Wetting of Solids

  • Martin E. R. Shanahan
  • Wulff Possart
Living reference work entry


The contact between a solid and a liquid involves the phenomenon of wetting. This is the intuitive, intimate contact between the two phases. We consider here thermodynamic aspects of wetting, which involves three phases in fact, since the environment must be taken into account. Methods for determining wetting characteristics are discussed.


Contact angles Phase boundaries Thermodynamics Wetting 


  1. Adam NK, Elliott GEP (1962) Contact angles of water against saturated hydrocarbons. Theory of the capillary layer between the homogeneous phases of liquid and vapour II. J Chem Soc. 2206–2209.
  2. Bakker G (1902) Theory of the capillary layer between the homogeneous phases of liquid and vapour II. Z Phys Chem Stoichiom Verwandtschafts 42:68Google Scholar
  3. Bartell FE, Shepard JW (1953a) Surface roughness as related to hysteresis of contact angles I. The system paraffin-water-air. J Phys Chem 57:211CrossRefGoogle Scholar
  4. Bartell FE, Shepard JW (1953b) Surface roughness as related to hysteresis of contact angles II. The system of paraffin-4M-calcium chloride solution-air and paraffin-glyceral-air. J Phys Chem 57:455CrossRefGoogle Scholar
  5. Bischof C, Schulze RD, Possart W, Kamusewitz H (1988) The influence of the surface state of polymers on the determination of the contact angle. In: Allen KW (ed) Adhesion, vol 12. Elsevier Appl Sci, London/New York, pp 1–16Google Scholar
  6. Bumstead HA, Van Name RG (eds) (1961) Scientific papers of J Willard Gibbs, vol 2. Dover, New YorkGoogle Scholar
  7. Busscher HJ, van Pelt AWJ, de Boer P, de Jong HP, Arends J (1984) The effect of surface roughening of polymers on measured contact angles of liquids. J Coll Surf 9:319CrossRefGoogle Scholar
  8. Dupré A (1869) Théorie mécanique de la chaleur. Gauthiers-Villars, Paris, p 369Google Scholar
  9. Gaydos J, Rotenberg Y, Boruvka L, Chen P, Neumann AW (1996) The generalized theory of capillarity. In: Neumann AW, Spelt JK (eds) Applied surface thermodynamics. Marcel Dekker, New York, pp 1–51Google Scholar
  10. Hartland S, Ramakrishnan S (1975) Determination of contact angles and interfacial-tension from shape of sessile interfaces. Chimia 29:314Google Scholar
  11. Johnson RE, Dettre RH (1964) Contact angle hysteresis. I. Study of an idealized rough surface. Adv Chem Ser 43:112CrossRefGoogle Scholar
  12. Padday JF (1971) The profiles of axially symmetric menisci. Philos Trans R Soc A 269:265–293CrossRefGoogle Scholar
  13. Rusanov AI (1978) Phasengleichgewichte und Grenzflächenerscheinungen. Akademie-Verlag, BerlinGoogle Scholar
  14. Rusanov AI, Prokhorov VA (1996) Interfacial tensiometry. In: Möbius D, Miller R (eds) Studies in interface science, vol 3. Elsevier, Amsterdam/Lausanne/New York/Oxford/Shannon/TokyoGoogle Scholar
  15. Schulze RD, Possart W, Kamusewitz H, Bischof C (1989) Young’s equilibrium contact angle on rough solid surfaces – I. An empirical determination. J Adhes Sci Technol 3:39–48CrossRefGoogle Scholar
  16. Shanahan MER, Carré A (1995) Viscoelastic dissipation in wetting and adhesion phenomena. Langmuir 11:1396CrossRefGoogle Scholar
  17. Shanahan MER, de Gennes PG (1986) The ridge produced by a liquid near the triple line solid/liquid/fluid. C R Acad Sci Paris 302:517Google Scholar
  18. Shanahan MER, Cazeneuve C, Carré A, Schultz J (1982) Wetting criteria in 3-phase solid/liquid/liquid systems. J Chim Phys 79:241CrossRefGoogle Scholar
  19. Thiessen PA, Schoon E (1940) Besetzung und Adhäsionsarbeit von Oberflächen fester organischer Verbindungen. Z Elektrochem 46:170Google Scholar
  20. Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Ind Eng Chem 28:988–994CrossRefGoogle Scholar
  21. Young T (1805) Cohesion of fluids. Philos Trans R Soc A 95:65–87CrossRefGoogle Scholar
  22. Zhang J, Sheng X, Jiang L (2009) The dewetting properties of lotus leaves. Langmuir 25:1371–1376CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Institut de Mécanique et d’Ingénierie-Bordeaux (I2M), CNRS UMR 5295Université de BordeauxTalenceFrance
  2. 2.Saarland UniversitySaarbrückenGermany

Personalised recommendations