Skip to main content

Advances in Melt Electrospinning Technique

  • Living reference work entry
  • First Online:
Handbook of Nanofibers

Abstract

Melt electrospinning is a technique capable of producing micro- and nanofibers with the advantages of being eco-friendly, cost-effective, and applied in many areas such as nonwovens with high performance, biomedicine, high-efficiency filtration, oil sorption, and many others. This chapter describes the current trends on melt electrospinning including advancements in the technique, processing parameters, materials, apparatus, and areas of applications. Melt differential electrospinning which is a new technique for nanofiber production invented by our innovation team of advanced polymer processing has been introduced. Future perspectives on melt electrospinning are also proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Ramakrishna S, Fujihara K, Teo WE et al. (2005) An introduction to electrospinning and nanofibers. World Scientific

    Google Scholar 

  2. Li F, Zhao Y, Song Y (2010) Core-shell nanofibers: nano channel and capsule by coaxial electrospinning. In: Nanofibers. InTech

    Google Scholar 

  3. Norton CL (1936) Method of and apparatus for producing fibrous or filamentary material: US, US2048651

    Google Scholar 

  4. Larrondo L, Manley RSJ (1981) Electrostatic fiber spinning from polymer melts. I. Experimental observations on fiber formation and properties. J Polym Sci B Polym Phys 19(6):909–920

    Article  Google Scholar 

  5. Larrondo L, Manley RSJ (1981) Electrostatic fiber spinning from polymer melts. II. Examination of the flow field in an electrically driven jet. J Polym Sci Polym Phys Ed 19(6):921–932

    Article  Google Scholar 

  6. Larrondo L, Manley RSJ (1981) Electrostatic fiber spinning from polymer melts. III. Electrostatic deformation of a pendant drop of polymer melt. J Polym Sci Polym Phys Ed 19(6):933–940

    Article  Google Scholar 

  7. Hochleitner G, Jüngst T, Brown TD et al (2015) Additive manufacturing of scaffolds with sub-micron filaments via melt electrospinning writing. Biofabrication 7(3):035002

    Article  Google Scholar 

  8. Melchels FPW, Domingos MAN, Klein TJ et al (2012) Additive manufacturing of tissues and organs. Prog Polym Sci 37(8):1079–1104

    Article  Google Scholar 

  9. Peltola SM, Melchels FP, Grijpma DW et al (2008) A review of rapid prototyping techniques for tissue engineering purposes. Ann Med 40(4):268–280

    Article  Google Scholar 

  10. Brown TD, Dalton PD, Hutmacher DW (2016) Melt electrospinning today: an opportune time for an emerging polymer process. Prog Polym Sci 56:116–166

    Article  Google Scholar 

  11. Lyons J, Co F (2005) Melt electrospinning of polymers: a review. Polym News 30(6):170–178

    Article  Google Scholar 

  12. Hutmacher DW, Dalton PD (2011) Melt electrospinning. Chem Asian J 6(1):44–56

    Article  Google Scholar 

  13. Lyons J, Li C, Ko F (2004) Melt-electrospinning part I: processing parameters and geometric properties. Polymer 45(22):7597–7603

    Article  Google Scholar 

  14. Lyons J (2004) Melt-electrospinning of thermoplastic polymers: an experimental and theoretical analysis. PhD Dissertation, Drexel University, Philadelphia

    Google Scholar 

  15. Zhmayev Y, Joo Y, Park J et al. (2015) Controlling the dispersion and configuration of nanofillers in electrically driven polymer jets with and without air flow. APS Meeting. APS Meeting Abstracts

    Google Scholar 

  16. Ellison CJ, Phatak A, Giles DW, Macosko CW, Bates FS (2007) Melt blown nanofibers: fiber diameter distributions and onset of fiber breakup. Polymer 48:3306–3316

    Article  Google Scholar 

  17. Ogata N, Yamaguchi S, Shimada N et al (2007) Poly(lactide) nanofibers produced by a melt-electrospinning system with a laser melting device. J Appl Polym Sci 104(3):1640–1645

    Article  Google Scholar 

  18. Jian F, Li Z, David S et al (2012) Needleless melt electrospinning of polypropylene nano fibers. J Nanomater 2012:382639

    Article  Google Scholar 

  19. Komarek M, Martinova L (2010) Design and evaluation of melt electrospinning electrodes. Olomouc, Czech Republic, EU, 10:12–14

    Google Scholar 

  20. Liu Y, Deng RJ, Hao MF, Yan H, Yang WM (2010) Orthogonal design study on factors effecting on fibers diameter of melt electrospinning. Polym Eng Sci 50(10):2074–2078

    Article  Google Scholar 

  21. Hao MF, Liu Y, He XT et al (2011) Experimental study of melt electrospinning in parallel electrical field. Adv Mater Res 221:111–116

    Article  Google Scholar 

  22. Dalton PD, Grafahrend D, Klinkhammer K et al (2007) Electrospinning of polymer melts: phenomenological observations. Polymer 48(23):6823–6833

    Article  Google Scholar 

  23. Hacker C, Karahaliloglu Z, Seide G et al (2014) Functionally modified, melt-electrospun thermoplastic polyurethane mats for wound-dressing applications. J Appl Polym Sci 131(8):1179–1181

    Article  Google Scholar 

  24. Yoon YI, Park KE, Lee SJ et al (2013) Fabrication of microfibrous and nano-/microfibrous scaffolds: melt and hybrid electrospinning and surface modification of poly(L-lactic acid) with plasticizer. Biomed Res Int 2013(2013):309048

    Google Scholar 

  25. Kim SJ, Da HJ, Park WH et al (2010) Fabrication and characterization of 3-dimensional PLGA nanofiber/microfiber composite scaffolds. Polymer 51(6):1320–1327

    Article  Google Scholar 

  26. Vaquette C, Fan W, Xiao Y et al (2012) A biphasic scaffold design combined with cell sheet technology for simultaneous regeneration of alveolar bone/periodontal ligament complex. Biomaterials 33(22):5560

    Article  Google Scholar 

  27. Karahaliloglu Z, Hacker C, Demirbilek M et al (2014) Photocatalytic performance of melt-electrospun polypropylene fabric decorated with TiO2 nanoparticles. J Nanopart Res 16(9):1–14

    Article  Google Scholar 

  28. Ren J, Blackwood KA, Doustgani A et al (2014) Melt-electrospun polycaprolactone strontium-substituted bioactive glass scaffolds for bone regeneration. J Biomed Mater Res A 102(9):3140–3153

    Article  Google Scholar 

  29. Brown TD, Edin F, Detta N et al (2014) Melt electrospinning of poly(ε-caprolactone) scaffolds: phenomenological observations associated with collection and direct writing. Mater Sci Eng C 45:698–708

    Article  Google Scholar 

  30. Li F, Zhao Y, Wang S et al (2009) Thermochromic core–shell nanofibers fabricated by melt coaxial electrospinning. J Appl Polym Sci 112(1):269–274

    Article  Google Scholar 

  31. Hochleitner G, Hümmer JF, Luxenhofer R et al (2014) High definition fibrous poly(2-ethyl-2-oxazoline) scaffolds through melt electrospinning writing. Polymer 55(20):5017–5023

    Article  Google Scholar 

  32. Fong H, Chun I, Reneker DH (1999) Beaded nanofibers formed during electrospinning. Polymer 40(16):4585–4592

    Article  Google Scholar 

  33. Taylor G (1969) Electrically driven jets. Proc R Soc Lond A Math Phys Sci 313(1515):453–475

    Article  Google Scholar 

  34. Hendricks CD, Carson RS, Hogan JJ et al (1964) Photo-micrography of electrically sprayed heavy particles. AIAA J 2(4):733–737

    Article  Google Scholar 

  35. Mingfeng H, Yong L, Deng R et al (2010) Research on typical materials by melt electrospinning. Eng Plast Appl 38(3):24–27

    Google Scholar 

  36. Ogata N, Shimada N, Yamaguchi S et al (2007) Melt electrospinning of poly(ethylene terephthalate) and polyalirate. J Appl Polym Sci 105(3):1127–1132

    Article  Google Scholar 

  37. Ogata N, Lu G, Iwata T et al (2007) Effects of ethylene content of poly(ethylene-co-vinyl alcohol) on diameter of fibers produced by melt-electrospinning. J Appl Polym Sci 104(2):1368–1375

    Article  Google Scholar 

  38. Nayak R, Kyratzis IL, Truong YB et al (2012) Melt-electrospinning of polypropylene with conductive additives. J Mater Sci 47(17):6387–6396

    Article  Google Scholar 

  39. Ratthapol R, Darrell HR (2003) Electrospinning process of molten polypropylene in vacuum. J Met Mater Miner 12(2):81–87

    Google Scholar 

  40. Detta N, Toby DB, Fredrik KE et al (2010) Melt electrospinning of polycaprolactone and its blends with poly(ethylene glycol). Polym Int 59(11):1558–1562

    Article  Google Scholar 

  41. Song CS, Jo KJ, Jo NK et al (2009) Effects of the spin line temperature profile and melt index of poly(propylene) on melt-electrospinning. Polym Eng Sci 49(2):391–396

    Article  Google Scholar 

  42. Laudenslager MJ, Sigmund WM (2012) electrospinning. In: Encyclopedia of Nanotechnology. Springer, Amsterdam, pp 769–775

    Google Scholar 

  43. Hochleitner G, Youssef A, Hrynevich A et al (2016) Fibre pulsing during melt electrospinning writing. Bionanomaterials 17(3–4):159–171

    Google Scholar 

  44. Nandana BJ, Subhas CK (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28(3):325–347

    Article  Google Scholar 

  45. Deng R, Liu Y, Yang W (2009) Melt electrospinning of low-density polyethylene having a low-melt flow index. J Appl Polym Sci 114:166–175

    Article  Google Scholar 

  46. Zhmayev E, Cho D, Joo YL (2010) Modeling of melt electrospinning for semi-crystalline polymers. Polymer 51(1):274–290

    Article  Google Scholar 

  47. Huajun Z, Green TB, Joo YL (2006) The thermal effects on electrospinning of polylactic acid melt. Polymer 47(21):7497–7505

    Article  Google Scholar 

  48. Xiuyan L, Wang Z, Jiaona W et al (2014) Preparation and properties of TPU micro/nanofibers by a laser melt-electrospinning system. Polym Eng Sci 54(6):1412–1417

    Article  Google Scholar 

  49. Sarkar K, Gomez C, Zambrano S et al (2010) Electrospinning to Forcespinning™. Mater Today 13(11):12–14

    Article  Google Scholar 

  50. Li H, Chen H, Zhong X et al (2014) Interjet distance in needleless melt differential electrospinning with umbellate nozzles. J Appl Polym Sci 131(15):40515.1–40515.8

    Google Scholar 

  51. Aoki S, Hideaki T, Koji N et al (2010) Poly (ethylene-co-vinyl alcohol) and Nylon 6/12 nanofibers produced by melt electrospinning system equipped with a line-like laser beam melting device. J Appl Polym Sci 116(5):2998–3004

    Google Scholar 

  52. Yang W, Zhong X, Li H et al (2013) A nozzle based on melt differential electrospinning. China:201310159570.0, 07, 31

    Google Scholar 

  53. Minglei H (2012) Study of rotor-type electrostatic spinning device and its performance. Donghua University, Shanghai, pp 19–23

    Google Scholar 

  54. Yarin, Zussman E (2004) Upward needleless electrospinning of multiple nanofibers. Polymer 45(9):2977–2980

    Article  Google Scholar 

  55. Nagarajan MT (2010) Unconfined fluid electrospun into high quality nanofibers from a plate edge. Polymer 51(21):4928–4936

    Article  Google Scholar 

  56. Shan T, Yongchun Z, Xinhou W (2010) Splashing needleless electrospinning of nanofibers. Polym Eng Sci 50(11):2251–2256

    Google Scholar 

  57. Liu Y, He JH (2007) Bubble electrospinning for mass production of nanofibers. Int J Nonlinear Sci Numer Simul 8(3):393–396

    Article  Google Scholar 

  58. Guojun J, Sai Z, Xiaohong Q (2013) High throughput of quality nanofibers via one stepped pyramid shaped spinneret. Mater Lett 106(9):56–58

    Google Scholar 

  59. Wang X, Haitao N, Lin T et al (2009) Needleless electrospinning of nanofibers with a conical wire coil. Polym Eng Sci 49(8):1582–1585

    Article  Google Scholar 

  60. Lin T, Wang X, Wang X et al (2011) Electrostatic spinning assembly. US: 2011/0311671 A1, 22

    Google Scholar 

  61. Lei ZF, RongHua G, Porat I (2010) Needle and needleless electrospinning for nanofibers. J Appl Polym Sci 115(5):2591–2598

    Article  Google Scholar 

  62. Steve W, Alex F, Michael J et al (2006) Cost-effective nanofiber formation-melt electrospinning. NTC Project: F05-MD01:a6

    Google Scholar 

  63. Liao S, Langfield B, Ristovski N et al (2016) Effect of humidity on melt electrospun polycaprolactone scaffolds. Bionanomaterials 17(3–4):173–178

    Google Scholar 

  64. Liu Y, Deng R, Hao M et al (2010) Orthogonal design study on factors effecting on fibers diameter of melt electrospinning. Polym Eng Sci 50(10):2074–2078

    Article  Google Scholar 

  65. Chu B, Fang D, Hsaio BS (2011) Apparatus and method for electro-blowing or blowing-assisted electrospinning technology. US:7887311B2. 2.15

    Google Scholar 

  66. Sheng T, Nobuo O, Naoki S et al (2009) Melt electrospinning from poly(L-lactide) rods coated with poly(ethylene-co-vinyl alcohol). J Appl Polym Sci 113(2):1282–1288

    Article  Google Scholar 

  67. Malakhov SN, Khomenko AY, Belousov SI et al (2009) Method of manufacturing nonwovens by electrospinning from polymer melts. Fiber Chem 6:355–359

    Article  Google Scholar 

  68. Wang X, Zhengming H (2010) Melt electro-spinning of PMMA. Chin J Polym Sci 28(1):45–53

    Article  Google Scholar 

  69. Zhao F (2012) Investigation on preparation of superfine fibers for efficiently removing formaldehyde. Beijing University of Chemical Technology, pp :17–22.(In Chinese)

    Google Scholar 

  70. Lingtao X, Yong L, Yumei D et al (2012) Application of hyper branched polymer in melt electrospinning. Plastics 41(6):1–3. (In chinese)

    Google Scholar 

  71. Xiuyan L, Huichao L, Congju L (2011) Research progress of laser melt electrospinning. Synth Fiber Ind 34(5):36–40

    Google Scholar 

  72. Midori T, Hao F, Kazuhiro N et al (2008) Ultra-fine fibers produced by laser electrospinning. Sen’i Gakkaishi 64(1):29–31

    Article  Google Scholar 

  73. Xiuyan L, Huichao L, Wang J et al (2012) Preparation and properties of PET/SiO2 composite micro/nanofibers by a laser melt-electrospinning system. J Appl Polym Sci 125(3):2050–2055

    Article  Google Scholar 

  74. Cong VD, Thuy TTN, Jun SP (2012) Fabrication of polyethylene glycol/polyvinylidene fluoride core/shell nanofibers via melt electrospinning and their characteristics. Sol Energy Mater Sol Cells 104:131–139

    Article  Google Scholar 

  75. Cevat E, Dilhan MK, Hongjun W (2008) A hybrid twin screw extrusion/electrospinning method to process nanoparticles incorporated electrospun nanofibres. Nanotechnology 19(16):165302

    Article  Google Scholar 

  76. Farrugia BL, Brown TD, Upton Z et al (2013) Dermal fibroblast infiltration of poly(ε-caprolactone) scaffolds fabricated by melt electrospinning in a direct writing mode. Biofabrication 5(2):25001–25011

    Article  Google Scholar 

  77. Mitchell SB, Sanders JE (2006) A unique device for controlled electrospinning. J Biomed Mater Res A 78(1):110–120

    Article  Google Scholar 

  78. Seungsin L, Kay O (2007) Use of electrospun nanofiber web for protective textile materials as barriers to liquid penetration. Text Res J 77(9):696–702

    Article  Google Scholar 

  79. Rajabinejad H, Khajavi R, Rashidi A et al (2009) Recycling of used bottle grade poly ethylene terephthalate to nanofibers by melt-electrospinning method. Int J Environ Res 3(4):663–670

    Google Scholar 

  80. Li S, Xu Y, Wang A et al (2013) Preparation and properties of PET melt electrospinning composite filter material. Eng Plast Appl 41(12):8–11

    Google Scholar 

  81. Li X, Zhang Y, Li H et al (2014) Effect of oriented fiber membrane fabricated via needleless melt electrospinning on water filtration efficiency. Desalination 344:266–273

    Article  Google Scholar 

  82. Deng D, Prendergast DP, MacFarlane J et al (2013) Hydrophobic meshes for oil spill recovery devices. ACS Appl Mater Interfaces 5(3):774–781

    Article  Google Scholar 

  83. Li H, Wu W, Bubakir M et al (2014) Polypropylene fibers fabricated via a needleless melt-electrospinning device for marine oil-spill cleanup. J Appl Polym Sci 131(7):40080

    Google Scholar 

  84. Li H, Li Y, Yang W et al (2017) Needleless melt-electrospinning of biodegradable poly(lactic acid) ultrafine fibers for the removal of oil from water. Polymers 9(2):3

    Article  Google Scholar 

  85. Dalton PD, Klinkhammer K, Salber J et al (2006) Direct in vitro electrospinning with polymer melts. Biomacromolecules 7(3):686–690

    Article  Google Scholar 

  86. Dalton PD, Joergensen NT, Groll J et al (2008) Patterned melt electrospun substrates for tissue engineering. Biomed Mater 3(3):034109

    Article  Google Scholar 

  87. Brown TD, Slotosch A, Thibaudeau L et al (2012) Design and fabrication of tubular scaffolds via direct writing in a melt electrospinning mode. Biointerphases 7(4):13

    Article  Google Scholar 

  88. Brown TD, Dalton PD, Hutmacher DW et al (2011) Direct writing by way of melt electrospinning. Adv Mater 23(47):5651–5657

    Article  Google Scholar 

  89. Dalton PD, Vaquette C, Farrugia BL et al (2013) Electrospinning and additive manufacturing: converging technologies. Biomater Sci 1(2):171–185

    Article  Google Scholar 

  90. Lee H, Ahn S, Choi H et al (2013) Fabrication, characterization, and in vitro biological activities of melt-electrospun PLA micro/nanofibers for bone tissue regeneration. J Mater Chem B 1(30):3670–3677

    Article  Google Scholar 

  91. Hacker C, Karahaliloglu Z, Seide G et al (2014) Functionally modified, melt-electrospun thermoplastic polyurethane mats for wound-dressing applications. J Appl Polym Sci 131(8):40132

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Bubakir, M.M., Li, H., Barhoum, A., Yang, W. (2018). Advances in Melt Electrospinning Technique. In: Barhoum, A., Bechelany, M., Makhlouf, A. (eds) Handbook of Nanofibers. Springer, Cham. https://doi.org/10.1007/978-3-319-42789-8_8-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42789-8_8-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42789-8

  • Online ISBN: 978-3-319-42789-8

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics