Skip to main content

Exploring Potential Energy Surfaces with Saddle Point Searches

  • Living reference work entry
  • First Online:

Abstract

The energy surface of an atomic scale representation of a material contains the essential information needed to determine the structure and time evolution of the system at a given temperature. Local minima on the surface represent (meta)stable states of the system, while first-order saddle points characterize the mechanisms of transitions between states. While many well-known methods make it relatively easy to find local minima, the identification of saddle points is more challenging. In this chapter, methods for finding saddle points are discussed as well as applications to materials simulations. Both doubly constrained search methods, where the final and the initial state minima are specified, and singly constrained search methods, where only the initial state is specified, are discussed. The focus is on a classical description of the atom coordinates, but saddle points corresponding to quantum mechanical tunneling are also mentioned. An extension to magnetic systems where the energy surface depends on the orientation of the magnetic vectors is sketched.

This is a preview of subscription content, log in via an institution.

References

  • Andersen HC (1980) Molecular dynamics simulations at constant pressure and/or temperature. J Chem Phys 72(4):2384–2393

    Article  ADS  Google Scholar 

  • Andersson S, Nyman G, Arnaldsson A, Manthe U, Jónsson H (2009) Comparison of quantum dynamics and quantum transition state theory estimates of the H + CH4 reaction rate. J Phys Chem A 113:4468

    Article  Google Scholar 

  • Antropov VP, Katsnelson MI, Harmon BN, van Schilfgaarde M, Kusnezov D (1996) Spin dynamics in magnets: equation of motion and finite temperature effects. Phys Rev B 54:1019

    Article  ADS  Google Scholar 

  • Ásgeirsson V, Jónsson H (2018) Efficient evaluation of atom tunneling combined with electronic structure calculations. J Chem Phys 148:102334

    Article  ADS  Google Scholar 

  • Benderskii VA, Makarov DE, Wight CA (1994) Chemical dynamics at low temperatures. Adv Chem Phys 88:1

    Google Scholar 

  • Bessarab PF, Uzdin VM, Jónsson H (2012) Harmonic transition state theory of thermal spin transitions. Phys Rev B 85:184409

    Article  ADS  Google Scholar 

  • Bessarab PF, Uzdin VM, Jónsson H (2013) Potential energy surfaces and rates of spin transitions. Zeitschrift für Physikalische Chemie 227:1543

    Google Scholar 

  • Bessarab PF, Uzdin VM, Jónsson H (2015) Method for finding mechanism and activation energy of magnetic transitions, applied to skyrmion and antivortex annihilation. Comput Phys Commun 196:335

    Article  ADS  Google Scholar 

  • Bitzek E, Koskinen P, G’́ahler F, Moseler M, Gumbasch P (2006) Structural relaxation made simple. Phys Rev Lett 97(17):170201

    Google Scholar 

  • Bligaard T, Jónsson H (2005) Optimization of hyperplanar transition states: application to 2D test problems. Comput Phys Commun 169:284

    Article  ADS  Google Scholar 

  • Bohner MU, Meisner J, Kastner J (2013) A quadratically-converging nudged elastic band optimizer. J Chem Theory Comput 9(8):3498–3504

    Article  Google Scholar 

  • Braun H-B (2012) Topological effects in nanomagnetism: from superparamagnetism to chiral quantum solitons. Adv Phys 61(1):1–116

    Article  ADS  Google Scholar 

  • Chill ST, Welborn M, Terrell R, Zhang L, Berthet J-C, Pedersen A, Jónsson H, Henkelman G (2014a) EON: software for long time simulations of atomic scale systems. Model Simul Mater Sci Eng 22:055002

    Article  ADS  Google Scholar 

  • Chill ST, Stevenson J, Ruehle V, Cheng S, Xiao P, Farrel JD, Wales DJ, Henkelman G (2014b) Benchmarks for characterization of minima, transition states, and pathways in atomic, molecular, and condensed matter systems. J Chem Theory Comput 10:5476–5482

    Article  Google Scholar 

  • Chu J-W, Trout BL, Brooks BR (2003) A super-linear minimization scheme for the nudged elastic band method. J Chem Phys 119(24):12708–12717

    Article  ADS  Google Scholar 

  • Ciccotti G, Ferrario M, Laria D, Kapral R (1995) Simulation of classical and quantum activated processes in the condensed phase. In: Reatto L, Manghi F (ed) Progress in computational physics of matter: methods, software and applications. World Scientific, Singapore, p 150

    Chapter  Google Scholar 

  • Einarsdóttir DM, Arnaldsson A, Óskarsson F, Jónsson H (2012) Path optimization with application to tunneling. Lect Notes Comput Sci 7134:45

    Article  Google Scholar 

  • Eyring H (1935) The activated complex in chemical reactions. J Chem Phys 3:107

    Article  ADS  Google Scholar 

  • Feynman RP, Hibbs AR (1965) Quantum mechanics and path integrals. McGraw-Hill, New York

    MATH  Google Scholar 

  • Gillan MJ (1987) Quantum-classical crossover of the transition rate in the damped double well. Phys C Solid State Phys 20(24):3621–3641

    Article  ADS  Google Scholar 

  • Goumans TPM, Catlow CRA, Brown WA, Kästner J, Sherwood P (2009) An embedded cluster study of the formation of water on interstellar dust grains. Phys Chem Chem Phys 11(26):5431–5436

    Article  Google Scholar 

  • Gutiérrez MP, Argáez C, Jónsson H (2016) Improved minimum mode following method for finding first order saddle points. J Chem Theory Comput 13(1):125–134

    Article  Google Scholar 

  • Hele TJH, Althorpe SC (2013) Derivation of a true (t → 0+) quantum transition-state theory. I. Uniqueness and equivalence to ring-polymer molecular dynamics transition-state-theory. J Chem Phys 138:084108

    Google Scholar 

  • Henkelman G, Jónsson H (1999) A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. J Chem Phys 111:7010

    Article  ADS  Google Scholar 

  • Henkelman G, Jónsson H (2000) Improved tangent estimate in the NEB method for finding minimum energy paths and saddle points. J Chem Phys 113(22):9978–9985 [Note: There is a typographical error in the Appendix, 2V i+1 − V i should be − 2(V i+1 − V i)]

    Google Scholar 

  • Henkelman G, Jónsson H (2001) Theoretical calculations of dissociative adsorption of methane on an Ir(111) surface. Phys Rev Lett 86:664

    Article  ADS  Google Scholar 

  • Henkelman G, Uberuaga BP, Jónsson H (2000a) A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys 113(22):9901–9904

    Article  ADS  Google Scholar 

  • Henkelman G, Jóhannesson G, Jónsson H (2000b) Theoretical methods in condensed phase chemistry, methods for finding saddle points and minimum energy paths. In: Schwartz SD (ed) Progress in theoretical chemistry and physics. Kluwer Academic Publishers, Dordrecht, pp 269–302

    Google Scholar 

  • Henkelman G, Arnaldsson A, Jónsson H (2006) Theoretical calculations of CH4 and H2 associative desorption from Ni(111): could subsurface hydrogen play an important role? J Chem Phys 124:044706

    Article  ADS  Google Scholar 

  • Jóhannesson GH, Jónsson H (2001) Optimization of hyperplanar transition states. J Chem Phys 115:9644

    Article  ADS  Google Scholar 

  • Jónsson H, Mills G, Jacobsen KW (1998) Nudged elastic band method for finding minimum energy paths of transitions. In: Berne BJ (ed) Classical and quantum dynamics in condensed phase simulations. World Scientific, Singapore, pp 385–404

    Chapter  Google Scholar 

  • Justo JF, Bazant MZ, Kaxiras E, Bulatov VV, Yip S (1998) Interatomic potential for silicon defects and disordered phases. Phys Rev B 58:2539

    Article  ADS  Google Scholar 

  • Keck JC (1967) Variational theory of reaction rates. J Chem Phys 13:85

    Google Scholar 

  • Koistinen O-P, Maras E, Vehtari A, Jónsson H (2016) Minimum energy path calculations with Gaussian process regression. Nanosyst Phys Chem Math 7:925

    Article  Google Scholar 

  • Koistinen O-P, Dabgjartsdóttir F, Ásgeirsson V, Vehtari A, Jónsson H (2017) Nudged elastic band calculations accelerated with gaussian process regression. J Chem Phys 147(15):152720

    Article  ADS  Google Scholar 

  • Kolsbjerg EL, Groves MN, Hammer B (2016) An automated nudged elastic band. J Chem Phys 145(9):094107

    Article  ADS  Google Scholar 

  • Malek R, Mousseau N (2000) Dynamics of Lennard-Jones clusters: a characterization of the activation-relaxation technique. Phys Rev E 62(6):7723–7728

    Article  ADS  Google Scholar 

  • Maras E, Trushin O, Stukowski A, Ala-Nissila T, Jónsson H (2016) Global transition path search for dislocation formation in Ge on Si(001). Comput Phys Commun 205:13

    Article  ADS  Google Scholar 

  • Maras E, Pizzagalli L, Ala-Nissila T, Jónsson H (2017) Atomic scale formation mechanism of edge dislocation relieving lattice strain in a GeSi overlayer on Si(001). Sci Rep 7:11966

    Article  ADS  Google Scholar 

  • Maronsson JB, Jónsson H, Vegge T (2012) A method for finding the ridge between saddle points applied to rare event rate estimates. Phys Chem Chem Phys 14:2884

    Article  Google Scholar 

  • Melander M, Laasonen K, Jónsson H (2015) Removing external degrees of freedom from transition-state search methods using quaternions. J Chem Theory Comput 11(3):1055–1062

    Article  Google Scholar 

  • Mills G, Jónsson H, Schenter GK (1995) Reversible work based transition state theory: application to H2 dissociative adsorption. Surf Sci 324:305–337

    Article  ADS  Google Scholar 

  • Mills G, Schenter GK, Makarov DE, Jónsson H (1997) Generalized path integral based quantum transition state theory. Chem Phys Lett 278:91

    Article  ADS  Google Scholar 

  • Mills G, Schenter GK, Makarov DE, Jónsson H (1998) RAW quantum transition state theory. In: Berne BJ, Ciccotti G, Coker DF (eds) Classical and quantum dynamics in condensed phase simulations. World Scientific, Singapore, pp 405–421

    Chapter  Google Scholar 

  • Müller GP, Bessarab PF, Vlasov FM, Lux F, Kiselev NS, Blügel S, Uzdin VM, Jónsson H Duplication, collapse and escape of magnetic skyrmions revealed using a systematic saddle point search method. arXiv:1807.11550v2 [cond-mat.mes-hall]

    Google Scholar 

  • Munro LJ, Wales DJ (1999) Defect migration in crystalline silicon. Phys Rev B 59:3969

    Article  ADS  Google Scholar 

  • Nocedal J (1980) Updating quasi-Newton matrices with limited storage. Math Comput 35(151):773–782

    Article  MathSciNet  Google Scholar 

  • Olsen RA, Kroes G-J, Henkelman G, Arnaldsson A, Jónsson H (2004) Comparison of methods for finding saddle points without knowledge of the final states. J Chem Phys 121(20):9776–9792

    Article  ADS  Google Scholar 

  • Pedersen A, Jónsson H (2009) Simulations of hydrogen diffusion at grain boundaries in aluminum. Acta Materialia 57:4036

    Article  Google Scholar 

  • Pedersen A, Pizzagalli L, Jónsson H (2009a) Finding mechanism of transitions in complex systems: formation and migration of dislocation kinks in a silicon crystal. J Phys Condens Matter 21:084210

    Article  ADS  Google Scholar 

  • Pedersen A, Henkelman G, Schioetz J, Jónsson H (2009b) Long timescale simulation of a grain boundary in copper. New J Phys 11:073034

    Article  Google Scholar 

  • Pedersen A, Berthet J-C, Jónsson H (2012) Simulated annealing with coarse graining and distributed computing. Lect Notes Comput Sci 7134:34

    Article  Google Scholar 

  • Pedersen A, Karssemeijer LJ, Cuppen HM, Jónsson H (2015) Long-timescale simulations of H2O admolecule diffusion on Ice Ih(0001) surfaces. J Phys Chem C 119:16528

    Article  Google Scholar 

  • Peters B (2017) Reaction rate theory and rare events. Elsevier Science & Technology, Amsterdam

    Google Scholar 

  • Peterson AA (2016) Acceleration of saddle-point searches with machine learning. J Chem Phys 145(7):074106

    Article  ADS  Google Scholar 

  • Plasencia M, Pedersen A, Arnaldsson A, Berthet J-C, Jónsson H (2014) Geothermal model calibration using a global minimization algorithm based on finding saddle points as well as minima of the objective function. Comput Geosci 65:110

    Article  ADS  Google Scholar 

  • Richardson JO (2016) J Chem Phys 144:114106

    Article  ADS  Google Scholar 

  • Richardson JO, Althorpe SC (2009) Ring-polymer molecular dynamics rate-theory in the deep-tunneling regime: connection with semiclassical instanton theory. J Chem Phys 131:214106

    Article  ADS  Google Scholar 

  • Rommel JB, Kästner J (2011) Adaptive integration grids in instanton theory improve the numerical accuracy at low temperature. J Chem Phys 134:184107

    Article  ADS  Google Scholar 

  • Sheppard D, Terrell R, Henkelman G (2008) Optimization methods for finding minimum energy paths. J Chem Phys 128(13):134106

    Article  ADS  Google Scholar 

  • Sheppard D, Xiao P, Chemelewski W, Johnson DD, Henkelman G (2012) A generalized solid-state nudged elastic band method. J Chem Phys 136(7):074103

    Article  ADS  Google Scholar 

  • Smidstrup S, Pedersen A, Stokbro K, Jónsson H (2014) Improved initial guess for minimum energy path calculations. J Chem Phys 140(21):214106

    Article  ADS  Google Scholar 

  • Sørensen MR, Jacobsen KW, Jónsson H (1996) Thermal diffusion processes in metal tip-surface interactions: contact formation and adatom mobility. Phys Rev Letters 77(25):5067–5070

    Google Scholar 

  • Trygubenko SA, Wales DJ (2004) A doubly nudged elastic band method for finding transition states. J Chem Theory Comput 120(5):2082–2094

    Google Scholar 

  • Uzdin VM, Potkina MN, Lobanov IS, Bessarab PF, Jónsson H (2018) Energy surface and lifetime of magnetic skyrmions. J Magn Magn Mater 459:236–240

    Article  ADS  Google Scholar 

  • Vineyard GH (1957) Frequency factors and isotope effects in solid state rate processes. J Phys Chem Solids 3:121

    Article  ADS  Google Scholar 

  • Voter A, Doll JD (1985) Dynamical corrections to transition state theory for multistate systems: surface self-diffusion in the rare-event regime. J Chem Phys 82(1):80–92

    Article  ADS  Google Scholar 

  • Wigner E (1938) The transition state method. Trans Faraday Soc 34:29

    Article  Google Scholar 

  • Wikfeldt KTh, Pedersen A, Karssemeijer LJ, Cuppen HM, Jónsson H (2014) Molecular reordering processes on ice (0001) surfaces from long timescale simulations. J Chem Phys 141:234706

    Article  ADS  Google Scholar 

  • Weinan E, Weiqing R, Vanden-Eijnden E (2002) String method for the study of rare events. Phys Rev B 66(4):052301

    ADS  MATH  Google Scholar 

  • Zarkevich NA, Johnson DD (2015) Nudged-elastic band method with two climbing images: finding transition states in complex energy landscapes. J Chem Phys 142(2):024106

    Article  ADS  Google Scholar 

  • Zhang J, Zhang H, Ye H, Zheng Y (2016) Free-end adaptive nudged elastic band method for locating transition states in minimum energy path calculation. J Chem Phys 145(9):094104

    Article  ADS  Google Scholar 

  • Zhu T, Li J, Samanta A, Kim HG, Suresh S (2007) Interfacial plasticity governs strain rate sensitivity and ductility in nanostructured metals. Proc Natl Acad Sci USA 104(9):3031–3036

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Icelandic Research Fund (grant 185405-051) and by the Academy of Finland (grant 278260). V.Á. acknowledges support from a Doctoral Grant of the University of Iceland Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hannes Jónsson .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ásgeirsson, V., Jónsson, H. (2018). Exploring Potential Energy Surfaces with Saddle Point Searches. In: Andreoni, W., Yip, S. (eds) Handbook of Materials Modeling . Springer, Cham. https://doi.org/10.1007/978-3-319-42913-7_28-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42913-7_28-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42913-7

  • Online ISBN: 978-3-319-42913-7

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics