Skip to main content

Bacteriophage Pharmacology and Immunology

Abstract

The discovery of bacterial viruses approximately 100 years ago fairly quickly led to their use as antibacterial agents. For roughly two decades – early 1920s to early 1940s – bacteriophages represented the only means readily available to medicine by which many bacterial infections might be treated and cured. This near monopoly, however, came to a close as antibiotics became generally available. Antibiotics, especially as more broadly specific, selectively toxic antibacterials were both more easily developed and more easily used medicinals than phages. Phage therapy did not disappear from medical practice altogether, however, and increasingly is viewed as a viable alternative to antibiotics under circumstances where bacterial resistance to antibiotics is an issue. In addition are circumstances where a more selectively toxic antibacterial is desired, antibacterials that, for example, have less of a negative impact on nontarget members of a body’s microbiome. As for any drug, the successful development of phage therapeutics requires a pharmacological approach, whether implicit or, ideally, explicitly implemented. In this chapter, we consider pharmacokinetic and pharmacodynamic principles, body impact on drugs and drug impact on body, respectively, and both as they may be applied to the development of phage-based antimicrobials. As an important facet of both the pharmacokinetics and pharmacodynamics of phage therapy, we take a close look particularly at phage interactions with the mammalian immune system.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  • Abedon ST (2008) Phage, bacteria, and food. Appendix: rate of adsorption is function of phage density. In: Abedon ST (ed) Bacteriophage ecology. Cambridge University Press, Cambridge, UK, pp 321–324

    CrossRef  Google Scholar 

  • Abedon ST (2009) Kinetics of phage-mediated biocontrol of bacteria. Foodborne Pathog Dis 6:807–815

    PubMed  CrossRef  Google Scholar 

  • Abedon ST (2010) The ‘nuts and bolts’ of phage therapy. Curr Pharm Biotechnol 11:1

    PubMed  CrossRef  CAS  Google Scholar 

  • Abedon S (2011a) Phage therapy pharmacology: calculating phage dosing. Adv Appl Microbiol 77:1–40

    PubMed  CrossRef  Google Scholar 

  • Abedon ST (2011b) Bacteriophages and biofilms: ecology, phage therapy, plaques. Nova Science Publishers, Hauppauge

    Google Scholar 

  • Abedon ST (2011c) Envisaging bacteria as phage targets. Bacteriophage 1:228–230

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Abedon ST (2011d) Lysis from without. Bacteriophage 1:46–49

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Abedon ST (2012a) Bacterial ‘immunity’ against bacteriophages. Bacteriophage 2:50–54

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Abedon ST (2012b) Phage therapy best practices. In: Hyman P, Abedon ST (eds) Bacteriophages in health and disease. CABI Press, Wallingford, pp 256–272

    CrossRef  Google Scholar 

  • Abedon ST (2012c) Spatial vulnerability: bacterial arrangements, microcolonies, and biofilms as responses to low rather than high phage densities. Viruses 4:663–687

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Abedon ST (2014a) Bacteriophages as drugs: the pharmacology of phage therapy. In: Borysowski J, Międzybrodzki R, Górski A (eds) Phage therapy: current research and applications. Caister Academic Press, Norfolk, pp 69–100

    Google Scholar 

  • Abedon ST (2014b) Phage therapy: eco-physiological pharmacology. Scientifica 2014:581639

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Abedon ST (2015a) Bacteriophage secondary infection. Virol Sin 30:3–10

    PubMed  CrossRef  CAS  PubMed Central  Google Scholar 

  • Abedon ST (2015b) Ecology of anti-biofilm agents I. Antibiotics versus bacteriophages. Pharmaceuticals 8:525–558

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Abedon ST (2015c) Ecology of anti-biofilm agents II. Bacteriophage exploitation and biocontrol of biofilm bacteria. Pharmaceuticals 8:559–589

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Abedon ST (2015d) Phage therapy of pulmonary infections. Bacteriophage 5:e1020260

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Abedon ST (2016a) Bacteriophage exploitation of bacterial biofilms: phage preference for less mature targets? FEMS Microbiol Lett 363:fnv246

    PubMed  CrossRef  Google Scholar 

  • Abedon ST (2016b) Phage therapy dosing: the problem(s) with multiplicity of infection (MOI). Bacteriophage 6:e1220348

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Abedon ST (2017a) Active bacteriophage biocontrol and therapy on sub-millimeter scales towards removal of unwanted bacteria from foods and microbiomes. AIMS Microbiol 3:649–688

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Abedon ST (2017b) Bacteriophage clinical use as antibactertial “drugs”: utility precident. Microbiol Spectr 5: BAD-0003-2016

    Google Scholar 

  • Abedon ST (2017c) Information phage therapy research should report. Pharmaceuticals (Basel) 10:43

    CrossRef  Google Scholar 

  • Abedon ST (2017d) Phage “delay” towards enhancing bacterial escape from biofilms: a more comprehensive way of viewing resistance to bacteriophages. AIMS Microbiol 3:186–226

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Abedon ST (2018a) Bacteriophage-mediated biocontrol of wound infections, and ecological exploitation of biofilms by phages. In: Shiffman M (ed) Recent clinical techniques, results, and research in wounds. Springer

    Google Scholar 

  • Abedon ST (2018b) Phage therapy: various perspectives on how to improve the art. In: Medina C, López-Baena F (eds) Host-pathogen interactions. Humana Press, New York, pp 113–127

    CrossRef  Google Scholar 

  • Abedon ST, Thomas-Abedon C (2010) Phage therapy pharmacology. Curr Pharm Biotechnol 11:28–47

    PubMed  CrossRef  CAS  Google Scholar 

  • Abedon ST, Kuhl SJ, Blasdel BG, Kutter EM (2011) Phage treatment of human infections. Bacteriophage 1:66–85

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Ackermann H-W (2005) Bacteriophage classification. In: Kutter E, Sulakvelidze A (eds) Bacteriophages: biology and application. CRC Press, Boca Raton, pp 67–90

    Google Scholar 

  • Aronow R, Danon D, Shahar A, Aronson M (1964) Electron microscopy of in vitro endocytosis of T2 phage by cells from rabbit peritoneal exudate. J Exp Med 120:943–954

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Barr JJ (2017) A bacteriophages journey through the human body. Immunol Rev 279:106–122

    CrossRef  CAS  PubMed  Google Scholar 

  • Boratyński J, Syper D, Weber-Dąbrowska B, Łusiak-Szelachowska M, Poźniak G, Górski A (2004) Preparation of endotoxin-free bacteriophages. Cell Mol Biol Lett 9:253–259

    PubMed  Google Scholar 

  • Borysowski J, Międzybrodzki R, Górski A (2014) Phage therapy: current research and applications. Caister Academic Press, Norfolk

    Google Scholar 

  • Brussow H (2013) Bacteriophage-host interaction: from splendid isolation into a messy reality. Curr Opin Microbiol 16:500–506

    PubMed  CrossRef  CAS  Google Scholar 

  • Bruttin A, Brüssow H (2005) Human volunteers receiving Escherichia coli phage T4 orally: a safety test of phage therapy. Antimicrob Agents Chemother 49:2874–2878

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Bryan D, El-Shibiny A, Hobbs Z, Porter J, Kutter EM (2016) Bacteriophage T4 infection of stationary phase E. coli: life after log from a phage perspective. Front Microbiol 7:1391

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Bull JJ, Gill JJ (2014) The habits of highly effective phages: population dynamics as a framework for identifying therapeutic phages. Front Microbiol 5:618

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Bull JJ, Regoes RR (2006) Pharmacodynamics of non-replicating viruses, bacteriocins and lysins. Proc R Soc Lond B Biol Sci 273:2703–2712

    CrossRef  CAS  Google Scholar 

  • Campbell AM (2006) General aspects of lysogeny. In: Calendar R, Abedon ST (eds) The bacteriophages. Oxford University Press, Oxford, pp 66–73

    Google Scholar 

  • Carlton RM (1999) Phage therapy: past history and future prospects. Arch Immunol Ther Exp 47:267–274

    CAS  Google Scholar 

  • Casjens SR, Hendrix RW (2015) Bacteriophage lambda: early pioneer and still relevant. Virology 479–480:310–330

    PubMed  CrossRef  CAS  Google Scholar 

  • Chan BK, Abedon ST (2012a) Bacteriophage adaptation, with particular attention to issues of phage host range. In: Quiberoni A, Reinheimer J (eds) Bacteriophages in dairy processing. Nova Science Publishers, Hauppauge, pp 25–52

    Google Scholar 

  • Chan BK, Abedon ST (2012b) Phage therapy pharmacology: phage cocktails. Adv Appl Microbiol 78:1–23

    PubMed  CrossRef  CAS  Google Scholar 

  • Chan BK, Abedon ST (2015) Bacteriophages and their enzymes in biofilm control. Curr Pharm Des 21:85–99

    PubMed  CrossRef  CAS  Google Scholar 

  • Chan BK, Abedon ST, Loc-Carrillo C (2013) Phage cocktails and the future of phage therapy. Future Microbiol 8:769–783

    PubMed  CrossRef  CAS  Google Scholar 

  • Chan BK, Turner PE, Kim S, Mojibian HR, Elefteriades JA, Narayan D (2018) Phage treatment of an aortic graft infected with Pseudomonas aeruginosa. Evol Med Public Health 1:60–66

    CrossRef  Google Scholar 

  • Chanishvili N (2012a) A literature review of the practical application of bacteriophage research. Nova Science Publishers, Hauppauge

    Google Scholar 

  • Chanishvili N (2012b) Phage therapy – history from Twort and d’Herelle through Soviet experience to current approaches. Adv Virus Res 83:3–40

    PubMed  CrossRef  CAS  Google Scholar 

  • Christie GE, Allison HA, Kuzio J, McShan M, Waldor MK, Kropinski AM (2012) Prophage-induced changes in cellular cytochemistry and virulence. In: Hyman P, Abedon ST (eds) Bacteriophages in health and disease. CABI Press, Wallingford, pp 33–60

    CrossRef  Google Scholar 

  • Curtright AJ, Abedon ST (2011) Phage therapy: emergent property pharmacology. J Bioanal Biomed S3:010

    Google Scholar 

  • Dąbrowska K, Miernikiewicz P, Piotrowicz A, Hodyra K, Owczarek B, Lecion D, Kaźmierczak Z, Letarov A, Górski A (2014) Immunogenicity studies of proteins forming the T4 phage head surface. J Virol 88:12551–12557

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Dy RL, Richter C, Salmond GP, Fineran PC (2014) Remarkable mechanisms in microbes to resist phage infections. Annu Rev Virol 1:307–331

    PubMed  CrossRef  CAS  Google Scholar 

  • Fan X, Li W, Zheng F, Xie J (2013) Bacteriophage inspired antibiotics discovery against infection involved biofilm. Crit Rev Eukaryot Gene Expr 23:317–326

    PubMed  CrossRef  CAS  Google Scholar 

  • Fish R, Kutter E, Wheat G, Blasdel B, Kutateladze M, Kuhl S (2016) Bacteriophage treatment of intransigent diabetic toe ulcers: a case series. J Wound Care 25(Suppl 7):S27–S33

    CrossRef  Google Scholar 

  • Fogelman I, Davey V, Ochs HD, Elashoff M, Feinberg MB, Mican J, Siegel JP, Sneller M, Lane HC (2000) Evaluation of CD4+ T cell function in vivo in HIV-infected patients as measured by bacteriophage phiX174 immunization. J Infect Dis 182:435–441

    PubMed  CrossRef  CAS  Google Scholar 

  • Geier MR, Trigg ME, Merril CR (1973) The fate of bacteriophage lambda in non-immune germ-free mice. Nature (London) 246:221–223

    CrossRef  CAS  Google Scholar 

  • Gill JJ, Hyman P (2010) Phage choice, isolation and preparation for phage therapy. Curr Pharm Biotechnol 11:2–14

    PubMed  CrossRef  CAS  Google Scholar 

  • Goodridge LD (2010) Designing phage therapeutics. Curr Pharm Biotechnol 11:15–27

    PubMed  CrossRef  CAS  Google Scholar 

  • Górski A, Weber-Dąbrowska B (2005) The potential role of endogenous bacteriophages in controlling invading pathogens. Cell Mol Life Sci 62:511–519

    PubMed  CrossRef  CAS  Google Scholar 

  • Górski A, Kniotek M, Perkowska-Ptasinska A, Mroz A, Przerwa A, Gorczyca W, Dąbrowska K, Weber-Dąbrowska B, Nowaczyk M (2006a) Bacteriophages and transplantation tolerance. Transplant Proc 38:331–333

    PubMed  CrossRef  Google Scholar 

  • Górski A, Wazna E, Dąbrowska B-W, Switala-Jelén K, Międzybrodzki R (2006b) Bacteriophage translocation. FEMS Immunol Med Microbiol 46:313–319

    PubMed  CrossRef  CAS  Google Scholar 

  • Górski A, Międzybrodzki R, Borysowski J, Dąbrowska K, Wierzbicki P, Ohams M, Korczak-Kowalska G, Olszowska-Zaremba N, Łusiak-Szelachowska M, Kłak M, Jończyk E, Kaniuga E, Gołas A, Purchla S, Weber-Dąbrowska B, Letkiewicz S, Fortuna W, Szufnarowski K, Pawełczyk Z, Rogóz P, Kłosowska D (2012) Phage as a modulator of immune responses: practical implications for phage therapy. Adv Virus Res 83:41–71

    PubMed  CrossRef  CAS  Google Scholar 

  • Górski A, Dąbrowska K, Hodyra-Stefaniak K, Borysowski J, Międzybrodzki R, Weber-Dąbrowska B (2015) Phages targeting infected tissues: novel approach to phage therapy. Future Microbiol 10:199–204

    PubMed  CrossRef  CAS  Google Scholar 

  • Gutíerrez D, Rodríguez-Rubio L, Martínez B, Rodríguez A, García P (2016) Bacteriophages as weapons against bacterial biofilms in the food industry. Front Microbiol 7:825

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Hagens S, Loessner MJ (2010) Bacteriophage for biocontrol of foodborne pathogens: calculations and considerations. Curr Pharm Biotechnol 11:58–68

    PubMed  CrossRef  CAS  Google Scholar 

  • Hajek P (1967) Properties of natural 19S antibodies in normal pig serum against the FX174 and T2 phages. Folia Microbiol 12:551–556

    CrossRef  CAS  Google Scholar 

  • Harper DR, Morales S (2012) Bacteriophage therapy: practicability and clinical need meet in the multidrug-resistance era. Future Microbiol 7:797–799

    PubMed  CrossRef  CAS  Google Scholar 

  • Harper DR, Parracho HMR, Walker J, Sharp R, Hughes G, Werthrén M, Lehman S, Morales S (2014) Bacteriophages and biofilms. Antibiotics 3:270–284

    PubMed Central  CrossRef  CAS  Google Scholar 

  • Henry M, Lavigne R, Debarbieux L (2013) Predicting in vivo efficacy of therapeutic bacteriophages used to treat pulmonary infections. Antimicrob Agents Chemother 57:5961–5968

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Hobbs Z, Abedon ST (2016) Diversity of phage infection types and associated terminology: the problem with ‘Lytic or lysogenic’. FEMS Microbiol Lett 363:fnw047

    PubMed  CrossRef  Google Scholar 

  • Hodyra-Stefaniak K, Miernikiewicz P, Drapala J, Drab M, Jończyk-Matysiak E, Lecion D, Kaźmierczak Z, Beta W, Majewska J, Harhala M, Bubak B, Kłopot A, Górski A, Dąbrowska K (2015) Mammalian host-versus-phage immune response determines phage fate in vivo. Sci Rep 5:14802

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Huff WE, Huff GR, Rath NC, Donoghue AM (2010) Immune interference of bacteriophage efficacy when treating colibacillosis in poultry. Poult Sci 89:895–900

    PubMed  CrossRef  CAS  Google Scholar 

  • Hyman P, Abedon ST (2010) Bacteriophage host range and bacterial resistance. Adv Appl Microbiol 70:217–248

    PubMed  CrossRef  CAS  Google Scholar 

  • Hyman P, Abedon ST (2012) Bacteriophages in health and disease. CABI Press, Wallingford

    CrossRef  Google Scholar 

  • Inchley CJ (1969) The activity of mouse Kuppfer cells following intravenous injection of T4 bacteriophage. Clin Exp Immunol 5:173–187

    PubMed  PubMed Central  CAS  Google Scholar 

  • Janeway CA, Travers P, Walport M, Shlomchik MJ (2005) Immunology. Garland Science, New York

    Google Scholar 

  • Jończyk-Matysiak E, Łusiak-Szelachowska M, Kłak M, Bubak B, Międzybrodzki R, Weber-Dąbrowska B, Żaczek M, Fortuna W, Rogóz P, Letkiewicz S, Szufnarowski K, Gorski A (2015) The effect of bacteriophage preparations on intracellular killing of bacteria by phagocytes. J Immunol Res 2015:482863

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Kantoch M (1958) Studies on phagocytosis of bacterial viruses. Arch Immunol Ther Exp 6:63–84

    Google Scholar 

  • Kantoch M (1961) The role of phagocytes in virus infections. Arch Immunol Ther Exp 9:261–340

    CAS  Google Scholar 

  • Kawai T, Akira S (2006) Innate immune recognition of viral infection. Nat Immunol 7:131–137

    PubMed  CrossRef  CAS  Google Scholar 

  • Khalifa L, Shlezinger M, Beyth S, Houri-Haddad Y, Coppenhagen-Glazer S, Beyth N, Hazan R (2016) Phage therapy against Enterococcus faecalis in dental root canals. J Oral Microbiol 8:32157

    PubMed  CrossRef  Google Scholar 

  • Kucharewicz-Krukowska A, Slopek S (1987) Immunogenic effect of bacteriophage in patients subjected to phage therapy. Arch Immunol Ther Exp 35:553–561

    CAS  Google Scholar 

  • Kuhl S, Hyman P, Abedon ST (2012) Diseases caused by phages. In: Hyman P, Abedon ST (eds) Bacteriophages in health and disease. CABI Press, Wallingford, pp 21–32

    CrossRef  Google Scholar 

  • Kumari S, Harjai K, Chhibber S (2010) Evidence to support the therapeutic potential of bacteriophage Kpn5 in burn wound infection caused by Klebsiella pneumoniae in BALB/c mice. J Microbiol Biotechnol 20:935–941

    PubMed  CrossRef  CAS  Google Scholar 

  • Kutateladze M, Adamia R (2008) Phage therapy experience at the Eliava institute. Med Mal Infect 38:426–430

    PubMed  CrossRef  CAS  Google Scholar 

  • Kutter E, Sulakvelidze A (2005) Bacteriophages: biology and application. CRC Press, Boca Raton

    Google Scholar 

  • Kutter E, De Vos D, Gvasalia G, Alavidze Z, Gogokhia L, Kuhl S, Abedon ST (2010) Phage therapy in clinical practice: treatment of human infections. Curr Pharm Biotechnol 11:69–86

    PubMed  CrossRef  CAS  Google Scholar 

  • Kutter E, Borysowski J, Międzybrodzki R, Górski A, Weber-Dąbrowska B, Kutateladze M, Alavidze Z, Goderdzishvili M, Adamia R (2014) Clinical phage therapy. In: Borysowski J, Międzybrodzki R, Górski A (eds) Phage therapy: current research and applications. Caister Academic Press, Norfolk, pp 257–288

    Google Scholar 

  • Kutter EM, Kuhl SJ, Abedon ST (2015) Re-establishing a place for phage therapy in western medicine. Future Microbiol 10:685–688

    PubMed  CrossRef  CAS  Google Scholar 

  • Labrie SJ, Samson JE, Moineau S (2010) Bacteriophage resistance mechanisms. Nat Rev Microbiol 8:317–327

    PubMed  CrossRef  CAS  Google Scholar 

  • Langbeheim H, Teitelbaum D, Arnon R (1978) Cellular immune response toward MS-2 phage and a synthetic fragment of its coat protein. Cell Immunol 38:193–197

    PubMed  CrossRef  CAS  Google Scholar 

  • Letarov AV, Golomidova AK, Tarasyan KK (2010) Ecological basis of rational phage therapy. Acta Nat 2:60–71

    CAS  Google Scholar 

  • Lindberg HM, McKean KA, Wang I-N (2014) Phage fitness may help predict phage therapy efficacy. Bacteriophage 4:e964081

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Łobocka M, Hejnowicz MS, Gagala U, Weber-Dąbrowska B, Wegrzyn G, Dadlez M (2014) The first step to bacteriophage therapy: how to choose the correct phage. In: Borysowski J, Międzybrodzki R, Górski A (eds) Phage therapy: current research and applications. Caister Academic Press, Norfolk, pp 23–67

    Google Scholar 

  • Łusiak-Szelachowska M, Żaczek M, Weber-Dąbrowska B, Międzybrodzki R, Kłak M, Fortuna W, Letkiewicz S, Rogóz P, Szufnarowski K, Jończyk-Matysiak E, Owczarek B, Górski A (2014) Phage neutralization by sera of patients receiving phage therapy. Viral Immunol 27:295–304

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Majewska J, Beta W, Lecion D, Hodyra-Stefaniak K, Klopot A, Kazmierczak Z, Miernikiewicz P, Piotrowicz A, Ciekot J, Owczarek B, Kopciuch A, Wojtyna K, Harhala M, Mąkosa M, Dąbrowska K (2015) Oral application of T4 phage induces weak antibody production in the gut and in the blood. Viruses 7:4783–4799

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • McCallin S, Alam SS, Barretto C, Sultana S, Berger B, Huq S, Krause L, Bibiloni R, Schmitt B, Reuteler G, Brüssow H (2013) Safety analysis of a Russian phage cocktail: from metaGenomic analysis to oral application in healthy human subjects. Virology 443:187–196

    PubMed  CrossRef  CAS  Google Scholar 

  • Medzhitov R (2007) Recognition of microorganisms and activation of the immune response. Nature (London) 449:819–826

    CrossRef  CAS  Google Scholar 

  • Merril CR (2008) Interaction of bacteriophages with animals. In: Abedon ST (ed) Bacteriophage ecology. Cambridge University Press, Cambridge, UK, pp 332–352

    CrossRef  Google Scholar 

  • Merril CR, Biswas B, Carlton R, Jensen NC, Creed GJ, Zullo S, Adhya S (1996) Long-circulating bacteriophage as antibacterial agents. Proc Natl Acad Sci U S A 93:3188–3192

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Miedzybrodzki R, Switala-Jelen K, Fortuna W, Weber-Dabrowska B, Przerwa A, Lusiak-Szelachowska M, Dabrowska K, Kurzepa A, Boratynski J, Syper D, Pozniak G, Lugowski C, Górski A (2008) Bacteriophage preparation inhibition of reactive oxygen species generation by endotoxin-stimulated polymorphonuclear leukocytes. Virus Res 131:233–242

    PubMed  CrossRef  CAS  Google Scholar 

  • Międzybrodzki R, Fortuna W, Weber-Dąbrowska B, Górski A (2009) A retrospective analysis of changes in inflammatory markers in patients treated with bacterial viruses. Clin Exp Med 9:303–312

    PubMed  CrossRef  Google Scholar 

  • Międzybrodzki R, Borysowski J, Weber-Dąbrowska B, Fortuna W, Letkiewicz S, Szufnarowski K, Pawełczyk Z, Rogóz P, Kłak M, Wojtasik E, Górski A (2012) Clinical aspects of phage therapy. Adv Virus Res 83:73–121

    PubMed  CrossRef  CAS  Google Scholar 

  • Miernikiewicz P, Dąbrowska K, Piotrowicz A, Owczarek B, Wojas-Turek J, Kicielińska J, Rossowska J, Pajtasz-Piasecka E, Hodyra K, Macegoniuk K, Rzewucka K, Kopciuch A, Majka T, Letarov A, Kulikov E, Maciejewski H, Górski A (2013) T4 phage and its head surface proteins do not stimulate inflammatory mediator production. PLoS One 8:e71036

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Miernikiewicz P, Klopot A, Soluch R, Szkuta P, Kęska W, Hodyra-Stefaniak K, Konopka A, Nowak M, Lecion D, Kaźmierczak Z, Majewska J, Harhala M, Gorski A, Dąbrowska K (2016) T4 phage tail adhesin gp12 counteracts LPS-induced inflammation in vivo. Front Microbiol 7:1112

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Motlagh AM, Bhattacharjee AS, Goel R (2016) Biofilm control with natural and genetically-modified phages. World J Microbiol Biotechnol 32:67

    PubMed  CrossRef  CAS  Google Scholar 

  • Muckenfuss RS (1928) Studies on the bacteriophage of d’Hérelle. XI. An inquiry into the mode of action of antibacteriophage serum. J Exp Med 48:709–722

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Mushtaq N, Redpath MB, Luzio JP, Taylor PW (2004) Prevention and cure of systemic Escherichia coli K1 infection by modification of the bacterial phenotype. Antimicrob Agents Chemother 48:1503–1508

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Nguyen S, Baker K, Padman BS, Patwa R, Dunstan RA, Weston TA, Schlosser K, Bailey B, Lithgow T, Lazarou M, Luque A, Rohwer F, Blumberg RS, Barr JJ (2017) Bacteriophage transcytosis provides a mechanism to cross epithelial cell layers. MBio 8:e01874

    PubMed  PubMed Central  Google Scholar 

  • Olszowska-Zaremba N, Borysowski J, Dąbrowska K, Górski A (2012) Phage translocation, safety, and immunomodulation. In: Hyman P, Abedon ST (eds) Bacteriophages in health and disease. CABI Press, Wallingford, pp 168–184

    CrossRef  Google Scholar 

  • Pancer Z, Cooper MD (2006) The evolution of adaptive immunity. Annu Rev Immunol 24:497–518

    PubMed  CrossRef  CAS  Google Scholar 

  • Parasion S, Kwiatek M, Gryko R, Mizak L, Malm A (2014) Bacteriophages as an alternative strategy for fighting biofilm development. Pol J Microbiol 63:137–145

    PubMed  Google Scholar 

  • Park K, Cha KE, Myung H (2014) Observation of inflammatory responses in mice orally fed with bacteriophage T7. J Appl Microbiol 117:627–633

    PubMed  CrossRef  CAS  Google Scholar 

  • Payne RJH, Jansen VAA (2001) Understanding bacteriophage therapy as a density-dependent kinetic process. J Theor Biol 208:37–48

    PubMed  CrossRef  CAS  Google Scholar 

  • Payne RJH, Phil D, Jansen VAA (2000) Phage therapy: the peculiar kinetics of self-replicating pharmaceuticals. Clin Pharmacol Ther 68:225–230

    PubMed  CrossRef  CAS  Google Scholar 

  • Payne RJH, Jansen VAA (2003) Pharmacokinetic principles of bacteriophage therapy. Clin Pharmacokinet 42:315–325

    PubMed  CrossRef  CAS  Google Scholar 

  • Perreau M, Guerin MC, Drouet C, Kremer EJ (2007) Interactions between human plasma components and a xenogenic adenovirus vector: reduced immunogenicity during gene transfer. Mol Ther 15:1998–2007

    PubMed  CrossRef  CAS  Google Scholar 

  • Pincus NB, Reckhow JD, Saleem D, Jammeh ML, Datta SK, Myles IA (2015) Strain specific phage treatment for Staphylococcus aureus infection is influenced by host immunity and site of infection. PLoS One 10:e0124280

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Pirnay JP, De VD, Verbeken G, Merabishvili M, Chanishvili N, Vaneechoutte M, Zizi M, Laire G, Lavigne R, Huys I, Van den Mooter G, Buckling A, Debarbieux L, Pouillot F, Azeredo J, Kutter E, Dublanchet A, Górski A, Adamia R (2011) The phage therapy paradigm: prêt-à-porter or sur-mesure? Pharm Res 28:934–937

    PubMed  CrossRef  CAS  Google Scholar 

  • Pirnay JP, Blasdel BG, Bretaudeau L, Buckling A, Chanishvili N, Clark JR, Corte-Real S, Debarbieux L, Dublanchet A, De VD, Gabard J, Garcia M, Goderdzishvili M, Górski A, Hardcastle J, Huys I, Kutter E, Lavigne R, Merabishvili M, Olchawa E, Parikka KJ, Patey O, Pouilot F, Resch G, Rohde C, Scheres J, Skurnik M, Vaneechoutte M, Van PL, Verbeken G, Zizi M, Van den Eede G (2015) Quality and safety requirements for sustainable phage therapy products. Pharm Res 32:2173–2179

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Przybylski M, Borysowski J, Jakubowska-Zahorska R, Weber-Dąbrowska B, Górski A (2015) T4 bacteriophage-mediated inhibition of adsorption and replication of human adenovirus in vitro. Future Microbiol 10:453–460

    PubMed  CrossRef  CAS  Google Scholar 

  • Rus H, Cudrici C, Niculescu F (2005) The role of the complement system in innate immunity. Immunol Res 33:103–112

    PubMed  CrossRef  CAS  Google Scholar 

  • Ryan EM, Gorman SP, Donnelly RF, Gilmore BF (2011) Recent advances in bacteriophage therapy: how delivery routes, formulation, concentration and timing influence the success of phage therapy. J Pharm Pharmacol 63:1253–1264

    PubMed  CrossRef  CAS  Google Scholar 

  • Sabour PM, Griffiths MW (2010) Bacteriophages in the control of food and, waterborne pathogens. ASM Press, Washington, DC

    Google Scholar 

  • Schmerer M, Molineux IJ, Bull JJ (2014) Synergy as a rationale for phage therapy using phage cocktails. PeerJ 2:e590

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Schooley RT, Biswas B, Gill JJ, Hernandez-Morales A, Lancaster J, Lessor L, Barr JJ, Reed SL, Rohwer F, Benler S, Segall AM, Taplitz R, Smith DM, Kerr K, Kumaraswamy M, Nizet V, Lin L, McCauley MD, Strathdee SA, Benson CA, Pope RK, Leroux BM, Picel AC, Mateczun AJ, Cilwa KE, Regeimbal JM, Estrella LA, Wolfe DM, Henry MS, Quinones J, Salka S, Bishop-Lilly KA, Young R, Hamilton T (2017) Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection. Antimicrob Agents Chemother 61:e00954-17

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Seed KD (2015) Battling phages: how bacteria defend against viral attack. PLoS Pathog 11:e1004847

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Sillankorva S, Azeredo J (2014) The use of bacteriophages and bacteriophage-derived enzymes for clinically relevant biofilm control. In: Borysowski J, Międzybrodzki R, Górski A (eds) Phage therapy: current research and applications. Caister Academic Press, Norfolk

    Google Scholar 

  • Smith HW, Huggins MB, Shaw KM (1987) Factors influencing the survival and multiplication of bacteriophages in calves and in their environment. J Gen Microbiol 133:1127–1135

    PubMed  CAS  Google Scholar 

  • Sokoloff AV, Bock I, Zhang G, Sebestyen MG, Wolff JA (2000) The interactions of peptides with the innate immune system studied with use of T7 phage peptide display. Mol Ther 2:131–139

    PubMed  CrossRef  CAS  Google Scholar 

  • Speck P, Smithyman A (2016) Safety and efficacy of phage therapy via the intravenous route. FEMS Microbiol Lett 363:fnv242

    PubMed  CrossRef  Google Scholar 

  • Srivastava AS, Kaido T, Carrier E (2004) Immunological factors that affect the in vivo fate of T7 phage in the mouse. J Virol Methods 115:99–104

    PubMed  CrossRef  CAS  Google Scholar 

  • Stent GS (1963) Molecular Biology of Bacterial Viruses. WH Freeman and Co., San Francisco, CA

    Google Scholar 

  • Sulakvelidze A, Kutter E (2005) Bacteriophage therapy in humans. In: Kutter E, Sulakvelidze A (eds) Bacteriophages: biology and application. CRC Press, Boca Raton, pp 381–436

    Google Scholar 

  • Sulakvelidze A, Alavidze Z, Morris JG Jr (2001) Bacteriophage therapy. Antimicrob Agents Chemother 45:649–659

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Summers WC (2005) History of phage research and phage therapy. In: Waldor M, Friedman D, Adhya S (eds) Phages: their role in bacterial pathogenesis and biotechnology. ASM Press, Washington, DC

    Google Scholar 

  • Summers WC (2012) The strange history of phage therapy. Bacteriophage 2:130–133

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Szermer-Olearnik B, Boratyński J (2015) Removal of endotoxins from bacteriophage preparations by extraction with organic solvents. PLoS One 10:e0122672

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Uchiyama J, Maeda Y, Takemura I, Chess-Williams R, Wakiguchi H, Matsuzaki S (2009) Blood kinetics of four intraperitoneally administered therapeutic candidate bacteriophages in healthy and neutropenic mice. Microbiol Immunol 53:301–304

    PubMed  CrossRef  CAS  Google Scholar 

  • Wei W, Krone SM (2005) Spatial invasion by a mutant pathogen. J Theor Biol 236:335–348

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Zimecki M, Artym J, Kocięba M, Weber-Dąbrowska B, Borysowski J, Górski A (2009) Effects of prophylactic administration of bacteriophages to immunosuppressed mice infected with Staphylococcus aureus. BMC Microbiol 9:169

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

Download references

Acknowledgments

KD’s work was supported by National Science Centre in Poland, grant UMO-2012/05/E/NZ6/03314.

AG’s work was supported by National Science Centre in Poland, grant DEC-2013/11/B/NZ1/02107.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen T. Abedon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Verify currency and authenticity via CrossMark

Cite this entry

Dąbrowska, K., Górski, A., Abedon, S.T. (2018). Bacteriophage Pharmacology and Immunology. In: Harper, D., Abedon, S., Burrowes, B., McConville, M. (eds) Bacteriophages. Springer, Cham. https://doi.org/10.1007/978-3-319-40598-8_9-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40598-8_9-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40598-8

  • Online ISBN: 978-3-319-40598-8

  • eBook Packages: Springer Reference Biomedicine & Life SciencesReference Module Biomedical and Life Sciences