Skip to main content

Marine Industry

  • Living reference work entry
  • First Online:

Abstract

This chapter describes the use of adhesive bonding to assemble structures in the marine industry. The marine environment is extremely aggressive, and this has resulted in the widespread use of fiber-reinforced composite materials. Adhesive bonding is a lightweight and corrosion-resistant means of joining these materials. The main emphasis of this chapter will therefore be on the assembly of composites, though some examples of metal bonding will also be discussed. Three industrial applications are used to illustrate the use of adhesive bonding: small pleasure boats, high performance racing yachts, and bonded structures in the offshore industry. Each has specific design requirements, and there is no single marine adhesive suitable for all structures, but the requirement for long-term durability in a seawater environment is common to all these applications.

This is a preview of subscription content, log in via an institution.

References

  • Adams RD (ed) (2005) Adhesive bonding: science, technology and applications. Woodhead Publishing Limited, Cambridge

    Google Scholar 

  • Adams RD, Cowap JW, Farquharson G, Margary GM, Vaughn D (2009) The relative merits of the Boeing wedge test and the double cantilever beam test for assessing the durability of adhesively bonded joints, with particular reference to the use of fracture mechanics. Int J Adhes Adhes 29(6):609–620

    Article  Google Scholar 

  • Alexander C, Ochoa OO (2010) Extending onshore pipeline repair to offshore steel risers with carbon–fiber reinforced composites. Compos Struct 92(2):499–507

    Article  Google Scholar 

  • Armstrong KB (1997) Long-term durability in water of aluminium alloy adhesive joints bonded with epoxy adhesives. Int J Adhes Adhes 17(2):89–105

    Article  Google Scholar 

  • Bauer P, Roy A, Casari P, Choqueuse D, Davies P (2004) Structural mechanical testing of a full-size adhesively bonded motorboat. J Eng Mar Environ 218(M4):259–266

    Google Scholar 

  • Biddick K (2005) Structural repairs. Prof Boatbuilder 97:174–191

    Google Scholar 

  • Bordes M (2009) PhD thesis. Aging of adhesive joints in a marine environment for offshore applications. INSA, Lyon. (in French)

    Google Scholar 

  • Bordes M, Davies P, Cognard J-Y, Sohier L, Sauvant-Moynot V, Galy J (2009) Prediction of long term strength of adhesively bonded steel/epoxy joints in sea water. Int J Adhes Adhes 29(6):595–608

    Article  Google Scholar 

  • Bowditch MR (1996) The durability of adhesive joints in the presence of water. Int J Adhes Adhes 16:73–79

    Article  Google Scholar 

  • Bowditch MR, Harper TI, Lane JA (2004) Feasibility study to compare steel and adhesive/composite-based emergency repair methods for damaged hulls. HSE report 293

    Google Scholar 

  • Boyd SW, Blake JIR, Shenoi RA, Kapadia A (2004) Integrity of hybrid steel-to-composite joints for marine applications. J Eng Mar Environ 218(M4):235–246

    Google Scholar 

  • Cao J, Grenestedt JL (2004) Design and testing of joints for composite sandwich/steel hybrid ship hulls. Compos Part A Appl Sci Manuf 35:1091–1105

    Article  Google Scholar 

  • Cognard JY, Davies P, Gineste B, Sohier L (2005) Development of an improved adhesive test method for composite assembly design. Compos Sci Technol 65:359–368

    Article  Google Scholar 

  • Cowling MJ (1997) A review of adhesive bonding for offshore structures. HSE report, OTO 96 030

    Google Scholar 

  • Critchlow GW, Yendall KA, Bahrani D, Quinn A, Andrews F (2006) Strategies for the replacement of chromic acid anodising for the structural bonding of aluminium alloys. Int J Adhes Adhes 26:419–453

    Article  Google Scholar 

  • Crocombe AD (1997) Durability modelling concepts and tools for the cohesive environmental degradation of bonded structures. Int J Adhes Adhes 17:229–238

    Article  Google Scholar 

  • Davies P, Choqueuse D, Bigourdan B, Gauthier C, Joannic R, Parneix P, L’Hostis J (2004) Design, manufacture and testing of stiffened panels for marine structures using adhesively bonded pultruded sections. J Eng Mar Environ 218(M4):227–234

    Google Scholar 

  • Davies P, Baley C, Loaec H, Grohens Y (2005) Interlaminar tests for marine applications. Evaluation of the influence of peel plies and fabrication delays. Appl Compos Mater 12(5):293–307

    Article  Google Scholar 

  • Davies P, Sohier L, Cognard JY, Bourmaud A, Choqueuse D, Rinnert E, Créac’hcadec R (2009) Influence of adhesive bond line thickness on joint strength. Int J Adhes Adhes 29:724–736

    Article  Google Scholar 

  • Davies P, Choqueuse D, Bourbouze G (2010) Micro-tomography to study high performance sandwich structures. J Sandw Struct Mater. On-line doi:10.1177/1099636209344273

  • Diez de Ulzurrun I, López F, Herreros MA, Suárez JC (2007) Tests of deck-to-hull adhesive joints in GFRP boats. Eng Fail Anal 14(2):310–320

    Article  Google Scholar 

  • DNV (1991) Guidelines for classification of high speed, light craft and naval surface craft

    Google Scholar 

  • DNV (Det Norske Veritas) (2009) Standard for certification, no. 2.9, type approval programme no. 1–501.12, adhesives

    Google Scholar 

  • Germanischer Lloyd (2006) Rules and guidelines, materials and welding, part 2 non-metallic materials, section 3, repair of components, part 2

    Google Scholar 

  • Golaz B, Michaud V, Lavanchy S, Månson JE (2013) Design and durability of titanium adhesive joints for marine applications. Int J Adhes Adhes 45:150–157

    Article  Google Scholar 

  • Hansen AB, Rydin C (2002) Development and qualification of novel thermal insulation systems for deepwater flow lines and risers based on polypropylene. OTC 12141. Houston

    Google Scholar 

  • Hart-Smith LJ (2002) Adhesive bonding of composite structures – progress to date and some remaining challenges. J Comp Tech Res 24(3):133–153

    Article  Google Scholar 

  • Hashim SA (1999) Adhesive bonding of thick steel adherends for marine structures. Mar Struct 12(6):405–423

    Article  Google Scholar 

  • ISO 12215-6 (2008) International standards organisation. Part 6 “Small Craft-Hull construction and scantlings – structural arrangements and details”

    Google Scholar 

  • ISO/CD 24817 (2013) Composite repair for pipework and vessels – qualification and design, installation, testing and inspection

    Google Scholar 

  • Jarry E, Shenoi RA (2006) Performance of butt strap joints for marine applications. Int J Adhes Adhes 26:162–176

    Article  Google Scholar 

  • Junhou P, Shenoi RA (1996) Examination of key aspects defining the performance characteristics of out-of-plane joints in FRP marine structures. Compos A: Appl Sci Manuf 27(2):89–103

    Article  Google Scholar 

  • Karalekas D, Cugnoni J, Botsis J (2009) Monitoring of hygrothermal ageing effects in an epoxy resin using FBG sensor: a methodological study. Compos Sci Technol 69:507–514

    Article  Google Scholar 

  • Kinloch AJ (1983) Durability of structural adhesives. Applied Science Publishers, London

    Google Scholar 

  • Kinloch AJ (1987) Adhesion and adhesives: science and technology. Chapman & Hall, London

    Book  Google Scholar 

  • Knox EM, Cowling MJ, Hashim SA (2000) Fatigue performance of adhesively bonded connections in GRE pipes. Int J Fatigue 22(6):513–519

    Article  Google Scholar 

  • Lieu SC, Green MA (2016) Testing and history of composite repair systems for subsea pipe repair, OTC 26373. OTC Asia, Kuala Lumpur

    Google Scholar 

  • Loh WK, Crocombe AD, Abdel Wahab MM, Ashcroft IA (2002) Environmental degradation of the interfacial fracture energy in an adhesively bonded joint. Eng Fract Mech 69:2113–2128

    Article  Google Scholar 

  • McGeorge D, Weitzenbock J (2004) Adhesive bonding. Spec Ed J Eng Mar Environ 218(M4):i–ii

    Google Scholar 

  • Mieloszyk M, Ostachowicz W (2017) Moisture contamination detection in adhesive bond using embedded FBG sensors. Mech Syst Signal Process 84:1–14

    Article  Google Scholar 

  • Mouritz AP, Gellert E, Burchill P, Challis K (2001) Review of advanced composite structures for naval ships and submarines. Compos Struct 53(1):21–41

    Article  Google Scholar 

  • Okada R, Kortschot MT (2002) The role of the resin fillet in the delamination of honeycomb sandwich structures. Compos Sci Technol 62(14):1811–1819

    Article  Google Scholar 

  • LeLan JY, Parneix P, Gueguen PL (1992) Composite material superstructures. Proceedings of 3rd Ifremer conference on nautical construction with composites. IFREMER publication 15, pp 399–411

    Google Scholar 

  • Pattee FM, Kopp F (2000) Impact of electrically heated systems on the operation of deepwater subsea oil flow lines. OTC11894, Houston

    Google Scholar 

  • Pfund B (2007) Which ply first? Prof Boatbuilder 107:70–81

    Google Scholar 

  • Popineau S, Shanahan MER (2006) Simple model to estimate adhesion of structural bonding during humid ageing. Int J Adhes Adhes 26(5):363–370

    Article  Google Scholar 

  • Sargent JP (2005) Durability studies for aerospace applications using peel and wedge tests. Int J Adhes Adhes 25(3):247–256

    Article  Google Scholar 

  • Sika Marine Application guide (2009) 3rd edn. http://www.sikaconstruction.com/ipd-mag-0.0.pdf. Access Dec

  • Speth DR, Yang YP, Ritter GW (2010) Qualification of adhesives for marine composite-to-steel applications. Int J Adhes Adhes 30(2):55–62

    Article  Google Scholar 

  • Tamblin JS, Yang C, Harter P (June 2001) Investigation of thick bond line adhesive joints. DOT/FAA/AR-01/33

    Google Scholar 

  • Turton TJ, Dalzel-Job J, Livingstone F (2005) Oil platforms, destroyers and frigates – case studies of QinetiQ’s marine composite patch repairs. Compos Part A 36:1066–1072

    Article  Google Scholar 

  • UKOOA (1994) Specifications and recommendations for the use of GRP piping offshore. Part 4, Fabrication and installation

    Google Scholar 

  • Ural A, Zehnder AT, Ingraffea AR (2003) Fracture mechanics approach to face sheet delamination in honeycomb: measurement of energy release rate of the adhesive bond. Eng Fract Mech 70(1):93–103

    Article  Google Scholar 

  • Weitzenböck JR (ed) (2012) Adhesives in marine engineering. Woodhead Publishing, Cambridge

    Google Scholar 

  • Xiao GZ, Shanahan MER (1997) Water absorption and desorption in an epoxy resin with degradation. J Polym Sci B 35:2659

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Davies .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Davies, P. (2017). Marine Industry. In: da Silva, L., Öchsner, A., Adams, R. (eds) Handbook of Adhesion Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-42087-5_48-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42087-5_48-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42087-5

  • Online ISBN: 978-3-319-42087-5

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics