Skip to main content

Nanofibers for Medical Diagnosis and Therapy

  • Living reference work entry
  • First Online:

Abstract

Nanofibers are fibers having dimensions in the nanometric range of few tens to 1000 nm. Advantages of nanofibers include their high surface-area-to-volume ratio resulting in enhanced drug solubility, high porosity, superior mechanical strength, versatile surface functionalization, and similarity to the extracellular matrix which promotes their use as wound dressings. Nanofibers have demonstrated their biomedical prowess in the fields of diagnosis as well as therapy. Nanofibers have been explored as ultrasensitive biosensors for point-of-care diagnosis of cancer, detection of circulating tumor cells in cancer patients, diagnosis of malaria, and detection of urea, glucose, cholesterol, bacteria, etc. Their huge surface area offers large number of binding sites thus endowing them with the capability for ultrasensitive detection. Nanofibers have also exhibited promising potential as drug delivery carriers and as wound dressings. Smart nanofibers which release the drug in response to stimuli such as pH, temperature, magnetic field, ultrasound waves, enzyme, and light have been studied to cater to the need for on-demand drug release systems. Nanofibers for photodynamic therapy have also been reported. Multifunctional nanofibers have also been developed for combined hyperthermia and therapy. Nanofibers may be fabricated using natural or synthetic polymers and using synthetic drugs as well as herbal molecules and extracts. Drug release from nanofibers can be modified based on the choice of polymer and the method of drug loading. Nanofibers have been developed for administration through various routes such as oral, oromucosal, periodontal, transdermal, intravenous, ophthalmic, vaginal, etc. The chapter showcases the potential applications of nanofibers in medical diagnosis and therapy.

This is a preview of subscription content, log in via an institution.

References

  1. Rošic R, Kocbek P, Pelipenko J, Kristl J, Baumgartner S (2013) Nanofibers and their biomedical use. Acta Pharma 63:295–304

    Article  Google Scholar 

  2. Kenry, Lim CT (2017) Nanofiber technology: current status and emerging developments. Prog Polym Sci 70:1–17

    Article  Google Scholar 

  3. Goonoo N, Bhaw-Luximon A, Jhurry D (2014) Drug loading and release from electrospun biodegradable nanofibers. J Biomed Nanotechnol 10:2173–2199

    Article  Google Scholar 

  4. Gencturk A, Kahraman E, Güngör S, Özhan G, Özsoy Y, Sarac AS (2017) Polyurethane/hydroxypropyl cellulose electrospun nanofiber mats as potential transdermal drug delivery system: characterization studies and in vitro assays. Artif Cells Nanomed Biotechnol 45:655–664

    Article  Google Scholar 

  5. Chen DW, Liu SJ (2015) Nanofibers used for delivery of antimicrobial agents. Nanomedicine (London) 10:1959–1971

    Article  Google Scholar 

  6. Monteiro N, Martins M, Martins A, Fonseca NA, Moreira JN, Reis RL, Neves NM (2015) Antibacterial activity of chitosan nanofiber meshes with liposomes immobilized releasing gentamicin. Acta Biomater 18:196–205

    Article  Google Scholar 

  7. Morie A, Garg T, Goyal AK, Rath G (2016) Nanofibers as novel drug carrier – an overview. Artif Cells Nanomed Biotechnol 44:135–143

    Article  Google Scholar 

  8. Zhang Z, Hu J, Ma PX (2012) Nanofiber-based delivery of bioactive agents and stem cells to bone sites. Adv Drug Deliv Rev 64:1129–1141

    Article  Google Scholar 

  9. Hu X, Liu S, Zhou G, Huang Y, Xie Z, Jing X (2014) Electrospinning of polymeric nanofibers for drug delivery applications. J Control Release 185:12–21

    Article  Google Scholar 

  10. Liang D, Hsiao BS, Chu B (2007) Functional electrospun nanofibrous scaffolds for biomedical applications. Adv Drug Deliv Rev 59:1392–1412

    Article  Google Scholar 

  11. Regan M, Forsman R (2006) The impact of the laboratory on disease management. Dis Manag 9:122–130

    Article  Google Scholar 

  12. Xiao F, Wang L, Duan H (2016) Nanomaterial based electrochemical sensors for in vitro detection of small molecular metabolites. Biotechnol Adv 34:234–249

    Article  Google Scholar 

  13. Mondal K, Ali MA, Agrawal VV, Malhotra BD, Sharma A (2014) Highly sensitive biofunctionalized mesoporous electrospun TiO2 nanofiber based interface for biosensing. ACS Appl Mater Interfaces 6:2516–2527

    Article  Google Scholar 

  14. Su X, Ren J, Meng X, Ren X, Tang F (2013) A novel platform for enhanced biosensing based on the synergy effects of electrospun polymer nanofibers and graphene oxides. Analyst 138:1459–1466

    Article  Google Scholar 

  15. Senthamizhan A, Balusamy B, Uyar T (2016) Glucose sensors based on electrospun nanofibers: a review. Anal Bioanal Chem 408:1285–1306

    Article  Google Scholar 

  16. Xu G, Tan Y, Xu T, Yin D, Wang M, Shen M, Chen X, Shi X, Zhu X (2017) Hyaluronic acid-functionalized electrospun PLGA nanofibers embedded in a microfluidic chip for cancer cell capture and culture. Biomater Sci 5:752–761

    Article  Google Scholar 

  17. Gomathi P, Ragupathy D, Choi JH, Yeum JH, Lee SC, Kim JC, Lee SH, Ghim HD (2011) Fabrication of novel chitosan nanofiber/gold nanoparticles composite towards improved performance for a cholesterol sensor. Sensors Actuators B Chem 153:44–49

    Article  Google Scholar 

  18. Sapountzi E, Braiek M, Vocanson F, Chateaux J-F, Jaffrezic-Renault N, Lagarde F (2017) Gold nanoparticles assembly on electrospun poly(vinyl alcohol)/poly(ethyleneimine)/glucose oxidase nanofibers for ultrasensitive electrochemical glucose biosensing. Sensors Actuators B Chem 238:392–401

    Article  Google Scholar 

  19. Zhang J, Zhu X, Dong H, Zhang X, Wang W, Chen Z (2013) In situ growth cupric oxide nanoparticles on carbon nanofibers for sensitive nonenzymatic sensing of glucose. Electrochim Acta 105:433–438

    Article  Google Scholar 

  20. Ding Y, Wang Y, Su L, Bellagamba M, Zhang H, Lei Y (2010) Electrospun Co3O4 nanofibers for sensitive and selective glucose detection. Biosens Bioelectron 26:542–548

    Article  Google Scholar 

  21. Balaconis MK, Luo Y, Clark HA (2015) Glucose-sensitive nanofiber scaffolds with improved sensing design for physiological conditions. Analyst 140:716–723

    Article  Google Scholar 

  22. Huang S, Ding Y, Liu Y, Su L, Filosa R Jr, Lei Y (2011) Glucose biosensor using glucose oxidase and electrospun Mn2O3-Ag nanofibers. Electroanalysis 23:1912–1920

    Article  Google Scholar 

  23. Wu J, Yin F (2013) Sensitive enzymatic glucose biosensor fabricated by electrospinning composite nanofibers and electrodepositing Prussian blue film. J Electroanal Chem 694:1–5

    Article  Google Scholar 

  24. Ali MA, Mondal K, Singh C, Malhotra BD, Sharma A (2015) Anti-epidermal growth factor receptor conjugated mesoporous zinc oxide nanofibers for breast cancer diagnostics. Nanoscale 7:7234–7245

    Article  Google Scholar 

  25. Brince Paul K, Kumar S, Tripathy S, Vanjari SR, Singh V, Singh SG (2016) A highly sensitive self-assembled monolayer modified copper doped zinc oxide nanofiber interface for detection of Plasmodium falciparum histidine-rich protein-2: targeted towards rapid, early diagnosis of malaria. Biosens Bioelectron 80:39–46

    Article  Google Scholar 

  26. Gikunoo E, Abera A, Woldesenbet E (2014) A novel carbon nanofibers grown on glass microballoons immunosensor: a tool for early diagnosis of malaria. Sensors 14:14686–14699

    Article  Google Scholar 

  27. Zhao L, Xie S, Song X, Wei J, Zhang Z, Li X (2017) Ratiometric fluorescent response of electrospun fibrous strips for real-time sensing of alkaline phosphatase in serum. Biosens Bioelectron 91:217–224

    Article  Google Scholar 

  28. Wang Y, Ju Z, Cao B, Gao X, Zhu Y, Qiu P, Xu H, Pan P, Bao H, Wang L, Mao C (2015) Ultrasensitive rapid detection of human serum antibody biomarkers by biomarker-capturing viral nanofibers. ACS Nano 9:4475–4483

    Article  Google Scholar 

  29. Sawicka K, Gouma P, Simon S (2005) Electrospun biocomposite nanofibers for urea biosensing. Sensors Actuators B 108:585–588

    Article  Google Scholar 

  30. Xue R, Behera P, Xu J, Viapiano MS, Lannutti JJ (2014) Polydimethylsiloxane core–polycaprolactone shell nanofibers as biocompatible, real-time oxygen sensors. Sensors Actuators B Chem 192:697–707

    Article  Google Scholar 

  31. Sebe I, Szabó P, Kállai-Szabó B, Zelkó R (2015) Incorporating small molecules or biologics into nanofibers for optimized drug release: a review. Int J Pharm 494:516–530

    Article  Google Scholar 

  32. Dwivedi C, Pandey I, Pandey H, Ramteke PW, Pandey AC, Mishra SB, Patil S (2017) Electrospun nanofibrous scaffold as a potential carrier of antimicrobial therapeutics for diabetic wound healing and tissue regeneration. In: Grumezescu AM (ed) Nano- and microscale drug delivery systems. Elsevier, Amsterdam. pp 147–164

    Google Scholar 

  33. Paaver U, Heinämäki J, Laidmäe I, Lust A, Kozlova J, Sillaste E, Kirsimäe K, Veski P, Kogermann K (2015) Electrospun nanofibers as a potential controlled-release solid dispersion system for poorly water-soluble drugs. Int J Pharm 479:252–260

    Article  Google Scholar 

  34. Sipos E, Szabó ZI, Rédai E, Szabó P, Sebe I, Zelkó R (2016) Preparation and characterization of nanofibrous sheets for enhanced oral dissolution of nebivolol hydrochloride. J Pharm Biomed Anal 129:224–228

    Article  Google Scholar 

  35. Li X, Kanjwal MA, Lin L, Chronakis IS (2013) Electrospun polyvinyl-alcohol nanofibers as oral fast-dissolving delivery system of caffeine and riboflavin. Colloids Surf B: Biointerfaces 103:182–188

    Article  Google Scholar 

  36. Illangakoon UE, Gill H, Shearman GC, Parhizkar M, Mahalingam S, Chatterton NP, Williams GR (2014) Fast dissolving paracetamol/caffeine nanofibers prepared by electrospinning. Int J Pharm 477:369–379

    Article  Google Scholar 

  37. Samprasit W, Akkaramongkolporn P, Ngawhirunpat T, Rojanarata T, Kaomongkolgit R, Opanasopit P (2015) Fast releasing oral electrospun PVP/CD nanofiber mats of taste-masked meloxicam. Int J Pharm 487:213–222

    Article  Google Scholar 

  38. Nam S, Lee JJ, Lee SY, Jeong JY, Kang WS, Cho HJ (2017) Angelica gigas Nakai extract-loaded fast-dissolving nanofiber based on poly(vinyl alcohol) and Soluplus for oral cancer therapy. Int J Pharm 526:225–234

    Article  Google Scholar 

  39. Vashisth P, Raghuwanshi N, Srivastava AK, Singh H, Nagar H, Pruthi V (2017) Ofloxacin loaded gellan/PVA nanofibers – synthesis, characterization and evaluation of their gastroretentive/mucoadhesive drug delivery potential. Mater Sci Eng C Mater Biol Appl 71:611–619

    Article  Google Scholar 

  40. Tonglairoum P, Ngawhirunpat T, Rojanarata T, Panomsuk S, Kaomongkolgit R, Opanasopit P (2015) Fabrication of mucoadhesive chitosan coated polyvinylpyrrolidone/cyclodextrin/clotrimazole sandwich patches for oral candidiasis. Carbohydr Polym 132:173–179

    Article  Google Scholar 

  41. Choi JS, Han SH, Hyun C, Yoo HS (2016) Buccal adhesive nanofibers containing human growth hormone for oral mucositis. J Biomed Mater Res B Appl Biomater 104:1396–1406

    Article  Google Scholar 

  42. Zamani M, Morshed M, Varshosaz J, Jannesari M (2010) Controlled release of metronidazole benzoate from poly ε-caprolactone electrospun nanofibers for periodontal diseases. Eur J Pharm Biopharm 75:179–185

    Article  Google Scholar 

  43. Monteiro AP, Rocha CM, Oliveira MF, Gontijo SM, Agudelo RR, Sinisterra RD, Cortés ME (2017) Nanofibers containing tetracycline/β-cyclodextrin: physico-chemical characterization and antimicrobial evaluation. Carbohydr Polym 156:417–426

    Article  Google Scholar 

  44. Pankajakshan D, Albuquerque MT, Evans JD, Kamocka MM, Gregory RL, Bottino MC (2016) Triple antibiotic polymer nanofibers for intracanal drug delivery: effects on dual species biofilm and cell function. J Endod 42:1490–1495

    Article  Google Scholar 

  45. Samprasit W, Kaomongkolgit R, Sukma M, Rojanarata T, Ngawhirunpat T, Opanasopit P (2015) Mucoadhesive electrospun chitosan-based nanofibre mats for dental caries prevention. Carbohydr Polym 117:933–940

    Article  Google Scholar 

  46. Vrbata P, Berka P, Stránská D, Doležal P, Musilová M, Čižinská L (2013) Electrospun drug loaded membranes for sublingual administration of sumatriptan and naproxen. Int J Pharm 457:168–176

    Article  Google Scholar 

  47. Opanasopit P, Sila-On W, Rojanarata T, Ngawhirunpat T (2013) Fabrication and properties of capsicum extract-loaded PVA and CA nanofiber patches. Pharm Dev Technol 18:1140–1147

    Article  Google Scholar 

  48. Song J, Fan X, Shen Q (2016) Daidzein-loaded nanostructured lipid carriers-PLGA nanofibers for transdermal delivery. Int J Pharm 501:245–252

    Article  Google Scholar 

  49. Mendes AC, Gorzelanny C, Halter N, Schneider SW, Chronakis IS (2016) Hybrid electrospun chitosan-phospholipids nanofibers for transdermal drug delivery. Int J Pharm 510:48–56

    Article  Google Scholar 

  50. Wu XM, Branford-White CJ, Yu DG, Chatterton NP, Zhu LM (2011) Preparation of core-shell PAN nanofibers encapsulated α-tocopherol acetate and ascorbic acid 2-phosphate for photoprotection. Colloids Surf B: Biointerfaces 82:247–252

    Article  Google Scholar 

  51. Xu H, Lu X, Li J, Ding D, Wang H, Li X, Xie W (2017) Superior antitumor effect of extremely high drug loading self-assembled paclitaxel nanofibers. Int J Pharm 526:217–224

    Article  Google Scholar 

  52. Lalatsa A, Schätzlein AG, Garrett NL, Moger J, Briggs M, Godfrey L, Iannitelli A, Freeman J, Uchegbu IF (2015) Chitosan amphiphile coating of peptide nanofibres reduces liver uptake and delivers the peptide to the brain on intravenous administration. J Control Release 197:87–96

    Article  Google Scholar 

  53. Sun X, Yu Z, Cai Z, Yu L, Lv Y (2016) Voriconazole composited polyvinyl alcohol/hydroxypropyl-β-cyclodextrin nanofibers for ophthalmic delivery. PLoS One 11:e0167961. https://doi.org/10.1371/journal.pone.0167961

    Article  Google Scholar 

  54. Senturk B, Cubuk MO, Ozmen MC, Aydin B, Guler MO, Tekinay AB (2016) Inhibition of VEGF mediated corneal neovascularization by anti-angiogenic peptide nanofibers. Biomaterials 107:124–132

    Article  Google Scholar 

  55. Cejkova J, Cejka C, Trosan P, Zajicova A, Sykova E, Holan V (2016) Treatment of alkali-injured cornea by cyclosporine A-loaded electrospun nanofibers-an alternative mode of therapy. Exp Eye Res 147:128–137

    Article  Google Scholar 

  56. Zong S, Wang X, Yang Y, Wu W, Li H, Ma Y, Lin W, Sun T, Huang Y, Xie Z, Yue Y, Liu S, Jing X (2015) The use of cisplatin-loaded mucoadhesive nanofibers for local chemotherapy of cervical cancers in mice. Eur J Pharm Biopharm 93:127–135

    Article  Google Scholar 

  57. Meng J, Agrahari V, Ezoulin MJ, Zhang C, Purohit SS, Molteni A, Dim D, Oyler NA, Youan BC (2016) Tenofovir containing thiolated chitosan core/shell nanofibers: in vitro and in vivo evaluations. Mol Pharm 13:4129–4140

    Article  Google Scholar 

  58. Chen S, Liu B, Carlson MA, Gombart AF, Reilly DA, Xie J (2017) Recent advances in electrospun nanofibers for wound healing. Nanomedicine (London) 12:1335–1352

    Article  Google Scholar 

  59. Liu M, Duan X-P, Li Y-M, Yang D-P, Long Y-Z (2017) Electrospun nanofibers for wound healing. Mater Sci Eng C 76:1413–1423

    Article  Google Scholar 

  60. Aruan NM, Sriyanti I, Edikresnha D, Suciati T, Munir M, Khairurrijal (2017) Polyvinyl alcohol/soursop leaves extract composite nanofibers synthesized using electrospinning technique and their potential as antibacterial wound dressing. Procedia Eng 170:31–35

    Article  Google Scholar 

  61. Ganesh M, Aziz AS, Ubaidulla U, Hemalatha P, Saravanakumar A, Ravikumar R, Peng MM, Choi EY, Jang HT (2016) Sulfanilamide and silver nanoparticles-loaded polyvinyl alcohol-chitosan composite electrospun nanofibers: synthesis and evaluation on synergism in wound healing. J Ind Eng Chem 39:127–135

    Article  Google Scholar 

  62. Tamm I, Heinämäki J, Laidmäe I, Rammo L, Paaver U, Ingebrigtsen SG, Škalko-Basnet N, Halenius A, Yliruusi J, Pitkänen P, Alakurtti S, Kogermann K (2016) Development of suberin fatty acids and chloramphenicol-loaded antimicrobial electrospun nanofibrous mats intended for wound therapy. J Pharm Sci 105:1239–1247

    Article  Google Scholar 

  63. Charernsriwilaiwat N, Rojanarata T, Ngawhirunpat T, Sukma M, Opanasopit P (2013) Electrospun chitosan-based nanofiber mats loaded with Garcinia mangostana extracts. Int J Pharm 452:333–343

    Article  Google Scholar 

  64. Song DW, Kim SH, Kim HH, Lee KH, Ki CS, Park YH (2016) Multi-biofunction of antimicrobial peptide-immobilized silk fibroin nanofiber membrane: implications for wound healing. Acta Biomater 39:146–155

    Article  Google Scholar 

  65. Unnithan AR, Sasikala AR, Murugesan P, Gurusamy M, Wu D, Park CH, Kim CS (2015) Electrospun polyurethane-dextran nanofiber mats loaded with estradiol for post-menopausal wound dressing. Int J Biol Macromol 77:1–8

    Article  Google Scholar 

  66. Sarhan WA, Azzazy HM, El-Sherbiny IM (2016) Honey/chitosan nanofiber wound dressing enriched with Allium sativum and Cleome droserifolia: enhanced antimicrobial and wound healing activity. ACS Appl Mater Interfaces 8:6379–6390

    Article  Google Scholar 

  67. Sedghi R, Shaabani A (2016) Electrospun biocompatible core/shell polymer-free core structure nanofibers with superior antimicrobial potency against multi drug resistance organisms. Polymer 101:151–157

    Article  Google Scholar 

  68. Garcia-Orue I, Gainza G, Gutierrez FB, Aguirre JJ, Evora C, Pedraz JL, Hernandez RM, Delgado A, Igartua M (2017) Novel nanofibrous dressings containing rhEGF and Aloe vera for wound healing applications. Int J Pharm 523:556–566

    Article  Google Scholar 

  69. Lai HJ, Kuan CH, Wu HC, Tsai JC, Chen TM, Hsieh DJ, Wang TW (2014) Tailored design of electrospun composite nanofibers with staged release of multiple angiogenic growth factors for chronic wound healing. Acta Biomater 10:4156–4166

    Article  Google Scholar 

  70. Thakur RA, Florek CA, Kohn J, Michniak BB (2008) Electrospun nanofibrous polymeric scaffold with targeted drug release profiles for potential application as wound dressing. Int J Pharm 364:87–93

    Article  Google Scholar 

  71. Contardi M, Heredia-Guerrero JA, Perotto G, Valentini P, Pompa PP, Spanò R, Goldoni L, Bertorelli R, Athanassiou A, Bayer IS (2017) Transparent ciprofloxacin-povidone antibiotic films and nanofiber mats as potential skin and wound care dressings. Eur J Pharm Sci 104:133–144

    Article  Google Scholar 

  72. Charernsriwilaiwat N, Opanasopit P, Rojanarata T, Ngawhirunpat T (2012) Lysozyme-loaded, electrospun chitosan-based nanofiber mats for wound healing. Int J Pharm 427:379–384

    Article  Google Scholar 

  73. Rath G, Hussain T, Chauhan G, Garg T, Goyal AK (2015) Fabrication and characterization of cefazolin-loaded nanofibrous mats for the recovery of post-surgical wound. Artif Cells Nanomed Biotechnol 44:1783–1792

    Article  Google Scholar 

  74. Jain SA, Basu H, Prabhu PS, Soni U, Joshi MD, Mathur D, Patravale VB, Pathak S, Sharma S (2014) Parasite impairment by targeting Plasmodium-infected RBCs using glyceryl-dilaurate nanostructured lipid carriers. Biomaterials 35:6636–6645

    Article  Google Scholar 

  75. Singh R, Lillard JW Jr (2009) Nanoparticle-based targeted drug delivery. Exp Mol Pathol 86:215–223

    Article  Google Scholar 

  76. Wang X, Yu DG, Li XY, Bligh SW, Williams GR (2015) Electrospun medicated shellac nanofibers for colon-targeted drug delivery. Int J Pharm 490:384–390

    Article  Google Scholar 

  77. Irani M, Mir Mohamad Sadeghi G, Haririan I (2017) Gold coated poly (ε-caprolactonediol) based polyurethane nanofibers for controlled release of temozolomide. Biomed Pharmacother 88:667–676

    Article  Google Scholar 

  78. Liu J, Liu J, Xu H, Zhang Y, Chu L, Liu Q, Song N, Yang C (2014) Novel tumor-targeting, self-assembling peptide nanofiber as a carrier for effective curcumin delivery. Int J Nanomedicine 9:197–207

    Google Scholar 

  79. Bahnson ES, Kassam HA, Moyer TJ, Jiang W, Morgan CE, Vercammen JM, Jiang Q, Flynn ME, Stupp SI, Kibbe MR (2016) Targeted nitric oxide delivery by supramolecular nanofibers for the prevention of restenosis after arterial injury. Antioxid Redox Signal 24:401–418

    Article  Google Scholar 

  80. Morgan CE, Dombrowski AW, Rubert Pérez CM, Bahnson ESM, Tsihlis ND, Jiang W, Jiang Q, Vercammen JM, Prakash VS, Pritts TA, Stupp SI, Kibbe MR (2016) Tissue-factor targeted peptide amphiphile nanofibers as an injectable therapy to control hemorrhage. ACS Nano 10:899–909

    Article  Google Scholar 

  81. Elashnikov R, Slepička P, Rimpelova S, Ulbrich P, Švorčík V, Lyutakov O (2017) Temperature-responsive PLLA/PNIPAM nanofibers for switchable release. Mater Sci Eng C Mater Biol Appl 72:293–300

    Article  Google Scholar 

  82. Jiang J, Xie J, Ma B, Bartlett DE, Xu A, Wang CH (2014) Mussel inspired protein-mediated surface functionalization of electrospun nanofibers for pH-responsive drug delivery. Acta Biomater 10:1324–1332

    Article  Google Scholar 

  83. Hu J, Li HY, Williams GR, Yang HH, Tao L, Zhu LM (2016) Electrospun poly (N-isopropylacrylamide)/ethyl cellulose nanofibers as thermoresponsive drug delivery systems. J Pharm Sci 105:1104–1112

    Article  Google Scholar 

  84. Li H, Williams GR, Wu J, Lv Y, Sun X, Wu H, Zhu LM (2017) Thermosensitive nanofibers loaded with ciprofloxacin as antibacterial wound dressing materials. Int J Pharm 517:135–147

    Article  Google Scholar 

  85. Erik AL, Nejad AG, Park CH, Kim CS (2017) On-demand drug release and hyperthermia therapy applications of thermoresponsive poly-(NIPAAm-co-HMAAm)/polyurethane core-shell nanofiber mat on non-vascular nitinol stents. Nanomedicine 13:527–538

    Article  Google Scholar 

  86. Agrahari V, Meng J, Ezoulin MJ, Youm I, Dim DC, Molteni A, Hung WT, Christenson LK, Youan BC (2016) Stimuli-sensitive thiolated hyaluronic acid based nanofibers: synthesis, preclinical safety and in vitro anti-HIV activity. Nanomedicine (London) 11:2935–2958

    Article  Google Scholar 

  87. Birajdar MS, Lee J (2016) Sonication-triggered zero-order release by uncorking core–shell nanofibers. Chem Eng J 288:1–8

    Article  Google Scholar 

  88. Fu GD, Xu LQ, Yao F, Li GL, Kang ET (2009) Smart nanofibers with a photoresponsive surface for controlled release. ACS Appl Mater Interfaces 1:2424–2427

    Article  Google Scholar 

  89. Li LL, Wang LM, Xu Y, Lv LX (2012) Preparation of gentamicin-loaded electrospun coating on titanium implants and a study of their properties in vitro. Arch Orthop Trauma Surg 132:897–903

    Article  Google Scholar 

  90. Ashbaugh AG, Jiang X, Zheng J, Tsai AS, Kim WS, Thompson JM, Miller RJ, Shahbazian JH, Wang Y, Dillen CA, Ordonez AA, Chang YS, Jain SK, Jones LC, Sterling RS, Mao HQ, Miller LS (2016) Polymeric nanofiber coating with tunable combinatorial antibiotic delivery prevents biofilm-associated infection in vivo. Proc Natl Acad Sci USA 113:E6919–E6928

    Article  Google Scholar 

  91. Gilchrist SE, Lange D, Letchford K, Bach H, Fazli L, Burt HM (2013) Fusidic acid and rifampicin co-loaded PLGA nanofibers for the prevention of orthopedic implant associated infections. J Control Release 170:64–73

    Article  Google Scholar 

  92. Bottino MC, Münchow EA, Albuquerque MT, Kamocki K, Shahi R, Gregory RL, Chu TG, Pankajakshan D (2016) Tetracycline-incorporated polymer nanofibers as a potential dental implant surface modifier. J Biomed Mater Res B Appl Biomater. https://doi.org/10.1002/jbm.b.33743

  93. Oh B, Lee CH (2013) Advanced cardiovascular stent coated with nanofiber. Mol Pharm 10:4432–4442

    Article  Google Scholar 

  94. Tang J, Liu Y, Zhu B, Su Y, Zhu X (2017) Preparation of paclitaxel/chitosan co-assembled core-shell nanofibers for drug-eluting stent. Appl Surf Sci 393:299–308

    Article  Google Scholar 

  95. Lee CH, Chang SH, Lin YH, Liu SJ, Wang CJ, Hsu MY, Hung KC, Yeh YH, Chen WJ, Hsieh IC, Wen MS (2014) Acceleration of re-endothelialization and inhibition of neointimal formation using hybrid biodegradable nanofibrous rosuvastatin-loaded stents. Biomaterials 35:4417–4427

    Article  Google Scholar 

  96. Gao Q, Huang C, Sun B, Aqeel BM, Wang J, Chen W, Mo X, Wan X (2016) Fabrication and characterization of metal stent coating with drug-loaded nanofiber film for gallstone dissolution. J Biomater Appl 31:784–796

    Article  Google Scholar 

  97. Lee S, Jin G, Jang JH (2014) Electrospun nanofibers as versatile interfaces for efficient gene delivery. J Biol Eng 8:30. https://doi.org/10.1186/1754-1611-8-30

    Article  Google Scholar 

  98. Rujitanaroj PO, Wang YC, Wang J, Chew SY (2011) Nanofiber-mediated controlled release of siRNA complexes for long term gene-silencing applications. Biomaterials 32:5915–5923

    Article  Google Scholar 

  99. Karthikeyan K, Krishnaswamy VR, Lakra R, Kiran MS, Korrapati PS (2015) Fabrication of electrospun zein nanofibers for the sustained delivery of siRNA. J Mater Sci Mater Med 26:101. https://doi.org/10.1007/s10856-015-5439-x

    Article  Google Scholar 

  100. Prabhu P, Patravale V (2012) The upcoming field of theranostic nanomedicine: an overview. J Biomed Nanotechnol 8:859–882

    Article  Google Scholar 

  101. Yan E, Cao M, Wang Y, Hao X, Pei S, Gao J, Wang Y, Zhang Z, Zhang D (2016) Gold nanorods contained polyvinyl alcohol/chitosan nanofiber matrix for cell imaging and drug delivery. Mater Sci Eng C Mater Biol Appl 58:1090–1097

    Article  Google Scholar 

  102. Mandal A, Sekar S, Kanagavel M, Chandrasekaran N, Mukherjee A, Sastry TP (2013) Collagen based magnetic nanobiocomposite as MRI contrast agent and for targeted delivery in cancer therapy. Biochim Biophys Acta 1830:4628–4633

    Article  Google Scholar 

  103. Zhang C, Zhang T, Jin S, Xue X, Yang X, Gong N, Zhang J, Wang PC, Tian JH, Xing J, Liang XJ (2017) Virus-inspired self-assembly nanofibers with aggregation-induced emission for highly efficient and visible gene delivery. ACS Appl Mater Interfaces 9:4425–4432

    Article  Google Scholar 

  104. Yoo JJ, Kim C, Chung CW, Jeong YI, Kang DH (2012) 5-aminolevulinic acid-incorporated poly (vinyl alcohol) nanofiber-coated metal stent for application in photodynamic therapy. Int J Nanomedicine 7:1997–2005

    Google Scholar 

  105. El-Khordagui L, El-Sayed N, Galal S, El-Gowelli H, Omar H, Mohamed M (2017) Photosensitizer-eluting nanofibers for enhanced photodynamic therapy of wounds: a preclinical study in immunocompromized rats. Int J Pharm 520:139–148

    Article  Google Scholar 

  106. Severyukhina AN, Petrova NV, Yashchenok AM, Bratashov DN, Smuda K, Mamonova IA, Yurasov NA, Puchinyan DM, Georgieva R, Bäumler H, Lapanje A, Gorin DA (2017) Light-induced antibacterial activity of electrospun chitosan-based material containing photosensitizer. Mater Sci Eng C 70:311–316

    Article  Google Scholar 

  107. Karuppannan C, Sivaraj M, Kumar JG, Seerangan R, Balasubramanian S, Gopal DR (2017) Fabrication of progesterone-loaded nanofibers for the drug delivery applications in bovine. Nanoscale Res Lett 12:116. https://doi.org/10.1186/s11671-016-1781-2

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priyanka Prabhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Prabhu, P. (2018). Nanofibers for Medical Diagnosis and Therapy. In: Barhoum, A., Bechelany, M., Makhlouf, A. (eds) Handbook of Nanofibers. Springer, Cham. https://doi.org/10.1007/978-3-319-42789-8_48-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42789-8_48-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42789-8

  • Online ISBN: 978-3-319-42789-8

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics