Dislocation Analysis Tool for Atomistic Simulations

  • Alexander StukowskiEmail author
Living reference work entry


Precise analysis and meaningful visualization of dislocation structures in molecular dynamics simulations are important steps toward physical insights. This chapter provides an introduction to the dislocation extraction algorithm (DXA), which is a computational method for identifying and quantifying dislocations in atomistic crystal models. It builds a bridge between the atomistic world of crystal defects and the discrete line picture of classical dislocation theory.


  1. Alabd Alhafez I, Ruestes CJ, Urbassek HM (2017) Size of the plastic zone produced by nanoscratching. Tribol Lett 66(1):20. CrossRefGoogle Scholar
  2. Alhafez IA, Ruestes CJ, Gao Y, Urbassek HM (2016) Nanoindentation of hcp metals: a comparative simulation study of the evolution of dislocation networks. Nanotechnology 27(4):045706. ADSCrossRefGoogle Scholar
  3. Bulatov VV, Cai W (2006) Computer simulations of dislocations. Oxford University Press, Oxford/New YorkzbMATHGoogle Scholar
  4. Faken D, Jonsson H (1994) Systematic analysis of local atomic structure combined with 3D computer graphics. Comput Mater Sci 2(2):279–286CrossRefGoogle Scholar
  5. Frank FC (1951) LXXXIII. Crystal dislocations – elementary concepts and definitions. Philos Mag Ser 7 42(331):809–819CrossRefGoogle Scholar
  6. Gao Y, Ruestes CJ, Tramontina DR, Urbassek HM (2015) Comparative simulation study of the structure of the plastic zone produced by nanoindentation. J Mech Phys Solids 75(Suppl C):58–75.,
  7. Honeycutt JD, Andersen HC (1987) Molecular dynamics study of melting and freezing of small Lennard-Jones clusters. J Phys Chem 91(19):4950–4963CrossRefGoogle Scholar
  8. Larsen PM, Schmidt S, Schiøtz J (2016) Robust structural identification via polyhedral template matching. Model Simul Mater Sci Eng 24(5):055007. ADSCrossRefGoogle Scholar
  9. Maras E, Trushin O, Stukowski A, Ala-Nissila T, Jónsson H (2016) Global transition path search for dislocation formation in Ge on Si(001). Comput Phys Commun 205(Suppl C):13–21.,
  10. Remington T, Ruestes C, Bringa E, Remington B, Lu C, Kad B, Meyers M (2014) Plastic deformation in nanoindentation of tantalum: a new mechanism for prismatic loop formation. Acta Mater. 78(Suppl C):378–393.,
  11. Ruestes C, Bringa E, Stukowski A, Nieva JR, Tang Y, Meyers M (2014) Plastic deformation of a porous bcc metal containing nanometer sized voids. Comput Mater Sci 88(Suppl C):92–102.,
  12. Stukowski A (2010) Visualization and analysis of atomistic simulation data with OVITO – the open visualization tool. Model Simul Mater Sci Eng 18(1):015012. ADSCrossRefGoogle Scholar
  13. Stukowski A (2012) Structure identification methods for atomistic simulations of crystalline materials. Model Simul Mater Sci Eng 20(4):045021. ADSCrossRefGoogle Scholar
  14. Stukowski A (2014) A triangulation-based method to identify dislocations in atomistic models. J Mech Phys Solids 70:314–319.,
  15. Stukowski A, Albe K (2010) Extracting dislocations and non-dislocation crystal defects from atomistic simulation data. Model Simul Mater Sci Eng 18(8):085001. ADSCrossRefGoogle Scholar
  16. Stukowski A, Albe K, Farkas D (2010) Nanotwinned fcc metals: strengthening versus softening mechanisms. Phys Rev B 82:224103. ADSCrossRefGoogle Scholar
  17. Stukowski A, Bulatov V, Arsenlis A (2012) Automated identification and indexing of dislocations in crystal interfaces. Model Simul Mater Sci 20:085007ADSCrossRefGoogle Scholar
  18. Trushin O, Maras E, Stukowski A, Granato E, Ying SC, Jónsson H, Ala-Nissila T (2016) Minimum energy path for the nucleation of misfit dislocations in Ge/Si(0 0 1) heteroepitaxy. Model Simul Mater Sci Eng 24(3):035007. ADSCrossRefGoogle Scholar
  19. Vatne IR, Stukowski A, Thaulow C, østby E, Marian J (2013) Three-dimensional crack initiation mechanisms in bcc-fe under loading modes I, II and III. Mater Sci Eng A 560(Suppl C):306–314.,
  20. Voyiadjis GZ, Yaghoobi M (2015) Large scale atomistic simulation of size effects during nanoindentation: dislocation length and hardness. Mater Sci Eng A 634(Suppl C):20–31.,
  21. Yaghoobi M, Voyiadjis GZ (2016) Atomistic simulation of size effects in single-crystalline metals of confined volumes during nanoindentation. Comput Mater Sci 111(Suppl C):64–73.,
  22. Zepeda-Ruiz LA, Stukowski A, Oppelstrup T, Bulatov VV (2017) Probing the limits of metal plasticity with molecular dynamics simulations. Nature 550:492ADSCrossRefGoogle Scholar
  23. Zhang L, Lu C, Tieu K, Su L, Zhao X, Pei L (2017) Stacking fault tetrahedron induced plasticity in copper single crystal. Mater Sci Eng A 680(Suppl C):27–38.,

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Materials Modeling Division, Institute of Materials ScienceTechnische Universität DarmstadtDarmstadtGermany

Section editors and affiliations

  • Wei Cai
    • 1
  • Somnath Ghosh
    • 2
  1. 1.Department of Mechanical EngineeringStanford UniversityStanfordUSA
  2. 2.Departments of Civil Engineering, Mechanical Engineering, and Materials Science and EngineeringJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations