Skip to main content

Bacteria-Phage Antagonistic Coevolution and the Implications for Phage Therapy

Abstract

The ubiquity of bacteria-phage interactions across biomes on earth has resulted in a diverse suite of adaptations conferring either bacterial resistance or phage infectivity. Understanding the mechanisms underlying these adaptations has important implications for the use of phages as therapeutic agents, but also offers key insights into how bacterial populations and communities are structured across time and space. In this chapter, we provide, first, an overview of coevolutionary theory relevant to bacteria-phage interactions. Next, we summarize the findings of experimental coevolution studies, focusing on the insights provided into the bacteria-phage coevolutionary processes. Although most experimental studies of bacteria-phage coevolution focus on mutational resistance and counter-resistance, we next survey the variety of resistance and counter-resistance strategies described in nature and consider their implications for bacteria-phage coevolution. We conclude by considering the implications of coevolution for developing phage therapies.

Keywords

  • Phage Therapy
  • Antagonistic Coevolution
  • Phage-bacteria Interactions
  • Genetic Infection
  • Clustered, Regularly Interspaced Short Palindromic Repeats (CRISPRs)

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

References

  • Agrawal A, Lively CM (2002) Infection genetics: gene-for-gene versus matching-alleles models and all points in between. Evol Ecol Res 4:79–90

    Google Scholar 

  • Andersson DI, Hughes D (2011) Persistence of antibiotic resistance in bacterial populations. FEMS Microbiol Rev 35:901–911

    CAS  PubMed  CrossRef  Google Scholar 

  • Avrani S, Wurtzel O, Sharon I, Sorek R, Lindell D (2011) Genomic island variability facilitates Prochlorococcus-virus coexistence. Nature 474:604–608

    CAS  PubMed  CrossRef  Google Scholar 

  • Baker J, Dong S, Pritchard D (2002) The hyaluronan lyase of Streptococcus pyogenes bacteriophage H4489A. Biochem J 365:317–322

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–1712

    CAS  PubMed  CrossRef  Google Scholar 

  • Bender RA, Refson CM, O'Neill EA (1989) Role of the flagellum in cell-cycle-dependent expression of bacteriophage receptor activity in Caulobacter crescentus. J Bacteriol 171:1035–1040

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Benmayor R, Hodgson DJ, Perron GG, Buckling A (2009) Host mixing and disease emergence. Curr Biol 19:764–767

    CAS  PubMed  CrossRef  Google Scholar 

  • Berngruber TW, Lion S, Gandon S (2013) Evolution of suicide as a defence strategy against pathogens in a spatially structured environment. Ecol Lett 16:446–453

    PubMed  CrossRef  Google Scholar 

  • Best A, White A, Kisdi E, Antonovics J, Brockhurst MA, Boots M (2010) The evolution of host-parasite range. Am Nat 176:63–71

    CAS  PubMed  CrossRef  Google Scholar 

  • Betts A, Vasse M, Kaltz O, Hochberg ME (2013) Back to the future: evolving bacteriophages to increase their effectiveness against the pathogen Pseudomonas aeruginosa PAO1. Evol Appl 6:1054–1063

    PubMed  PubMed Central  Google Scholar 

  • Betts A, Kaltz O, Hochberg ME (2014) Contrasted coevolutionary dynamics between a bacterial pathogen and its bacteriophages. Proc Natl Acad Sci USA 111:11109–11114

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Bhaya D, Davison M, Barrangou R (2011) CRISPR-Cas Systems in Bacteria and Archaea: versatile small RNAs for adaptive defense and regulation. Ann Rev Genet 45:273–297

    CAS  PubMed  CrossRef  Google Scholar 

  • Bishop-Lilly K, Plaut R, Chen P, Akmal A, Willner K, Butani A, Dorsey S, Mokashi V, Mateczun A, Chapman C, George M, Luu T, Read T, Calendar R, Stibitz S, Sozhamannan S (2012) Whole genome sequencing of phage resistant Bacillus anthracis mutants reveals an essential role for cell surface anchoring protein CsaB in phage AP50c adsorption. Virol J 9:246

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Blower TR, Evans TJ, Przybilski R, Fineran PC, Salmond GP (2012) Viral evasion of a bacterial suicide system by RNA-based molecular mimicry enables infectious altruism. PLoS Genet 8:e1003023

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Bohannan BJM, Lenski RE (2000) Linking genetic change to community evolution: insights from studies of bacteria and bacteriophage. Ecol Lett 3:362–377

    CrossRef  Google Scholar 

  • Bohannan BJM, Travisano M, Lenski RE (1999) Epistatic interactions can lower the cost of resistance to multiple consumers. Evolution 53:292–295

    PubMed  CrossRef  Google Scholar 

  • Bondy-Denomy J, Davidson AR (2014) To acquire or resist: the complex biological effects of CRISPR–Cas systems. Trends Microbiol 22:218–225

    CAS  PubMed  CrossRef  Google Scholar 

  • Bondy-Denomy J, Pawluk A, Maxwell KL, Davidson AR (2012) Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system. Nature 493:429–432

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Brockhurst MA, Koskella B (2013) Experimental coevolution of species interactions. Trends Ecol Evol 28(6):367–375

    PubMed  CrossRef  Google Scholar 

  • Brockhurst MA, Morgan AD, Rainey PB, Buckling A (2003) Population mixing accelerates coevolution. Ecol Lett 6:975–979

    CrossRef  Google Scholar 

  • Brockhurst MA, Rainey PB, Buckling A (2004) The effect of spatial heterogeneity and parasites on the evolution of host diversity. Proc R Soc B Biol Sci 271:107–111

    CrossRef  Google Scholar 

  • Brockhurst MA, Morgan AD, Fenton A, Buckling A (2007) Experimental coevolution with bacteria and phage the Pseudomonas fluorescens – phi 2 model system. Infect Genet Evol 7:547–552

    CAS  PubMed  CrossRef  Google Scholar 

  • Brockhurst MA, Chapman T, King KC, Mank JE, Paterson S, Hurst GD (2014) Running with the red queen: the role of biotic conflicts in evolution. Proc R Soc B Biol Sci 281:20141382

    CrossRef  Google Scholar 

  • Buckling A, Rainey PB (2002) Antagonistic coevolution between a bacterium and a bacteriophage. Proc R Soc B Biol Sci 269:931–936

    CrossRef  Google Scholar 

  • Buckling A, Rainey PB (2003) The role of parasites in sympatric and allopatric host diversification (vol 420, pg 496, 2002). Nature 421:294–294

    CAS  CrossRef  Google Scholar 

  • Buckling A, Wei Y, Massey RC, Brockhurst MA, Hochberg ME (2006) Antagonistic coevolution with parasites increases the cost of host deleterious mutations. Proc R Soc B Biol Sci 273:45–49

    CrossRef  Google Scholar 

  • Bushell M, Sarnow P (2002) Hijacking the translation apparatus by RNA viruses. J Cell Biol 158:395–399

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Capparelli R, Nocerino N, Lanzetta R, Silipo A, Amoresano A, Giangrande C, Becker K, Blaiotta G, Evidente A, Cimmino A, Iannaccone M, Parlato M, Medaglia C, Roperto S, Roperto F, Ramunno L, Iannelli D (2010) Bacteriophage-resistant Staphylococcus aureus mutant confers broad immunity against staphylococcal infection in mice. PLoS One 5:e11720

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Chao L, Levin BR, Stewart FM (1977) Complex Community in a Simple Habitat – experimental-study with bacteria and phage. Ecology 58:369–378

    CrossRef  Google Scholar 

  • Chibeu A, Lingohr EJ, Masson L, Manges A, Harel J, Ackermann H-W, Kropinski AM, Boerlin P (2012) Bacteriophages with the ability to degrade uropathogenic Escherichia coli biofilms. Viruses 4:471–487

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Chopin M-C, Chopin A, Bidnenko E (2005) Phage abortive infection in lactococci: variations on a theme. Curr Opin Microbiol 8:473–479

    CAS  PubMed  CrossRef  Google Scholar 

  • Clokie MRJ, Millard AD, Letarov AV, Heaphy S (2011) Phages in nature. Bacteriophage 1:31–45

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Daegelen P, Studier FW, Lenski RE, Cure S, Kim JF (2009) Tracing ancestors and relatives of Escherichia coli B, and the derivation of B strains REL606 and BL21(DE3). J Mol Biol 394:634–643

    CAS  PubMed  CrossRef  Google Scholar 

  • Danovaro R, Corinaldesi C, Dell'Anno A, Fuhrman JA, Middelburg JJ, Noble RT, Suttle CA (2011) Marine viruses and global climate change. FEMS Microbiol Rev 35:993–1034

    CAS  PubMed  CrossRef  Google Scholar 

  • Dennehy JJ (2012) What can phages tell us about host-pathogen coevolution? Int J Evol Biol 2012:396165

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Destoumieux-Garzón D, Duquesne S, Peduzzi J, Goulard C, Desmadril M, Letellier L, Rebuffat S, Boulanger P (2005) The iron-siderophore transporter FhuA is the receptor for the antimicrobial peptide microcin J25: role of the microcin Val11-Pro16 beta-hairpin region in the recognition mechanism. Biochem J 389:869–876

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Doulatov S, Hodes A, Dai L, Mandhana N, Liu M, Deora R, Simons RW, Zimmerly S, Miller JF (2004) Tropism switching in Bordetella bacteriophage defines a family of diversity-generating retroelements. Nature 431:476–481

    CAS  PubMed  CrossRef  Google Scholar 

  • Dupuis M-È, Villion M, Magadán AH, Moineau S (2013) CRISPR-Cas and restriction–modification systems are compatible and increase phage resistance. Nat Commun 4:2087

    PubMed  CrossRef  CAS  Google Scholar 

  • Escobar-Páramo P, Gougat-Barbera C, Hochberg ME (2012) Evolutionary dynamics of separate and combined exposure of Pseudomonas fluorescens SBW25 to antibiotics and bacteriophage. Evol Appl 5:583–592

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Fenton A, Antonovics J, Brockhurst MA (2009) Inverse-gene-for-gene infection genetics and Coevolutionary dynamics. Am Nat 174:E230–E242

    PubMed  CrossRef  Google Scholar 

  • Fenton A, Antonovics J, Brockhurst MA (2012) Two-step infection processes can lead to coevolution between functionally independent infection and resistance pathways. Evolution 66:2030–2041

    PubMed  CrossRef  Google Scholar 

  • Filippov AA, Sergueev KV, He Y, Huang X-Z, Gnade BT, Mueller AJ, Fernandez-Prada CM, Nikolich MP (2011) Bacteriophage-resistant mutants in Yersinia pestis: identification of phage receptors and attenuation for mice. PLoS One 6:e25486

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Fineran PC, Blower TR, Foulds IJ, Humphreys DP, Lilley KS, Salmond GPC (2009) The phage abortive infection system, ToxIN, functions as a protein–RNA toxin–antitoxin pair. Proc Natl Acad Sci USA 106:894–899

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Fineran PC, Gerritzen MJH, Suárez-Diez M, Künne T, Boekhorst J, van Hijum SAFT, Staals RHJ, Brouns SJJ (2014) Degenerate target sites mediate rapid primed CRISPR adaptation. Proc Natl Acad Sci USA 111:E1629–E1638

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Forde S, Thompson J, Bohannan BM (2007) Gene flow reverses an adaptive cline in a coevolving host-parasitoid interaction. Am Nat 169:794–801

