Skip to main content

Functional Nanofiber for Drug Delivery Applications

  • Living reference work entry
  • First Online:

Abstract

Electrospinning is an appropriate process to fabricate nanofibers for various applications. Regarding the intrinsically high surface-to-volume ratio of electrospun fibers, they are suitable candidates for drug loading with enhanced mass transfer properties. The diverse therapeutic agents, e.g., proteins, DNA, RNA, as well as chemical drugs, could be incorporated to the nanofibers. By controlling the nanofiber morphologies, its type, and drug incorporating methods, the preferred drug release and diffusion can be adjusted depending on the intended application. In this chapter, an attempt is made to cover the most usable methods to incorporate the therapeutic agents into the nanofibers and investigate the release mechanisms, factors, and methods to control the drug releasing rate. Most usable polymeric materials to fabricate fiber-based drug delivery formulations will also be introduced.

This is a preview of subscription content, log in via an institution.

References

  1. Huynh CT, Lee DS (2015) Controlled release. In: Encyclopedia of polymeric nanomaterials. Springer, pp 439–449

    Google Scholar 

  2. Sharifi F et al (2016) Fiber based approaches as medicine delivery systems. ACS Biomater Sci Eng 2(9):1411–1431

    Article  Google Scholar 

  3. Son YJ, Kim WJ, Yoo HS (2014) Therapeutic applications of electrospun nanofibers for drug delivery systems. Arch Pharm Res 37(1):69–78

    Article  Google Scholar 

  4. Sperling LE et al (2016) Advantages and challenges offered by biofunctional core–shell fiber systems for tissue engineering and drug delivery. Drug Discov Today 21(8):1243–1256

    Article  Google Scholar 

  5. Xiuli Hu SL, Zhou G, Huang Y, Xie Z, Jing X-A (2014) Electrospinning of polymeric nanofibers for drug delivery applications. J Control Release 185:12–21

    Article  Google Scholar 

  6. Sill TJ, von Recum HA (2008) Electrospinning: applications in drug delivery and tissue engineering. Biomaterials 29(13):1989–2006

    Article  Google Scholar 

  7. Lu Y et al (2016) Coaxial electrospun fibers: applications in drug delivery and tissue engineering. Wiley Interdiscip Rev Nanomed Nanobiotechnol 8(5):654–677

    Article  Google Scholar 

  8. Pelipenko J, Kocbek P, Kristl J (2015) Critical attributes of nanofibers: preparation, drug loading, and tissue regeneration. Int J Pharm 484:57–74

    Article  Google Scholar 

  9. Zamani M, Prabhakaran MP, Ramakrishna S (2013) Advances in drug delivery via electrospun and electrosprayed nanomaterials. Int J Nanomedicine 8:2997–3017

    Google Scholar 

  10. Zhou B et al (2014) Antibacterial multilayer films fabricated by layer-by-layer immobilizing lysozyme and gold nanoparticles on nanofibers. Colloids Surf B Biointerfaces 116:432–438

    Article  Google Scholar 

  11. Ekaputra AK et al (2011) The three-dimensional vascularization of growth factor-releasing hybrid scaffold of poly (epsilon-caprolactone)/collagen fibers and hyaluronic acid hydrogel. Biomaterials 32(32):8108–8117

    Article  Google Scholar 

  12. Kim MS, Kim G (2014) Three-dimensional electrospun polycaprolactone (PCL)/alginate hybrid composite scaffolds. Carbohydr Polym 114:213–221

    Article  Google Scholar 

  13. Mura S, Nicolas J, Couvreur P (2013) Stimuli-responsive nanocarriers for drug delivery. Nat Mater 12(11):991–1003

    Article  Google Scholar 

  14. Pillay V et al (2013) A review of the effect of processing variables on the fabrication of electrospun nanofibers for drug delivery applications. J Nanomater 22

    Google Scholar 

  15. Li T et al (2017) The control of beads diameter of bead-on-string electrospun nanofibers and the corresponding release behaviors of embedded drugs. Mater Sci Eng C Mater Biol Appl 74:471–477

    Article  Google Scholar 

  16. Jacobs V, Anandjiwala RD, Maaza M (2010) The influence of electrospinning parameters on the structural morphology and diameter of electrospun nanofibers. J Appl Polym Sci 115(5):3130–3136

    Article  Google Scholar 

  17. Imani R et al (2016) Dual-functionalized graphene oxide for enhanced siRNA delivery to breast cancer cells. Colloids Surf B: Biointerfaces 147:315–325

    Article  Google Scholar 

  18. Sasmazel HT, Ozkan O (2013) Advances in electrospinning of nanofibers and their biomedical applications. Curr Tissue Eng 2:91–108

    Article  Google Scholar 

  19. Zhang C-L, Yu S-H (2014) Nanoparticles meet electrospinning: recent advances and future prospects. Chem Soc Rev 43(13):4423–4448

    Article  Google Scholar 

  20. Song B, Wu C, Chang J (2012) Dual drug release from electrospun poly (lactic-co-glycolic acid)/mesoporous silica nanoparticles composite mats with distinct release profiles. Acta Biomater 8(5):1901–1907

    Article  Google Scholar 

  21. Wang Y, Qiao W, Yin T (2010) A novel controlled release drug delivery system for multiple drugs based on electrospun nanofibers containing nanoparticles. J Pharm Sci 99(12):4805–4811

    Article  Google Scholar 

  22. Jo E et al (2009) Core-sheath nanofibers containing colloidal arrays in the core for programmable multi-agent delivery. Adv Mater 21(9):968–972

    Article  Google Scholar 

  23. Ramakrishnan S et al (2002) Entropy driven phase transitions in colloid–polymer suspensions: tests of depletion theories. J Chem Phys 116(5):2201–2212

    Article  Google Scholar 

  24. Manley S et al (2005) Glasslike arrest in spinodal decomposition as a route to colloidal gelation. Phys Rev Lett 95(23):238302

    Article  Google Scholar 

  25. Al-Lazikani B, Banerji U, Workman P (2012) Combinatorial drug therapy for cancer in the post-genomic era. Nat Biotechnol 30(7):679–692

    Article  Google Scholar 

  26. Son YJ, Yoo HS (2012) Dexamethasone-incorporated nanofibrous meshes for antiproliferation of smooth muscle cells: thermally induced drug-loading strategy. J Biomed Mater Res A 100(10):2678–2685

    Article  Google Scholar 

  27. Ahmad Z et al (2014) Polymeric micelles as drug delivery vehicles. RSC Adv 4(33):17028–17038

    Article  Google Scholar 

  28. Hu J et al (2014) Novel controlled drug delivery system for multiple drugs based on electrospun nanofibers containing nanomicelles. J Biomater Sci Polym Ed 25(3):257–268

    Article  Google Scholar 

  29. Lai H-J et al (2014) Tailored design of electrospun composite nanofibers with staged release of multiple angiogenic growth factors for chronic wound healing. Acta Biomater 10(10):4156–4166

    Article  Google Scholar 

  30. Reed S, Wu B (2014) Sustained growth factor delivery in tissue engineering applications. Ann Biomed Eng 42(7):1528–1536

    Article  Google Scholar 

  31. Li L et al (2015) Controlled dual delivery of BMP-2 and dexamethasone by nanoparticle-embedded electrospun nanofibers for the efficient repair of critical-sized rat calvarial defect. Biomaterials 37:218–229

    Article  Google Scholar 

  32. Srouji S et al (2010) Slow-release human recombinant bone morphogenetic protein-2 embedded within electrospun scaffolds for regeneration of bone defect: in vitro and in vivo evaluation. Tissue Eng A 17(3–4):269–277

    Google Scholar 

  33. Liang R et al (2014) Inorganic nanomaterials for bioimaging, targeted drug delivery and therapeutics. Chem Commun 50(91):14071–14081

    Article  Google Scholar 

  34. Ariga K et al (eds) (2016) Halloysite and related mesoporous carriers for advanced catalysis and drug delivery. In: Functional polymer composites with nanoclays. Royal Society of chemistry, UK, pp 207–222

    Google Scholar 

  35. Mendes RG et al (2013) Carbon nanostructures as multi-functional drug delivery platforms. J Mater Chem B 1(4):401–428

    Article  Google Scholar 

  36. Xue J et al (2015) Electrospun microfiber membranes embedded with drug-loaded clay nanotubes for sustained antimicrobial protection. ACS Nano 9(2):1600–1612

    Article  Google Scholar 

  37. Imani R, Emami SH, Faghihi S (2015) Synthesis and characterization of an octaarginine functionalized graphene oxide nano-carrier for gene delivery applications. Phys Chem Chem Phys 17(9):6328–6339

    Article  Google Scholar 

  38. Shao S et al (2011) Controlled green tea polyphenols release from electrospun PCL/MWCNTs composite nanofibers. Int J Pharm 421(2):310–320

    Article  Google Scholar 

  39. Lim SB, Banerjee A, Önyüksel H (2012) Improvement of drug safety by the use of lipid-based nanocarriers. J Control Release 163(1):34–45

    Article  Google Scholar 

  40. Mickova A et al (2012) Core/shell nanofibers with embedded liposomes as a drug delivery system. Biomacromolecules 13(4):952–962

    Article  Google Scholar 

  41. Li Z et al (2014) Controlled release of liposome-encapsulated naproxen from core-sheath electrospun nanofibers. Carbohydr Polym 111:18–24

    Article  Google Scholar 

  42. Chen M, Li YF, Besenbacher F (2014) Electrospun nanofibers-mediated on-demand drug release. Adv Healthc Mater 3(11):1721–1732

    Article  Google Scholar 

  43. Chou S-F, Carson D, Woodrow KA (2015) Current strategies for sustaining drug release from electrospun nanofibers. J Control Release 220:584–591

    Article  Google Scholar 

  44. Sansdrap P, Moes A (1997) In vitro evaluation of the hydrolytic degradation of dispersed and aggregated poly (DL-lactide-co-glycolide) microspheres. J Control Release 43(1):47–58

    Article  Google Scholar 

  45. Fredenberg S et al (2011) The mechanisms of drug release in poly (lactic-co-glycolic acid)-based drug delivery systems – a review. Int J Pharm 415(1):34–52

    Article  Google Scholar 

  46. Szentivanyi A et al (2011) Electrospun cellular microenvironments: understanding controlled release and scaffold structure. Adv Drug Deliv Rev 63(4):209–220

    Article  Google Scholar 

  47. Cath TY, Childress AE, Elimelech M (2006) Forward osmosis: principles, applications, and recent developments. J Membr Sci 281(1):70–87

    Article  Google Scholar 

  48. Siew A (2013) Controlling drug release through osmotic systems. Pharm Technol 37(7):40–44

    Google Scholar 

  49. Khalf A, Madihally SV (2016) Recent advances in multiaxial electrospinning for drug delivery. Eur J Pharm Biopharm 112:1–17

    Article  Google Scholar 

  50. Liao I-C et al (2009) Sustained viral gene delivery through core/shell fibers. J Control Release 139(1):48–55

    Article  Google Scholar 

  51. Huang X, Brazel CS (2001) On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. J Control Release 73(2):121–136

    Article  Google Scholar 

  52. Varma MV et al (2004) Factors affecting mechanism and kinetics of drug release from matrix-based oral controlled drug delivery systems. Am J Drug Deliv 2(1):43–57

    Article  Google Scholar 

  53. Li W et al (2015) Formation of controllable hydrophilic/hydrophobic drug delivery systems by electrospinning of vesicles. Langmuir 31(18):5141–5146

    Article  Google Scholar 

  54. Maretschek S, Greiner A, Kissel T (2008) Electrospun biodegradable nanofiber nonwovens for controlled release of proteins. J Control Release 127(2):180–187

    Article  Google Scholar 

  55. Ero-Phillips O, Jenkins M, Stamboulis A (2012) Tailoring crystallinity of electrospun plla fibres by control of electrospinning parameters. Polymers 4(3):1331–1348

    Article  Google Scholar 

  56. Zhang JJ et al (eds) (2009) Crosslinked electrospun UPM/PHBV/PVP fibers for sustained drug release. In: Materials science forum, vol. 610. Trans Tech Publication, Switzerland, pp 1331–1334

    Google Scholar 

  57. Lyu S-P et al (2005) Adjusting drug diffusivity using miscible polymer blends. J Control Release 102(3):679–687

    Article  Google Scholar 

  58. Zeng J et al (2005) Influence of the drug compatibility with polymer solution on the release kinetics of electrospun fiber formulation. J Control Release 105(1):43–51

    Article  Google Scholar 

  59. Zong X et al (2002) Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer 43(16):4403–4412

    Article  Google Scholar 

  60. Kim K et al (2004) Incorporation and controlled release of a hydrophilic antibiotic using poly (lactide-co-glycolide)-based electrospun nanofibrous scaffolds. J Control Release 98(1):47–56

    Article  Google Scholar 

  61. Paaver U et al (2015) Electrospun nanofibers as a potential controlled-release solid dispersion system for poorly water-soluble drugs. Int J Pharm 479(1):252–260

    Article  Google Scholar 

  62. Zamani M et al (2010) Controlled release of metronidazole benzoate from poly ε-caprolactone electrospun nanofibers for periodontal diseases. Eur J Pharm Biopharm 75(2):179–185

    Article  Google Scholar 

  63. Yu D-G et al (2010) Third generation solid dispersions of ferulic acid in electrospun composite nanofibers. Int J Pharm 400(1):158–164

    Article  Google Scholar 

  64. Chen S et al (2012) The influence of fiber diameter of electrospun poly (lactic acid) on drug delivery. Fiber Polym 13(9):1120

    Article  Google Scholar 

  65. Xie Z, Buschle-Diller G (2010) Electrospun poly (D, L-lactide) fibers for drug delivery: the influence of cosolvent and the mechanism of drug release. J Appl Polym Sci 115(1):1–8

    Article  Google Scholar 

  66. Carson D, Jiang Y, Woodrow KA (2016) Tunable release of multiclass anti-HIV drugs that are water-soluble and loaded at high drug content in polyester blended electrospun fibers. Pharm Res 33(1):125–136

    Article  Google Scholar 

  67. Dayal P, Kyu T (2006) Porous fiber formation in polymer-solvent system undergoing solvent evaporation. J Appl Phys 100(4):043512

    Article  Google Scholar 

  68. Sohrabi A et al (2013) Sustained drug release and antibacterial activity of ampicillin incorporated poly (methyl methacrylate)–nylon6 core/shell nanofibers. Polymer 54(11):2699–2705

    Article  Google Scholar 

  69. Tiwari SK et al (2010) Optimizing partition-controlled drug release from electrospun core–shell fibers. Int J Pharm 392(1):209–217

    Article  Google Scholar 

  70. Kiatyongchai T, Wongsasulak S, Yoovidhya T (2014) Coaxial electrospinning and release characteristics of cellulose acetate–gelatin blend encapsulating a model drug. J Appl Polym Sci 131(8):40167–40175

    Article  Google Scholar 

  71. Ball C, Woodrow KA (2014) Electrospun solid dispersions of maraviroc for rapid intravaginal preexposure prophylaxis of HIV. Antimicrob Agents Chemother 58(8):4855–4865

    Article  Google Scholar 

  72. Wang C et al (2010) Biodegradable core/shell fibers by coaxial electrospinning: processing, fiber characterization, and its application in sustained drug release. Macromolecules 43(15):6389–6397

    Article  Google Scholar 

  73. He M et al (2015) Fibrous guided tissue regeneration membrane loaded with anti-inflammatory agent prepared by coaxial electrospinning for the purpose of controlled release. Appl Surf Sci 335:121–129

    Article  Google Scholar 

  74. Okhawilai M et al (2010) Preparation of Thai silk fibroin/gelatin electrospun fiber mats for controlled release applications. Int J Biol Macromol 46(5):544–550

    Article  Google Scholar 

  75. Stephansen K et al (2016) Interactions between surfactants in solution and electrospun protein fibers: effects on release behavior and fiber properties. Mol Pharm 13(3):748–755

    Article  Google Scholar 

  76. Weng L, Xie J (2015) Smart electrospun nanofibers for controlled drug release: recent advances and new perspectives. Curr Pharm Des 21(15):1944–1959

    Article  Google Scholar 

  77. Demirci S et al (2014) pH-responsive nanofibers with controlled drug release properties. Polym Chem 5(6):2050–2056

    Article  Google Scholar 

  78. Qi M et al (2008) Electrospun fibers of acid-labile biodegradable polymers containing ortho ester groups for controlled release of paracetamol. Eur J Pharm Biopharm 70(2):445–452

    Article  Google Scholar 

  79. Yuan Z et al (2014) Regulating inflammation using acid-responsive electrospun fibrous scaffolds for skin scarless healing. Mediat Inflamm 2014:858045

    Article  Google Scholar 

  80. Jiang J et al (2014) Mussel-inspired protein-mediated surface functionalization of electrospun nanofibers for pH-responsive drug delivery. Acta Biomater 10(3):1324–1332

    Article  Google Scholar 

  81. Azarbayjani AF et al (2010) Smart polymeric nanofibers for topical delivery of levothyroxine. J Pharm Pharm Sci 13(3):400–410

    Article  Google Scholar 

  82. Tran T et al (2015) Controllable and switchable drug delivery of ibuprofen from temperature responsive composite nanofibers. Nano Converg 2(1):15

    Article  Google Scholar 

  83. Lv Y et al (2017) Core-sheath nanofibers as drug delivery system for thermoresponsive controlled release. J Pharm Sci 106(5):1258–1265

    Article  Google Scholar 

  84. Loh XJ et al (2010) Controlled drug release from biodegradable thermoresponsive physical hydrogel nanofibers. J Control Release 143(2):175–182

    Article  Google Scholar 

  85. Fu G-D et al (2009) Smart nanofibers with a photoresponsive surface for controlled release. ACS Appl Mater Interfaces 1(11):2424–2427

    Article  Google Scholar 

  86. Cobley CM et al (2011) Gold nanostructures: a class of multifunctional materials for biomedical applications. Chem Soc Rev 40(1):44–56

    Article  Google Scholar 

  87. Yun J et al (2011) Electro-responsive transdermal drug delivery behavior of PVA/PAA/MWCNT nanofibers. Eur Polym J 47(10):1893–1902

    Article  Google Scholar 

  88. Liu F, Ni Q-Q, Murakami Y (2013) Preparation of magnetic polyvinyl alcohol composite nanofibers with homogenously dispersed nanoparticles and high water resistance. Text Res J 83(5):510–518

    Article  Google Scholar 

  89. Wang L et al (2012) Fabrication of magnetic drug-loaded polymeric composite nanofibres and their drug release characteristics. RSC Adv 2(6):2433–2438

    Article  Google Scholar 

  90. Chen H, Hsieh YL (2004) Ultrafine hydrogel fibers with dual temperature-and pH-responsive swelling behaviors. J Polym Sci A Polym Chem 42(24):6331–6339

    Article  Google Scholar 

  91. Zhang Y, Yarin AL (2009) Stimuli-responsive copolymers of n-isopropyl acrylamide with enhanced longevity in water for micro-and nanofluidics, drug delivery and non-woven applications. J Mater Chem 19(27):4732–4739

    Article  Google Scholar 

  92. Mohammadian F, Eatemadi A (2016) Drug loading and delivery using nanofibers scaffolds. Artif Cells Nanomed Biotechnol 45(5):881–888

    Google Scholar 

  93. Merrell JG et al (2009) Curcumin-loaded poly(epsilon-caprolactone) nanofibres: diabetic wound dressing with anti-oxidant and anti-inflammatory properties. Clin Exp Pharmacol Physiol 36(12):1149–1156

    Article  Google Scholar 

  94. Xu X et al (2005) Ultrafine medicated fibers electrospun from W/O emulsions. J Control Release 108(1):33–42

    Article  Google Scholar 

  95. Torres-Giner S et al (2012) Controlled delivery of gentamicin antibiotic from bioactive electrospun polylactide-based ultrathin fibers. Adv Eng Mater 14(4):B112–B122

    Article  Google Scholar 

  96. Lou S-F et al (2013) Preparation of core–shell structured PVP-NSPs/PLLA binary-drug loaded complex fibermats by electrospinning; in vitro release and antimicrobial properties. J Control Release 172(1):e37

    Article  Google Scholar 

  97. Zomer Volpato F et al (2012) Preservation of FGF-2 bioactivity using heparin-based nanoparticles, and their delivery from electrospun chitosan fibers. Acta Biomater 8(4):1551–1559

    Article  Google Scholar 

  98. Liao IC, Leong KW (2011) Efficacy of engineered FVIII-producing skeletal muscle enhanced by growth factor-releasing co-axial electrospun fibers. Biomaterials 32(6):1669–1677

    Article  Google Scholar 

  99. Saraf A et al (2010) Regulated non-viral gene delivery from coaxial electrospun fiber mesh scaffolds. J Control Release 143(1):95–103

    Article  Google Scholar 

  100. Rujitanaroj PO et al (2011) Nanofiber-mediated controlled release of siRNA complexes for long term gene-silencing applications. Biomaterials 32(25):5915–5923

    Article  Google Scholar 

  101. Viry L et al (2012) Emulsion-coaxial electrospinning: designing novel architectures for sustained release of highly soluble low molecular weight drugs. J Mater Chem 22(22):11347–11353

    Article  Google Scholar 

  102. Yu DG et al (2013) Electrospun biphasic drug release polyvinylpyrrolidone/ethyl cellulose core/sheath nanofibers. Acta Biomater 9(3):5665–5672

    Article  Google Scholar 

  103. Chen W et al (2015) Dexamethasone loaded core–shell SF/PEO nanofibers via green electrospinning reduced endothelial cells inflammatory damage. Colloids Surf B Biointerfaces 126:561–568

    Article  Google Scholar 

  104. Gagandeep et al (2014) Development and characterization of nano-fiber patch for the treatment of glaucoma. Eur J Pharm Sci 53:10–16

    Article  Google Scholar 

  105. Huang C et al (2012) Electrospun cellulose acetate phthalate fibers for semen induced anti-HIV vaginal drug delivery. Biomaterials 33(3):962–969

    Article  Google Scholar 

  106. McCullen SD et al (2010) Effect of varied ionic calcium on human adipose-derived stem cell mineralization. Tissue Eng Part A 16(6):1971–1981

    Article  Google Scholar 

  107. Su Y et al (2012) Controlled release of bone morphogenetic protein 2 and dexamethasone loaded in core/shell PLLACL-collagen fibers for use in bone tissue engineering. Acta Biomater 8(2):763–771

    Article  Google Scholar 

  108. Tian L et al (2011) Emulsion electrospun vascular endothelial growth factor encapsulated poly(l-lactic acid-co-ε-caprolactone) nanofibers for sustained release in cardiac tissue engineering. J Mater Sci 47:3272–3281

    Article  Google Scholar 

  109. Wang CY et al (2012) The effect of aligned core/shell nanofibres delivering NGF on the promotion of sciatic nerve regeneration. J Biomater Sci Polym Ed 23(1–4):167–184

    Article  Google Scholar 

  110. Dinis TM et al (2014) Method to form a fiber/growth factor dual-gradient along electrospun silk for nerve regeneration. ACS Appl Mater Interfaces 6:16817–16826

    Article  Google Scholar 

  111. Jin G et al (2013) Controlled release of multiple epidermal induction factors through core/shell nanofibers for skin regeneration. Eur J Pharm Biopharm 85(3 Pt A):689–698

    Article  Google Scholar 

  112. Kataria K et al (2014) In vivo wound healing performance of drug loaded electrospun composite nanofibers transdermal patch. Int J Pharm 469:102–110

    Article  Google Scholar 

  113. Abeer MM et al (2014) A review of bacterial cellulose-based drug delivery systems: their biochemistry, current approaches and future prospects. J Pharm Pharmacol 66(8):1047–1061

    Google Scholar 

  114. Hong L et al (2006) Hydroxyapatite/bacterial cellulose composites synthesized via a biomimetic route. Mater Lett 60(13):1710–1713

    Article  Google Scholar 

  115. Silvestre AJ, Freire CS, Neto CP (2014) Do bacterial cellulose membranes have potential in drug-delivery systems? Expert Opin Drug Deliv 11(7):1113–1124

    Article  Google Scholar 

  116. Jung R et al (2009) Antimicrobial properties of hydrated cellulose membranes with silver nanoparticles. J Biomater Sci Polym Ed 20(3):311–324

    Article  Google Scholar 

  117. Almeida I et al (2014) Bacterial cellulose membranes as drug delivery systems: an in vivo skin compatibility study. Eur J Pharm Biopharm 86(3):332–336

    Article  Google Scholar 

  118. Lin Z, Guan Z, Huang Z (2013) New bacterial cellulose/polyaniline nanocomposite film with one conductive side through constrained interfacial polymerization. Ind Eng Chem Res 52(8):2869–2874

    Article  Google Scholar 

  119. Kundu B et al (2014) Isolation and processing of silk proteins for biomedical applications. Int J Biol Macromol 70:70–77

    Article  Google Scholar 

  120. Yucel T, Lovett ML, Kaplan DL (2014) Silk-based biomaterials for sustained drug delivery. J Control Release 190:381–397

    Article  Google Scholar 

  121. Koh L-D et al (2015) Structures, mechanical properties and applications of silk fibroin materials. Prog Polym Sci 46:86–110

    Article  Google Scholar 

  122. Pritchard EM, Kaplan DL (2011) Silk fibroin biomaterials for controlled release drug delivery. Expert Opin Drug Deliv 8(6):797–811

    Article  Google Scholar 

  123. Wenk E, Merkle HP, Meinel L (2011) Silk fibroin as a vehicle for drug delivery applications. J Control Release 150(2):128–141

    Article  Google Scholar 

  124. Wenk E et al (2010) The use of sulfonated silk fibroin derivatives to control binding, delivery and potency of FGF-2 in tissue regeneration. Biomaterials 31(6):1403–1413

    Article  Google Scholar 

  125. Seib FP, Kaplan DL (2013) Silk for drug delivery applications: opportunities and challenges. Israel J Chem 53(9–10):756–766

    Google Scholar 

  126. Kim SY et al (2015) Formulation of biologically-inspired silk-based drug carriers for pulmonary delivery targeted for lung cancer. Nat Res 5:11878

    Google Scholar 

  127. Choi H-M et al (2004) Antibiotic treatment of silk to produce novel infection-resistant biomaterials. Text Res J 74(4):333–342

    Article  Google Scholar 

  128. Gazit E (2007) Self-assembled peptide nanostructures: the design of molecular building blocks and their technological utilization. Chem Soc Rev 36(8):1263–1269

    Article  Google Scholar 

  129. Eskandari S et al (2017) Recent advances in self-assembled peptides: implications for targeted drug delivery and vaccine engineering. Adv Drug Deliv Rev 110:169–187

    Article  Google Scholar 

  130. Liang J et al (2014) pH responsive micelle self-assembled from a new amphiphilic peptide as anti-tumor drug carrier. Colloids Surf B Biointerfaces 114:398–403

    Article  Google Scholar 

  131. Habibi N et al (2016) Self-assembled peptide-based nanostructures: smart nanomaterials toward targeted drug delivery. Nano Today 11(1):41–60

    Article  Google Scholar 

  132. Yu Z et al (2015) Self-assembling peptide nanofibrous hydrogel as a versatile drug delivery platform. Curr Pharm Des 21(29):4342–4354

    Article  Google Scholar 

  133. Mao L et al (2012) Conjugation of two complementary anti-cancer drugs confers molecular hydrogels as a co-delivery system. Chem Commun 48(3):395–397

    Article  Google Scholar 

  134. Wang H et al (2012) Molecular hydrogelators consist of taxol and short peptides/amino acids. J Mater Chem 22(33):16933–16938

    Article  Google Scholar 

  135. Ashwanikumar N et al (2016) Self-assembling peptide nanofibers containing phenylalanine for the controlled release of 5-fluorouracil. Int J Nanomedicine 11:5583

    Article  Google Scholar 

  136. Wang X-H et al (2013) Evaluation of RGD peptide hydrogel in the posterior segment of the rabbit eye. J Biomater Sci Polym Ed 24(10):1185–1197

    Article  Google Scholar 

  137. Soukasene S et al (2011) Antitumor activity of peptide amphiphile nanofiber-encapsulated camptothecin. ACS Nano 5(11):9113–9121

    Article  Google Scholar 

  138. Galler KM et al (2011) A customized self-assembling peptide hydrogel for dental pulp tissue engineering. Tissue Eng A 18(1–2):176–184

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rana Imani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Imani, R., Yousefzadeh, M., Nour, S. (2018). Functional Nanofiber for Drug Delivery Applications. In: Barhoum, A., Bechelany, M., Makhlouf, A. (eds) Handbook of Nanofibers. Springer, Cham. https://doi.org/10.1007/978-3-319-42789-8_34-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42789-8_34-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42789-8

  • Online ISBN: 978-3-319-42789-8

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics