liang W, Isborn CM, Lindsay A, Li X, Smith SM, Levis RJ (2010) Time-dependent density functional theory calculations of Ehrenfest dynamics of laser controlled dissociation of NO+: Pulse length and sequential multiple single-photon processes. J Phys Chem A 114(21):6201–6206

    Article  Google Scholar 

  • Lopez-Tarifa P, Herve du Penhoat MA, Vuilleumier R, Gaigeot MP, Tavernelli I, Le Padellec A, Champeaux JP, Alcami M, Moretto-Capelle P, Martin F, Politis MF (2011) Ultrafast nonadiabatic fragmentation dynamics of doubly charged uracil in a gas phase. Phys Rev Lett 107:023202

    Article  ADS  Google Scholar 

  • Lopreore CL, Wyatt RE (2002) Electronic transitions with quantum trajectories. II. J Chem Phys 116(4):1228–1238

    Article  ADS  Google Scholar 

  • Maitra NT (2005) Undoing static correlation: long-range charge transfer in time-dependent density-functional theory. J Chem Phys 122:234104

    Article  ADS  Google Scholar 

  • Maitra NT, Wasserman A, Burke K (2003) What is time-dependent density-functional theory? successes and challenges. In: Gonis A, Kioussis N, Ciftan M (eds) Electron correlations and materials properties 2, Klewer/Plenum, New York

    Google Scholar 

  • Maitra NT, Zhang F, Cave RJ, Burke K (2004) Double excitations within time-dependent density functional theory linear response. J Chem Phys 120:5932

    Article  ADS  Google Scholar 

  • Makhov DV, Glover WJ, Martinez TJ, Shalashilin DV (2014) Ab initio multiple cloning algorithm for quantum nonadiabatic molecular dynamics. J Chem Phys 141(5):054110

    Article  ADS  Google Scholar 

  • Makhov D, Symonds C, Fernandez-Alberti S, Shalashilin D (2017) Ab initio quantum direct dynamics simulations of ultrafast photochemistry with multiconfigurational ehrenfest approach. Chem Phys 493:200–218

    Article  Google Scholar 

  • Marques MAL, Maitra NT, Nogueira FMDS, Gross EKU, Rubio A (2012) Fundamentals of time-dependent density functional theory, vol 837. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  • Martínez TJ, Levine RD (1997) Non-adiabatic molecular dynamics: split-operator multiple spawning with applications to photodissociation. J Chem Soc Faraday Trans 93(5):941–947

    Article  Google Scholar 

  • Martínez TJ, Ben-Nun M, Levine RD (1996) Multi-electronic-state molecular dynamics: a wave function approach with applications. J Phys Chem 100(19):7884–7895

    Article  Google Scholar 

  • Marx D, Hutter J (2009) Ab initio molecular dynamics: basic theory and advanced methods. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Meek GA, Levine BG (2016) The best of both reps—diabatized gaussians on adiabatic surfaces. J Chem Phys 145(18):184103

    Article  ADS  Google Scholar 

  • Mendive-Tapia D, Lasorne B, Worth GA, Robb MA, Bearpark MJ (2012) Towards converging non-adiabatic direct dynamics calculations using frozen-width variational gaussian product basis functions. J Chem Phys 137(22):22A548

    Google Scholar 

  • Meyer HD, Worth GA (2003) Quantum molecular dynamics: propagating wavepackets and density operators using the multiconfiguration time-dependent hartree method. Theor Chim Acta 109:251

    Article  Google Scholar 

  • Meyer HD, Manthe U, Cederbaum LS (1990) The multi-configurational time-dependent hartree approach. Chem Phys Lett 165:73–78

    Article  ADS  Google Scholar 

  • Mignolet B, Curchod BFE, Martínez TJ (2016) Communication: Xfaims—external field ab initio multiple spawning for electron-nuclear dynamics triggered by short laser pulses. J Chem Phys 145(19):191104

    Article  ADS  Google Scholar 

  • Min SK, Agostini F, Gross EKU (2015) Coupled-trajectory quantum-classical approach to electronic decoherence in nonadiabatic processes. Phys Rev Lett 115(7):073001

    Article  ADS  Google Scholar 

  • Min SK, Agostini F, Tavernelli I, Gross EKU (2017) Ab initio nonadiabatic dynamics with coupled trajectories: a rigorous approach to quantum (de)coherence. J Phys Chem Lett 8:3048

    Article  Google Scholar 

  • Moss CL, Isborn CM, Li X (2009) Ehrenfest dynamics with a time-dependent density-functional-theory calculation of lifetimes and resonant widths of charge-transfer states of Li+ near an aluminum cluster surface. Phys Rev A 80:024503. https://doi.org/10.1103/PhysRevA.80.024503, http://link.aps.org/doi/10.1103/PhysRevA.80.024503

  • Nielsen S, Kapral R, Ciccotti G (2000) Non-adiabatic dynamics in mixed quantum-classical systems. J Stat Phys 101:225–242

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Ou Q, Bellchambers GD, Furche F, Subotnik JE (2015) First-order derivative couplings between excited states from adiabatic TDDFT response theory. J Chem Phys 142(6):064114

    Article  ADS  Google Scholar 

  • Parker SM, Roy S, Furche F (2016) Unphysical divergences in response theory. J Chem Phys 145(13):134105

    Article  ADS  Google Scholar 

  • Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865

    Article  ADS  Google Scholar 

  • Persico M, Granucci G (2014) An overview of nonadiabatic dynamics simulations methods, with focus on the direct approach versus the fitting of potential energy surfaces. Theor Chem Acc 133(9):1–28

    Article  Google Scholar 

  • Petersilka M, Gossmann UJ, Gross EKU (1996) Excitation energies from time-dependent density-functional theory. Phys Rev Lett 76:1212–1215

    Article  ADS  Google Scholar 

  • Pijeau S, Foster D, Hohenstein EG (2017) Excited-state dynamics of 2-(2’-hydroxyphenyl) benzothiazole: ultrafast proton transfer and internal conversion. J Phys Chem A 121:4595

    Article  Google Scholar 

  • Pulay P (1987) Analytical derivative methods in quantum chemistry. Adv Chem Phys 69: 241–286

    Google Scholar 

  • Rappoport D, Furche F (2005) Analytical time-dependent density functional derivative methods within the RI-J approximation, an approach to excited states of large molecules. J Chem Phys 122(6):064105. https://doi.org/10.1063/1.1844492, http://link.aip.org/link/?JCP/122/064105/1

  • Rassolov VA, Garashchuk S (2005) Semiclassical nonadiabatic dynamics with quantum trajectories. Phys Rev A 71(3):032511

    Article  ADS  Google Scholar 

  • Requist R, Gross EKU (2016) Exact factorization-based density functional theory of electrons and nuclei. Phys Rev Lett 117:193001

    Article  ADS  Google Scholar 

  • Richings G, Polyak I, Spinlove K, Worth G, Burghardt I, Lasorne B (2015) Quantum dynamics simulations using gaussian wavepackets: the vMCG method. Int Rev Phys Chem 34(2): 269–308

    Article  Google Scholar 

  • Runge E, Gross EKU (1984) Density-functional theory for time-dependent systems. Phys Rev Lett 52:997–1000

    Article  ADS  Google Scholar 

  • Sadri K, Lauvergnat D, Gatti F, Meyer HD (2012) Numeric kinetic energy operators for molecules in polyspherical coordinates. J Chem Phys 136:234112

    Article  ADS  Google Scholar 

  • Sadri K, Lauvergnat D, Gatti F, Meyer HD (2014) Rovibrational spectroscopy using a kinetic energy operator in Eckart frame and the multi-configuration time-dependent hartree (MCTDH) approach. J Chem Phys 141:114101

    Article  ADS  Google Scholar 

  • Saita K, Shalashilin DV (2012) On-the-fly ab initio molecular dynamics with multiconfigurational ehrenfest method. J Chem Phys 137(22):22A506

    Google Scholar 

  • Scherrer A, Agostini F, Sebastiani D, Gross EKU, Vuilleumier R (2015) Nuclear velocity perturbation theory for vibrational circular dichroism: an approach based on the exact factorization of the electron-nuclear wave function. J Chem Phys 143(7):074106

    Article  ADS  Google Scholar 

  • Scherrer A, Agostini F, Sebastiani D, Gross EKU, Vuilleumier R (2017) On the mass of atoms in molecules: beyond the born-oppenheimer approximation. Phys Rev X 7:031035

    Google Scholar 

  • Schild A, Agostini F, Gross EKU (2016) Electronic flux density beyond the born-oppenheimer approximation. J Phys Chem A 120:3316

    Article  Google Scholar 

  • Schwartz BJ, Bittner ER, Prezhdo OV, Rossky PJ (1996) Quantum decoherence and the isotope effect in condensed phase nonadiabatic molecular dynamics simulations. J Chem Phys 104:5942

    Article  ADS  Google Scholar 

  • Send R, Furche F (2010) First-order nonadiabatic couplings from time-dependent hybrid density functional response theory: Consistent formalism, implementation, and performance. J Chem Phys 132(4):044107. https://doi.org/10.1063/1.3292571

    Article  ADS  Google Scholar 

  • Shalashilin D (2009) Quantum mechanics with the basis set guided by ehrenfest trajectories: theory and application to spin-boson model. J Chem Phys 130:244101

    Article  ADS  Google Scholar 

  • Shalashilin DV (2010) Nonadiabatic dynamics with the help of multiconfigurational ehrenfest method: improved theory and fully quantum 24d simulation of pyrazine. J Chem Phys 132(24):244111

    Article  ADS  Google Scholar 

  • Shenvi N, Yang W (2012) Achieving partial decoherence in surface hopping through phase correction. J Chem Phys 137:22A528

    Google Scholar 

  • Shenvi N, Subotnik JE, Yang W (2011a) Phase-corrected surface hopping: correcting the phase evolution of the electronic wavefunction. J Chem Phys 135:024101

    Article  ADS  Google Scholar 

  • Shenvi N, Subotnik JE, Yang W (2011b) Simultaneous-trajectory surface hopping: a parameter-free algorithm for implementing decoherence in nonadiabatic dynamics. J Chem Phys 134:144102

    Article  ADS  Google Scholar 

  • Stratmann RE, Scuseria GE, Frisch MJ (1998) An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules. J Chem Phys 109(19):8218–8224

    Article  ADS  Google Scholar 

  • Subotnik JE, Shenvi N (2011a) Decoherence and surface hopping: when can averaging over initial conditions help capture the effects of wave packet separation? J Chem Phys 134:244114

    Article  ADS  Google Scholar 

  • Subotnik JE, Shenvi N (2011b) A new approach to decoherence and momentum rescaling in the surface hopping algorithm. J Chem Phys 134:024105

    Article  ADS  Google Scholar 

  • Subotnik JE, Ouyang W, Landry BR (2013) Can we derive Tully’s surface-hopping algorithm from the semiclassical quantum Liouville equation? Almost, but only with decoherence. J Chem Phys 139:214107

    Article  ADS  Google Scholar 

  • Suzuki Y, Watanabe K (2016) Bohmian mechanics in the exact factorization of electron-nuclear wave functions. Phys Rev A 94:032517

    Article  ADS  Google Scholar 

  • Suzuki Y, Abedi A, Maitra NT, Gross EKU (2015) Laser-induced electron localization in H\(_2^+\): Mixed quantum-classical dynamics based on the exact time-dependent potential energy surface. Phys Chem Chem Phys 17:29271–29280

    Google Scholar 

  • Tamm I (1945) J Phys 9:449

    Google Scholar 

  • Tao H, Levine BG, Martínez TJ (2009) Ab initio multiple spawning dynamics using multi-state second-order perturbation theory. J Chem Phys A 113(49):13656–13662

    Article  Google Scholar 

  • Tapavicza E, Tavernelli I, Rothlisberger U (2007) Trajectory surface hopping within linear response time-dependent density-functional theory. Phys Rev Lett 98:023001

    Article  ADS  Google Scholar 

  • Tapavicza E, Tavernelli I, Rothlisberger U, Filippi C, Casida ME (2008) Mixed time-dependent density-functional theory/classical trajectory surface hopping study of oxirane photochemistry. J Chem Phys 129:124108

    Article  ADS  Google Scholar 

  • Tavernelli I (2006) Electronic density response of liquid water using time-dependent density functional theory. Phys Rev B 73:094204

    Article  ADS  Google Scholar 

  • Tavernelli I (2013) Ab initio–driven trajectory-based nuclear quantum dynamics in phase space. Phys Rev A 87(4):042501

    Article  ADS  Google Scholar 

  • Tavernelli I (2015) Nonadiabatic molecular dynamics simulations: synergies between theory and experiments. Acc Chem Res 48(3):792–800

    Article  Google Scholar 

  • Tavernelli I, Röhrig U, Rothlisberger U (2005) Molecular dynamics in electronically excited states using time-dependent density functional theory. Mol Phys 103(6–8):963–981

    Article  ADS  Google Scholar 

  • Tavernelli I, Curchod BFE, Rothlisberger U (2009a) On nonadiabatic coupling vectors in time-dependent density functional theory. J Chem Phys 131:196101

    Article  ADS  Google Scholar 

  • Tavernelli I, Tapavicza E, Rothlisberger U (2009b) Nonadiabatic coupling vectors within linear response time-dependent density functional theory. J Chem Phys 130:124107

    Article  ADS  Google Scholar 

  • Tavernelli I, Curchod BFE, Laktionov A, Rothlisberger U (2010) Nonadiabatic coupling vectors for excited states within time-dependent density functional theory and beyond. J Chem Phys 133:194104–194110

    Article  ADS  Google Scholar 

  • Tavernelli I, Curchod BFE, Rothlisberger U (2011) Nonadiabatic molecular dynamics with solvent effects: a LR-TDDFT QM/MM study of ruthenium (II) tris (bipyridine) in water. Chem Phys 391:101

    Article  Google Scholar 

  • Tozer D (2003) Relationship between long-range charge-transfer excitation energy error and integer discontinuity in Kohn–Sham theory. J Chem Phys 119:12697

    Article  ADS  Google Scholar 

  • Tozer DJ, Handy NC (2000) On the determination of excitation energies using density functional theory. Phys Chem Chem Phys 2(10):2117–2121

    Article  Google Scholar 

  • Tully JC (1990) Molecular dynamics with electronic transitions. J Chem Phys 93:1061

    Article  ADS  Google Scholar 

  • Tully JC (1998) Mixed quantum-classical dynamics. Faraday Discuss 110:407

    Article  ADS  Google Scholar 

  • Ullrich CA (2012) Time-dependent density-functional theory. Oxford, Oxford University Press

    MATH  Google Scholar 

  • Ullrich CA, Tokatly IV (2006) Nonadiabatic electron dynamics in time-dependent density-functional theory. Phys Rev B 73:235102. http://link.aps.org/doi/10.1103/PhysRevB.73.235102

    Article  ADS  Google Scholar 

  • Vacher M, Bearpark MJ, Robb MA, Malhado JP (2017) Electron dynamics upon ionization of polyatomic molecules: Coupling to quantum nuclear motion and decoherence. Phys Rev Lett 118(8):083001

    Article  ADS  Google Scholar 

  • van Leeuwen R (1998) Causality and symmetry in time-dependent density-functional theory. Phys Rev Lett 80(6):1280–1283

    Article  ADS  Google Scholar 

  • van Leeuwen R (1999) Mapping from densities to potentials in time-dependent density-functional theory. Phys Rev Lett 82(19):3863–3866

    Article  ADS  Google Scholar 

  • Van Vleck JH (1928) The correspondence principle in the statistical interpretation of quantum mechanics. Proc Nat Aca Sci USA 14(2):178

    Article  ADS  MATH  Google Scholar 

  • Vignale G (2008) Real-time resolution of the causality paradox of time-dependent density-functional theory. Phys Rev A 77(6):062511

    Article  ADS  Google Scholar 

  • Virshup AM, Punwong C, Pogorelov TV, Lindquist BA, Ko C, Martínez TJ (2008) Photodynamics in complex environments: ab initio multiple spawning quantum mechanical/molecular mechanical dynamics. J Phys Chem B 113(11):3280–3291

    Article  Google Scholar 

  • Wang H, Thoss M (2003) Multilayer formulation of the multiconfiguration time-dependent Hartree theory. J Chem Phys 119:1289

    Article  ADS  Google Scholar 

  • Wang F, Ziegler T (2005) A simplified relativistic time-dependent density-functional theory formalism for the calculations of excitation energies including spin-orbit coupling effect. J Chem Phys 123(15):154102

    Article  ADS  Google Scholar 

  • Wiggins P, Williams JAG, Tozer DJ (2009) Excited state surfaces in density functional theory: a new twist on an old problem. J Chem Phys 131(9):091101

    Article  ADS  Google Scholar 

  • Wijewardane HO, Ullrich CA (2008) Real-time electron dynamics with exact-exchange time-dependent density-functional theory. Phys Rev Lett 100:056404. http://link.aps.org/doi/10.1103/PhysRevLett.100.056404

    Article  ADS  Google Scholar 

  • Worth G, Robb M, Burghardt I (2004) A novel algorithm for non-adiabatic direct dynamics using variational Gaussian wavepackets. Faraday Discuss 127:307–323

    Article  ADS  Google Scholar 

  • Worth GA, Robb MA, Lasorne B (2008) Solving the time-dependent Schrödinger equation for nuclear motion in one step: direct dynamics of non-adiabatic systems. Mol Phys 106(16–18): 2077–2091

    Article  ADS  Google Scholar 

  • Wyatt RE, Lopreore CL, Parlant G (2001) Electronic transitions with quantum trajectories. J Chem Phys 114(12):5113–5116

    Article  ADS  Google Scholar 

  • Yagi K, Takatsuka K (2005) Nonadiabatic chemical dynamics in an intense laser field: electronic wave packet coupled with classical nuclear motions. J Chem Phys 123(22):224103

    Article  ADS  Google Scholar 

  • Yanai T, Tew D, Handy N (2004) A new hybrid exchange-correlation functional using the coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51

    Article  ADS  Google Scholar 

  • Yang S, Coe JD, Kaduk B, Martínez TJ (2009) An “optimal” spawning algorithm for adaptive basis set expansion in nonadiabatic dynamics. J Chem Phys 130(13):04B606

    Google Scholar 

  • Zangwill A, Soven P (1980) Density-functional approach to local-field effects in finite systems: photoabsorption in the rare gases. Phys Rev A 21(5):1561

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. K. U. Gross .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Agostini, F., Curchod, B.F.E., Vuilleumier, R., Tavernelli, I., Gross, E.K.U. (2018). TDDFT and Quantum-Classical Dynamics: A Universal Tool Describing the Dynamics of Matter. In: Andreoni, W., Yip, S. (eds) Handbook of Materials Modeling . Springer, Cham. https://doi.org/10.1007/978-3-319-42913-7_43-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42913-7_43-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42913-7

  • Online ISBN: 978-3-319-42913-7

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    TDDFT and Quantum-Classical Dynamics: A Universal Tool Describing the Dynamics of Matter
    Published:
    17 September 2018

    DOI: https://doi.org/10.1007/978-3-319-42913-7_43-2

  2. Original

    TDDFT and Quantum-Classical Dynamics: A Universal Tool Describing the Dynamics of Matter
    Published:
    21 June 2018

    DOI: https://doi.org/10.1007/978-3-319-42913-7_43-1