    PubMed  Google Scholar 

  • Forde SE, Beardmore RE, Gudelj I, Arkin SS, Thompson JN, Hurst LD (2008a) Understanding the limits to generalizability of experimental evolutionary models. Nature 455:220–223

    CAS  PubMed  CrossRef  Google Scholar 

  • Forde SE, Thompson JN, Holt RD, Bohannan BJM (2008b) Coevolution drives temporal changes in fitness and diversity across environments in a bacteria-bacteriophage interaction. Evolution 62:1830–1839

    PubMed  Google Scholar 

  • Gaba S, Ebert D (2009) Time-shift experiments as a tool to study antagonistic coevolution. Trends Ecol Evol 24:226–232

    PubMed  CrossRef  Google Scholar 

  • Gandon S, Buckling A, Decaestecker E, Day T (2008) Host-parasite coevolution and patterns of adaptation across time and space. J Evol Biol 21:1861–1866

    CAS  PubMed  CrossRef  Google Scholar 

  • Glonti T, Chanishvili N, Taylor P (2010) Bacteriophage-derived enzyme that depolymerizes the alginic acid capsule associated with cystic fibrosis isolates of Pseudomonas Aeruginosa. J Appl Microbiol 108:695–702

    CAS  PubMed  CrossRef  Google Scholar 

  • Gomez P, Buckling A (2011) Bacteria-phage antagonistic coevolution in soil. Science 332:106–109

    CAS  PubMed  CrossRef  Google Scholar 

  • Gu E, Nguyen D, Shah N (2011) Capsular polysaccharide has a minor role on streptomycin-induced reduction of T7 phage adsorption to Escherichia coli. J Exp Microbiol Immunol (JEMI) 15:47–51

    Google Scholar 

  • Gu J, Liu X, Li Y, Han W, Lei L, Yang Y, Zhao H, Gao Y, Song J, Lu R, Sun C, Feng X (2012) A method for generation phage cocktail with great therapeutic potential. PLoS One 7:e31698

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Guerrero-Ferreira RC, Viollier PH, Ely B, Poindexter JS, Georgieva M, Jensen GJ, Wright ER (2011) Alternative mechanism for bacteriophage adsorption to the motile bacterium Caulobacter crescentus. Proc Natl Acad Sci USA 108:9963–9968

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Hall AR, Scanlan PD, Morgan AD, Buckling A (2011) Host-parasite coevolutionary arms races give way to fluctuating selection. Ecol Lett 14:635–642

    PubMed  CrossRef  Google Scholar 

  • Hill C, Miller L, Klaenhammer T (1991) In vivo genetic exchange of a functional domain from a type II A methylase between lactococcal plasmid pTR2030 and a virulent bacteriophage. J Bacteriol 173:4363–4370

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Hoskisson PA, Smith MCM (2007) Hypervariation and phase variation in the bacteriophage ‘resistome’. Curr Opin Microbiol 10:396–400

    CAS  PubMed  CrossRef  Google Scholar 

  • Hurst LD, Forde SE, Beardmore RE, Gudelj I, Arkin SS, Thompson JN (2008) Understanding the limits to generalizability of experimental evolutionary models. Nature 455:220–U244

    PubMed  CrossRef  CAS  Google Scholar 

  • Hyman P, Abedon ST (2010) Bacteriophage host range and bacterial resistance. Adv Appl Microbiol 70:217–248

    CAS  PubMed  CrossRef  Google Scholar 

  • Jessup CM, Bohannan BJ (2008) The shape of an ecological trade-off varies with environment. Ecol Lett 11:947–959

    PubMed  CrossRef  Google Scholar 

  • Killmann H, Braun V (1992) An aspartate deletion mutation defines a binding site of the multifunctional FhuA outer membrane receptor of Escherichia coli K-12. J Bacteriol 174:3479–3486

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Killmann H, Videnov G, Jung G, Schwarz H, Braun V (1995) Identification of receptor binding sites by competitive peptide mapping: phages T1, T5, and phi 80 and colicin M bind to the gating loop of FhuA. J Bacteriol 177:694–698

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Kim M, Ryu S (2012) Spontaneous and transient defence against bacteriophage by phase-variable glucosylation of O-antigen in Salmonella enterica serovar Typhimurium. Mol Microbiol 86:411–425

    CAS  PubMed  CrossRef  Google Scholar 

  • Kim J-W, Dutta V, Elhanafi D, Lee S, Osborne JA, Kathariou S (2012) A novel restriction-modification system is responsible for temperature-dependent phage resistance in Listeria monocytogenes ECII. Appl Environ Microbiol 78:1995–2004

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • King G, Murray NE (1995) Restriction alleviation and modification enhancement by the Rac prophage of Escherichia coli K-12. Mol Microbiol 16:769–777

    CAS  PubMed  CrossRef  Google Scholar 

  • Koskella B (2014) Bacteria-phage interactions across time and space: merging local adaptation and time-shift experiments to understand phage evolution. Am Nat 184:S9–S21

    PubMed  CrossRef  Google Scholar 

  • Koskella B, Brockhurst MA (2014) Bacteria-phage coevolution as a driver of ecological and evolutionary processes in microbial communities. FEMS Microbiol Rev 38:916–931

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Koskella B, Lin DM, Buckling A, Thompson JN (2012) The costs of evolving resistance in heterogeneous parasite environments. Proc R Soc B Biol Sci 279:1896–1903

    CrossRef  Google Scholar 

  • Krüger D, Bickle TA (1983) Bacteriophage survival: multiple mechanisms for avoiding the deoxyribonucleic acid restriction systems of their hosts. Microbiol Rev 47:345

    PubMed  PubMed Central  Google Scholar 

  • Krüger D, Barcak G, Smith H (1987) Abolition of DNA recognition site resistance to the restriction endonuclease EcoRII. Biomed Biochim Acta 47:K1–K5

    Google Scholar 

  • Krylov V, Shaburova O, Krylov S, Pleteneva E (2012) A genetic approach to the development of new therapeutic phages to fight Pseudomonas aeruginosa in wound infections. Viruses 5:15–53

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Labrie SJ, Moineau S (2007) Abortive infection mechanisms and prophage sequences significantly influence the genetic makeup of emerging lytic Lactococcal phages. J Bacteriol 189:1482–1487

    CAS  PubMed  CrossRef  Google Scholar 

  • Labrie SJ, Samson JE, Moineau S (2010) Bacteriophage resistance mechanisms. Nat Rev Microbiol 8:317–327

    CAS  PubMed  CrossRef  Google Scholar 

  • Le S, Yao X, Lu S, Tan Y, Rao X, Li M, Jin X, Wang J, Zhao Y, Wu NC et al (2014) Chromosomal DNA deletion confers phage resistance to Pseudomonas aeruginosa. Sci Rep 4:4738. doi:10.1038/srep04738

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Lenski RE, Levin BR (1985) Constraints on the coevolution of bacteria and virulent phage – a model, some experiments, and predictions for natural communities. Am Nat 125:585–602

    CrossRef  Google Scholar 

  • Levin BR, Bull JJ (2004) Population and evolutionary dynamics of phage therapy. Nat Rev Microbiol 2:166–173

    CAS  PubMed  CrossRef  Google Scholar 

  • Lindberg AA (1973) Bacteriophage receptors. Ann Rev Microbiol 27:205–241

    CAS  CrossRef  Google Scholar 

  • Liu M, Deora R, Doulatov SR, Gingery M, Eiserling FA, Preston A, Maskell DJ, Simons RW, Cotter PA, Parkhill J (2002) Reverse transcriptase-mediated tropism switching in Bordetella bacteriophage. Science 295:2091–2094

    CAS  PubMed  CrossRef  Google Scholar 

  • Lively CM (2010) A review of red queen models for the persistence of obligate sexual reproduction. J Hered 101:S13–S20

    PubMed  CrossRef  Google Scholar 

  • Lopez Pascua L, Hall AR, Best A, Morgan AD, Boots M, Buckling A (2014) Higher resources decrease fluctuating selection during host–parasite coevolution. Ecol Lett 17:1380–1388

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Lopez-Pascua LDC, Buckling A (2008) Increasing productivity accelerates host-parasite coevolution. J Evol Biol 21:853–860

    CAS  PubMed  CrossRef  Google Scholar 

  • Luckey M, Wayne R, Neilands J (1975) In vitro competition between ferrichrome and phage for the outer membrane T5 receptor complex of Escherichia coli. Biochem Biophys Res Commun 64:687–693

    CAS  PubMed  CrossRef  Google Scholar 

  • Luijckx P, Fienberg H, Duneau D, Ebert D (2013) A matching-allele model explains host resistance to parasites. Curr Biol 23:1085–1088

    CAS  PubMed  CrossRef  Google Scholar 

  • Mahony J, McGrath S, Fitzgerald GF, van Sinderen D (2008) Identification and characterization of lactococcal-prophage-carried superinfection exclusion genes. Appl Environ Microbiol 74:6206–6215

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Maillou J, Dreiseikelmann B (1990) The sim gene of Escherichia coli phage P1: nucleotide sequence and purification of the processed protein. Virology 175:500–507

    CAS  PubMed  CrossRef  Google Scholar 

  • Makarova KS, Wolf YI, Koonin EV (2013) Comparative genomics of defense systems in archaea and bacteria. Nucleic Acids Res 41:4360–4377

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • McGrath S, Seegers JF, Fitzgerald GF, van Sinderen D (1999) Molecular characterization of a phage-encoded resistance system in Lactococcus lactis. Appl Environ Microbiol 65:1891–1899

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meaden S, Koskella B (2013) Exploring the risks of phage application in the environment. Front Microbiol 4:358

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Meyer JR, Dobias DT, Weitz JS, Barrick JE, Quick RT, Lenski RE (2012) Repeatability and contingency in the evolution of a key innovation in phage lambda. Science 335:428–432

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Molineux IJ, Panja D (2013) Popping the cork: mechanisms of phage genome ejection. Nat Rev Microbiol 11:194–204

    CAS  PubMed  CrossRef  Google Scholar 

  • Munsch-Alatossava P, Alatossava T (2013) The extracellular phage-host interactions involved in the bacteriophage LL-H infection of Lactobacillus delbrueckii ssp. lactis ATCC 15808. Front Microbiol 4:408

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Nechaev S, Severinov K (2008) The elusive object of desire – interactions of bacteriophages and their hosts. Curr Opin Microbiol 11:186–193

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Nordström K, Forsgren A (1974) Effect of protein a on adsorption of bacteriophages to Staphylococcus aureus. J Virol 14:198–202

    PubMed  PubMed Central  Google Scholar 

  • Nordström K, Forsgren A, Cox P (1974) Prevention of bacteriophage adsorption to Staphylococcus aureus by immunoglobulin G. J Virol 14:203–206

    PubMed  PubMed Central  Google Scholar 

  • Nuismer SL, Doebeli M, Browning D (2005) The coevolutionary dynamics of antagonistic interactions mediated by quantitative traits with evolving variances. Evolution 59:2073–2082

    CAS  PubMed  CrossRef  Google Scholar 

  • Paez-Espino D, Morovic W, Sun CL, Thomas BC, Ueda K, Stahl B, Barrangou R, Banfield JF (2013) Strong bias in the bacterial CRISPR elements that confer immunity to phage. Nat Commun 4:1430

    PubMed  CrossRef  CAS  Google Scholar 

  • Parma DH, Snyder M, Sobolevski S, Nawroz M, Brody E, Gold L (1992) The Rex system of bacteriophage lambda: tolerance and altruistic cell death. Genes Dev 6:497–510

    CAS  PubMed  CrossRef  Google Scholar 

  • Paterson S, Vogwill T, Buckling A, Benmayor R, Spiers AJ, Thomson NR, Quail M, Smith F, Walker D, Libberton B, Fenton A, Hall N, Brockhurst MA (2010) Antagonistic coevolution accelerates molecular evolution. Nature 464:275–U154

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Poullain V, Gandon S, Brockhurst MA, Buckling A, Hochberg ME (2008) The evolution of specificity in evolving and coevolving antagonistic interactions between a bacteria and its phage. Evolution 62:1–11

    PubMed  Google Scholar 

  • Refardt D, Bergmiller T, Kümmerli R (2013) Altruism can evolve when relatedness is low: evidence from bacteria committing suicide upon phage infection. Proc R Soc B Biol Sci 280:20123035

    CrossRef  CAS  Google Scholar 

  • Reyes-Cortés R, Martínez-Peñafiel E, Martínez-Pérez F, de la Garza M, Kameyama L (2012) A novel strategy to isolate cell-envelope mutants resistant to phage infection: bacteriophage mEp213 requires lipopolysaccharides in addition to FhuA to enter Escherichia coli K-12. Microbiology 158:3063–3071

    PubMed  CrossRef  CAS  Google Scholar 

  • Roach DR, Sjaarda DR, Castle AJ, Svircev AM (2013) Host exopolysaccharide quantity and composition impact Erwinia amylovora bacteriophage pathogenesis. Appl Environ Microbiol 79:3249–3256

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Samson JE, Magadán AH, Sabri M, Moineau S (2013) Revenge of the phages: defeating bacterial defences. Nat Rev Microbiol 11:675–687

    CAS  PubMed  CrossRef  Google Scholar 

  • Sasaki A (2000) Host-parasite coevolution in a multilocus gene-for-gene system. Proc R Soc B Biol Sci 267:2183–2188

    CAS  CrossRef  Google Scholar 

  • Scanlan PD, Hall AR, Lopez-Pascua LDC, Buckling A (2011) Genetic basis of infectivity evolution in a bacteriophage. Mol Ecol 20:981–989

    PubMed  CrossRef  Google Scholar 

  • Scott AE, Timms AR, Connerton PL, Loc Carrillo C, Adzfa Radzum K, Connerton IF (2007) Genome dynamics of campylobacter jejuni in response to bacteriophage predation. PLoS Pathog 3:e119

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Seed KD, Faruque SM, Mekalanos JJ, Calderwood SB, Qadri F, Camilli A (2012) Phase variable O antigen biosynthetic genes control expression of the major protective antigen and bacteriophage receptor in Vibrio cholerae O1. PLoS Pathog 8:e1002917

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Seed KD, Lazinski DW, Calderwood SB, Camilli A (2013) A bacteriophage encodes its own CRISPR/Cas adaptive response to evade host innate immunity. Nature 494:489–491

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Sørensen MCH, van Alphen LB, Harboe A, Li J, Christensen BB, Szymanski CM, Brøndsted L (2011) Bacteriophage F336 recognizes the capsular phosphoramidate modification of Campylobacter jejuni NCTC11168. J Bacteriol 193:6742–6749

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Sørensen MCH, Van Alphen LB, Fodor C, Crowley SM, Christensen BB, Szymanski CM, Brøndsted L (2012) Phase variable expression of capsular polysaccharide modifications allows Campylobacter jejuni to avoid bacteriophage infection in chickens. Front Cell Infect Microbiol 2:11

    PubMed Central  CrossRef  CAS  Google Scholar 

  • Srinivasiah S, Bhavsar J, Thapar K, Liles M, Schoenfeld T, Wommack KE (2008) Phages across the biosphere: contrasts of viruses in soil and aquatic environments. Res Microbiol 159:349–357

    CAS  PubMed  CrossRef  Google Scholar 

  • Sun CL, Barrangou R, Thomas BC, Horvath P, Fremaux C, Banfield JF (2013) Phage mutations in response to CRISPR diversification in a bacterial population. Environ Microbiol 15:463–470

    CAS  PubMed  CrossRef  Google Scholar 

  • Thompson JN (1994) The coevolutionary process. University of Chicago Press, Chicago

    CrossRef  Google Scholar 

  • Thompson JN (2005) The geographic mosaic of coevolution. University of Chicago Press, Chicago

    Google Scholar 

  • Thompson JN (2013) Relentless evolution. University of Chicago Press, Chichago and london

    CrossRef  Google Scholar 

  • Thompson JN, Burdon JJ (1992) Gene-for-gene coevolution between plants and parasites. Nature 360:121–125

    CrossRef  Google Scholar 

  • Van Valen L (1973) A new evolutionary law. Evol Theory 1:1–30

    Google Scholar 

  • Vasu K, Nagamalleswari E, Nagaraja V (2012) Promiscuous restriction is a cellular defense strategy that confers fitness advantage to bacteria. Proc Natl Acad Sci USA 109:E1287–E1293

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Westra ER, Swarts DC, Staals RH, Jore MM, Brouns SJ, van der Oost J (2012) The CRISPRs, they are a-changin': how prokaryotes generate adaptive immunity. Annu Rev Genet 46:311–339

    CAS  PubMed  CrossRef  Google Scholar 

  • Williams HT (2013) Phage-induced diversification improves host evolvability. BMC Evol Biol 13:17

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Wilson GG, Murray NE (1991) Restriction and modification systems. Annu Rev Genet 25:585–627

    CAS  PubMed  CrossRef  Google Scholar 

  • Wommack KE, Colwell RR (2000) Virioplankton: viruses in aquatic ecosystems. Microbiol Mol Biol Rev 64:69–114

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Yan J, Mao J, Xie J (2014) Bacteriophage polysaccharide Depolymerases and biomedical applications. BioDrugs 28:265–274

    CAS  PubMed  CrossRef  Google Scholar 

  • Yoon SH, Han MJ, Jeong H, Lee CH, Xia XX, Lee DH, Shim JH, Lee SY, Oh TK, Kim JF (2012) Comparative multi-omics systems analysis of Escherichia coli strains B and K-12. Genome Biol 13(5):R37

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Young R (2013) Phage lysis: do we have the hole story yet? Curr Opin Microbiol 16:790–797

    CAS  PubMed  CrossRef  Google Scholar 

  • Zaleski P, Wojciechowski M, Piekarowicz A (2005) The role of Dam methylation in phase variation of Haemophilus influenzae genes involved in defence against phage infection. Microbiology 151:3361–3369

    CAS  PubMed  CrossRef  Google Scholar 

  • Zhang Q-G (2014) Exposure to phages has little impact on the evolution of bacterial antibiotic resistance on drug concentration gradients. Evol Appl 7(3):394–402

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Zhang Q-G, Buckling A (2011) Antagonistic coevolution limits population persistence of a virus in a thermally deteriorating environment. Ecol Lett 14:282–288

    PubMed  CrossRef  Google Scholar 

  • Zhang Q-G, Buckling A (2012) Phages limit the evolution of bacterial antibiotic resistance in experimental microcosms. Evol Appl 5:575–582

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Brockhurst .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Brockhurst, M.A., Koskella, B., Zhang, QG. (2017). Bacteria-Phage Antagonistic Coevolution and the Implications for Phage Therapy. In: Harper, D., Abedon, S., Burrowes, B., McConville, M. (eds) Bacteriophages. Springer, Cham. https://doi.org/10.1007/978-3-319-40598-8_7-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40598-8_7-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40598-8

  • Online ISBN: 978-3-319-40598-8

  • eBook Packages: Springer Reference Biomedicine & Life SciencesReference Module Biomedical and Life Sciences