Skip to main content

The Use of Bacteriophages in Veterinary Therapy

  • Living reference work entry
  • First Online:
Bacteriophages

Abstract

There is a long history of using phage to treat infections in animals; the first examples of which occurred soon after the discovery of phage by Twort and d’Herelle over a century ago. Many of the earlier phage therapy experiments in animals focused on either demonstrating the efficacy of this approach for treating animal diseases directly (e.g., fowl typhoid) and/or using animals as models of human disease (e.g., plague, meningitis, dysentery), to varying degrees of success. The pioneering work of Williams Smith and colleagues in this field in the 1980s spearheaded a revival of phage therapy investigations in the West which has continued to gather pace to the present day. The majority of recent phage therapy trials in animals have focused on farm/food animals rather than companion animals, primarily because of economic, regulatory, and logistical reasons. Technological advancements in the biosciences in areas such as genetics, immunology, and computational biology have allowed further refinement of phage therapy experiments in animals, particularly with respect to selection of effective candidates for therapeutic trials. The use of phage to treat animal diseases is yet to be widespread, even in countries such as the United States, where phage products have been approved for this purpose. However, the growth of antimicrobial resistance in both human and animal pathogens may yet overcome barriers to using them more extensively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abedon ST (2011) Lysis from without. Bacteriophage 21(1):46–49

    Article  Google Scholar 

  • Abuladze T, Li M, Menetrez MY, Dean T, Senecal A, Sulakvelidze A (2008) Bacteriophages reduce experimental contamination of hard surfaces, tomato, spinach, broccoli, and ground beef by Escherichia coli O157:H7. Appl Environ Microbiol 74:6230–6238

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Albino LA, Rostagno MH, Hungaro HM, Mendonca RC (2014) Isolation, characterization, and application of bacteriophages for Salmonella spp. biocontrol in pigs. Foodborne Pathog Dis 11:602–609

    Article  PubMed  Google Scholar 

  • Asheshov IN, Wilson J, Topley WWC (1937) The effect of an anti-Vi bacteriophage on typhoid infection in mice. Lancet 1:319–320

    Article  Google Scholar 

  • Atterbury RJ, Connerton PL, Dodd CE, Rees CE, Connerton IF (2003) Application of host-specific bacteriophages to the surface of chicken skin leads to a reduction in recovery of Campylobacter jejuni. Appl Environ Microbiol 69:6302–6306

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Atterbury RJ, Dillon E, Swift C, Connerton PL, Frost JA, Dodd CE, Rees CE, Connerton IF (2005) Correlation of Campylobacter bacteriophage with reduced presence of hosts in broiler chicken ceca. Appl Environ Microbiol 71:4885–4887

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Atterbury RJ, Van Bergen MA, Ortiz F, Lovell MA, Harris JA, De Boer A, Wagenaar JA, Allen VM, Barrow PA (2007) Bacteriophage therapy to reduce salmonella colonization of broiler chickens. Appl Environ Microbiol 73:4543–4549

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bager F, Madsen M, Christensen J, Aarestrup FM (1997) Avoparcin used as a growth promoter is associated with the occurrence of vancomycin-resistant Enterococcus faecium on Danish poultry and pig farms. Prev Vet Med 31(1–2):95–112

    Article  CAS  PubMed  Google Scholar 

  • Bandara N, Jo J, Ryu S, Kim KP (2012) Bacteriophages BCP1-1 and BCP8-2 require divalent cations for efficient control of Bacillus cereus in fermented foods. Food Microbiol 31:9–16

    Article  CAS  PubMed  Google Scholar 

  • Bardina C, Spricigo DA, CortĂ©s P, Llagostera M (2012) Significance of the bacteriophage treatment schedule in reducing Salmonella colonization of poultry. Appl Environ Microbiol 78:6600–6607

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Barrow PA, Lovell MA, Berchieri A (1998) Use of lytic bacteriophage for control of experimental Escherichia coli septicaemia and meningitis in chickens and calves. Clin Diagn Lab Immunol 5:294–298

    CAS  PubMed Central  PubMed  Google Scholar 

  • Berchieri A Jr, Lovell MA, Barrow PA (1991) The activity in the chicken alimentary tract of bacteriophages lytic for Salmonella typhimurium. Res Microbiol 142:541–549

    Article  PubMed  Google Scholar 

  • Bhandare S, Colom J, Baig A, Ritchie JM, Bukhari H, Shah MA, Sarkar BL, Su J, Wren B, Barrow P, Atterbury RJ (2019) Reviving phage therapy for the treatment of cholera. J Infect Dis 219(5):786–794

    Article  PubMed  Google Scholar 

  • Bigot B, Lee WJ, McIntyre L, Wilson T, Hudson JA, Billington C, Heinemann JA (2011) Control of Listeria monocytogenes growth in a ready-to-eat poultry product using a bacteriophage. Food Microbiol 28:1448–1452

    Article  CAS  PubMed  Google Scholar 

  • Bigwood T, Hudson JA, Billington C, Carey-Smith GV, Heinemann JA (2008) Phage inactivation of foodborne pathogens on cooked and raw meat. Food Microbiol 25:400–406

    Article  CAS  PubMed  Google Scholar 

  • Biswas B, Adhya S, Washart P, Paul B, Trostel AN, Powell B, Carlton R, Merril CR (2002) Bacteriophage therapy rescues mice bacteremic from a clinical isolate of vancomycin-resistant Enterococcus faecium. Infect Immun 70:204–210

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Boyacioglu O, Sharma M, Sulakvelidze A, Goktepe I (2013) Biocontrol of Escherichia coli O157:H7 on fresh-cut leafy greens. Bacteriophage 3:e24620

    Article  PubMed Central  PubMed  Google Scholar 

  • Bueno E, GarcĂ­a P, MartĂ­nez B, RodrĂ­guez A (2012) Phage inactivation of Staphylococcus aureus in fresh and hard-type cheeses. Int J Food Microbiol 158:23–27

    Article  PubMed  Google Scholar 

  • Callaway TR, Edrington TS, Brabban AD, Anderson RC, Rossman ML, Engler MJ, Carr MA, Genovese KJ, Keen JE, Looper ML, Kutter EM, Nisbet DJ (2008) Bacteriophage isolated from feedlot cattle can reduce Escherichia coli O157:H7 populations in ruminant gastrointestinal tracts. Foodborne Pathog Dis 5:183–191

    Article  CAS  PubMed  Google Scholar 

  • Callaway TR, Edrington TS, Brabban A, Kutter B, Karriker L, Stahl C, Wagstrom E, Anderson R, Poole TL, Genovese K, Krueger N, Harvey R, Nisbet DJ (2011) Evaluation of phage treatment as a strategy to reduce Salmonella populations in growing swine. Foodborne Pathog Dis 8(2):261–266

    Article  CAS  PubMed  Google Scholar 

  • Carlton RM, Noordman WH, Biswas B, de Meester ED, Loessner MJ (2005) Bacteriophage P100 for control of Listeria monocytogenes in foods: genome sequence, bioinformatic analyses, oral toxicity study, and application. Regul Toxicol Pharmacol 43(3):301–312

    Article  CAS  PubMed  Google Scholar 

  • Carter CD, Parks A, Abuladze T, Li M, Woolston J, Magnone J, Senecal A, Kropinski AM, Sulakvelidze A (2012) Bacteriophage cocktail significantly reduces Escherichia coli O157:H7 contamination of lettuce and beef, but does not protect against recontamination. Bacteriophage 2:178–185

    Article  PubMed Central  PubMed  Google Scholar 

  • Carvalho CM, Gannon BW, Halfhide DE, Santos SB, Hayes CM, Roe JM, Azeredo J (2010) The in vivo efficacy of two administration routes of a phage cocktail to reduce numbers of Campylobacter coli and Campylobacter jejuni in chickens. BMC Microbiol 10:232

    Article  PubMed Central  PubMed  Google Scholar 

  • Castillo D, Higuera G, Villa M, Middelboe M, Dalsgaard I, Madsen L, Espejo RT (2012) Diversity of Flavobacterium psychrophilum and the potential use of its phages for protection against bacterial cold water disease in salmonids. J Fish Dis 35:193–201

    Article  CAS  PubMed  Google Scholar 

  • Cha SB, Yoo AN, Lee WJ, Shin MK, Jung MH, Shin SW, Cho YW, Yoo HS (2012) Effect of bacteriophage in enterotoxigenic Escherichia coli (ETEC) infected pigs. J Vet Med Sci 74:1037–1039

    Article  CAS  PubMed  Google Scholar 

  • Chibeu A, Agius L, Gao A, Sabour PM, Kropinski AM, Balamurugan S (2013) Efficacy of bacteriophage LISTEXâ„¢P100 combined with chemical antimicrobials in reducing Listeria monocytogenes in cooked turkey and roast beef. Int J Food Microbiol 167:208–214

    Article  CAS  PubMed  Google Scholar 

  • Compton A (1928) Sensitisation and immunisation with bacteriophage in experimental plague. J Infect Dis 43:448–457

    Article  Google Scholar 

  • Compton A (1930) Immunization in experimental plague by subcutaneous inoculation with bacteriophage. J Infect Dis 46(2):152–160

    Article  CAS  Google Scholar 

  • D’Herelle F (1926) The bacteriophage and its behaviour. Williams and Wilkins, Baltimore

    Google Scholar 

  • Dubos R, Straus JH, Pierce C (1943) The multiplication of bacteriophage in vivo and its protective effect against an experimental infection with Shigella dysenteriae. J Exp Med 20:161–168

    Article  Google Scholar 

  • Duckworth DH (1976) Who discovered bacteriophage? Bacteriol Rev 40(4):793–802

    CAS  PubMed Central  PubMed  Google Scholar 

  • El-Gohary FA, Huff WE, Huff GR, Rath NC, Zhou ZY, Donoghue AM (2014) Environmental augmentation with bacteriophage prevents colibacillosis in broiler chickens. Poult Sci 93:2788–2792

    Article  CAS  PubMed  Google Scholar 

  • El-Shibiny A, Scott A, Timms A, Metawea Y, Connerton P, Connerton I (2009) Application of a group II Campylobacter bacteriophage to reduce strains of Campylobacter jejuni and Campylobacter coli colonizing broiler chickens. J Food Prot 72:733–740

    Article  CAS  PubMed  Google Scholar 

  • Endersen L, Coffey A, Neve H, McAuliffe O, Ross RP, O’Mahony JM (2013) Isolation and characterisation of six novel mycobacteriophages and investigation of their antimicrobial potential in milk. Int Dairy J 28:8–14

    Article  CAS  Google Scholar 

  • European Food Safety Authority (EFSA) (2009) The use and mode of action of bacteriophages in food production. Scientific opinion of the panel on biological hazards. EFSA J 1076:1–26

    Google Scholar 

  • Ferguson S, Roberts C, Handy E, Sharma M (2013) Lytic bacteriophages reduce Escherichia coli O157:H7 on fresh cut lettuce introduced through cross-contamination. Bacteriophage 3:e24323

    Article  PubMed Central  PubMed  Google Scholar 

  • Figueiredo ACL, Almeida RCC (2017) Antibacterial efficacy of nisin, bacteriophage P100 and sodium lactate against Listeria monocytogenes in ready-to-eat sliced pork ham. Braz J Microbiol 48:724–729

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Furusawa T, Iwano H, Hiyashimizu Y, Matsubara K, Higuchi H, Nagahata H, Niwa H, Katayama Y, Kinoshita Y, Hagiwara K, Iwasaki T, Tanji Y, Yokota H, Tamura Y (2016) Phage therapy is effective in a mouse model of bacterial equine keratitis. Appl Environ Microbiol 82:5332–5339

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gabisonia T (2001) Bacteriophage therapy of mastitis in cows, caused by staphylococcal and streptococcal infections. In: 14th Evergreen international phage biology meeting, Olympia

    Google Scholar 

  • Galarce NE, Bravo JL, Robeson JP, Borie CF (2014) Bacteriophage cocktail reduces Salmonella enterica serovar Enteritidis counts in raw and smoked salmon tissues. Rev Argent Microbiol 46:333–337

    PubMed  Google Scholar 

  • Ganegama Arachchi GJ, Cridge AG, Dias-Wanigasekera BM, Cruz CD, McIntyre L, Liu R, Flint SH, Mutukumira AN (2013) Effectiveness of phages in the decontamination of Listeria monocytogenes adhered to clean stainless steel, stainless steel coated with fish protein, and as a biofilm. J Ind Microbiol Biotechnol 40:1105–1116

    Article  CAS  PubMed  Google Scholar 

  • Garcia P, Madera C, Martinez B, Rodriguez A (2007) Biocontrol of Staphylococcus aureus in curd manufacturing processes using bacteriophages. Int Dairy J 17:1232–1239

    Article  CAS  Google Scholar 

  • Gill JJ, Sabour PM, Leslie KE, Griffiths MW (2006a) Bovine whey proteins inhibit the interaction of Staphylococcus aureus and bacteriophage K. J Appl Microbiol 101:377–386

    Article  CAS  PubMed  Google Scholar 

  • Gill JJ, Pacan JC, Carson ME, Leslie KE, Griffiths MW, Sabour PM (2006b) Efficacy and pharmacokinetics of bacteriophage therapy in treatment of subclinical Staphylococcus aureus mastitis in lactating dairy cattle. Antimicrob Agents Chemother 50:2912–2918

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gonçalves GA, Donato TC, Baptista AA, CorrĂªa IM, Garcia KC, Andreatti Filho RL (2014) Bacteriophage-induced reduction in Salmonella Enteritidis counts in the crop of broiler chickens undergoing preslaughter feed withdrawal. Poult Sci 93:216–220

    Article  PubMed  Google Scholar 

  • Goode D, Allen VM, Barrow PA (2003) Reduction of experimental Salmonella and Campylobacter contamination of chicken skin by application of lytic bacteriophages. Appl Environ Microbiol 69:5032–5036

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goodridge LD, Bisha B (2011) Phage-based biocontrol strategies to reduce foodborne pathogens in foods. Bacteriophage 1(3):103–137

    Article  Google Scholar 

  • Grant A, Parveen S, Schwarz J, Hashem F, Vimini B (2017) Reduction of Salmonella in ground chicken using a bacteriophage. Poult Sci 96:2845–2852

    Article  CAS  PubMed  Google Scholar 

  • Greer GG (2005) Bacteriophage control of foodborne bacteria. J Food Prot 68(5):1102–1111

    Article  PubMed  Google Scholar 

  • Guenther S, Loessner MJ (2011) Bacteriophage biocontrol of Listeria monocytogenes on soft ripened white mold and red-smear cheeses. Bacteriophage 1:94–100

    Article  PubMed Central  PubMed  Google Scholar 

  • Guenther S, Huwyler D, Richard S, Loessner MJ (2009) Virulent bacteriophage for efficient biocontrol of Listeria monocytogenes in ready-to-eat foods. Appl Environ Microbiol 75:93–100

    Article  CAS  PubMed  Google Scholar 

  • Guenther S, Herzig O, Fieseler L, Klumpp J, Loessner MJ (2012) Biocontrol of Salmonella Typhimurium in RTE foods with the virulent bacteriophage FO1-E2. Int J Food Microbiol 154:66–72

    Article  PubMed  Google Scholar 

  • Helms M, Vastrup P, Gerner-Smidt P, Mølbak K (2002) Excess mortality associated with antimicrobial drug-resistant Salmonella typhimurium. Emerg Infect Dis 8(5):490–495

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Henriques A, Sereno R, Almeida A (2013) Reducing Salmonella horizontal transmission during egg incubation by phage therapy. Foodborne Pathog Dis 10:718–722

    Article  PubMed  Google Scholar 

  • Higgins JP, Higgins SE, Guenther KL, Huff W, Donoghue AM, Donoghue DJ, Hargis BM (2005) Use of a specific bacteriophage treatment to reduce Salmonella in poultry products. Poult Sci 84:1141–1145

    Article  CAS  PubMed  Google Scholar 

  • Hong SS, Jeong J, Lee J, Kim S, Min W, Myung H (2013) Therapeutic effects of bacteriophages against Salmonella gallinarum infection in chickens. J Microbiol Biotechnol 23:1478–1483

    Article  CAS  PubMed  Google Scholar 

  • Hong Y, Schmidt K, Marks D, Hatter S, Marshall A, Albino L, Ebner P (2016) Treatment of Salmonella-contaminated eggs and pork with a broad-spectrum, single bacteriophage: assessment of efficacy and resistance development. Foodborne Pathog Dis 13:679–688

    Article  CAS  PubMed  Google Scholar 

  • Hooton SP, Atterbury RJ, Connerton IF (2011) Application of a bacteriophage cocktail to reduce Salmonella Typhimurium U288 contamination on pig skin. Int J Food Microbiol 151:157–163

    Article  PubMed  Google Scholar 

  • Hudson JA, Billington C, Wilson T, On SL (2013) Effect of phage and host concentration on the inactivation of Escherichia coli O157:H7 on cooked and raw beef. Food Sci Technol Int 21:104–109

    Article  PubMed  Google Scholar 

  • Huff WE, Huff GR, Rath NC, Balog JM, Xie H, Moore PA Jr, Donoghue AM (2002) Prevention of Escherichia coli respiratory infection in broiler chickens with bacteriophage (SPR02). Poult Sci 81:437–441

    Article  CAS  PubMed  Google Scholar 

  • Huff WE, Huff GR, Rath NC, Balog JM, Donoghue AM (2003) Evaluation of aerosol spray and intramuscular injection of bacteriophage to treat an Escherichia coli respiratory infection. Poult Sci 82:1108–1112

    Article  CAS  PubMed  Google Scholar 

  • Huff WE, Huff GR, Rath NC, Donoghue AM (2010) Immune interference of bacteriophage efficacy when treating colibacillosis in poultry. Poult Sci 89:895–900

    Article  CAS  PubMed  Google Scholar 

  • Hungaro HM, Mendonça RCS, GouvĂªa DM, Vanetti MCD, Pinto CLD (2013) Use of bacteriophages to reduce Salmonella in chicken skin in comparison with chemical agents. Food Res Int 52:75–81

    Article  CAS  Google Scholar 

  • Jamalludeen N, Johnson RP, Shewen PE, Gyles CL (2009) Evaluation of bacteriophages for prevention and treatment of diarrhea due to experimental enterotoxigenic Escherichia coli O149 infection of pigs. Vet Microbiol 136:135–141

    Article  PubMed  Google Scholar 

  • Janez N, Loc-Carrillo C (2013) Use of phages to control Campylobacter spp. J Microbiol Methods 95:68–75

    Article  PubMed  Google Scholar 

  • Kang HW, Kim JW, Jung TS, Woo GJ (2013) wksl3, a new biocontrol agent for Salmonella enterica serovars Enteritidis and Typhimurium in foods: characterization, application, sequence analysis, and oral acute toxicity study. Appl Environ Microbiol 79:1956–1968

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Khairnar K, Raut MP, Chandekar RH, Sanmukh SG, Paunikar WN (2013) Novel bacteriophage therapy for controlling metallo-beta-lactamase producing Pseudomonas aeruginosa infection in catfish. BMC Vet Res 9:264. https://doi.org/10.1186/1746-6148-9-264

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Khalifa L, Brosh Y, Gelman D, Coppenhagen-Glazer S, Beyth S, Poradosu-Cohen R, Que YA, Beyth N, Hazan R (2015) Targeting Enterococcus faecalis biofilms with phage therapy. Appl Environ Microbiol 81:2696–2705

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim KP, Klumpp J, Loessner MJ (2007) Enterobacter sakazakii bacteriophages can prevent bacterial growth in reconstituted infant formula. Int J Food Microbiol 115:195–203

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Kim JW, Shin HS, Kim MC, Lee JH, Kim GB, Kil DY (2015a) Effect of dietary supplementation of bacteriophage on performance, egg quality and caecal bacterial populations in laying hens. Br Poult Sci 56:132–136

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Choresca CH, Shin SP, Han JE, Jun JW, Park SC (2015b) Biological control of Aeromonas salmonicida subsp. salmonicida infection in rainbow trout (Oncorhynchus mykiss) using Aeromonas phage PAS-1. Transbound Emerg Dis 62:81–86

    Article  CAS  PubMed  Google Scholar 

  • Larkum NW (1926) Bacteriophagy in urinary infection part II. Bacteriophagy in the bladder. J Bacteriol 12(3):225–242

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee CY, Kim SJ, Park BC, Han JH (2016) Effects of dietary supplementation of bacteriophages against enterotoxigenic Escherichia coli (ETEC) K88 on clinical symptoms of post-weaning pigs challenged with the ETEC pathogen. J Anim Physiol Anim Nutr. https://doi.org/10.1111/jpn.12513

    Article  CAS  PubMed  Google Scholar 

  • Leverentz B, Conway WS, Alavidze Z, Janisiewicz WJ, Fuchs Y, Camp MJ, Chighladze E, Sulakvelidze A (2001) Examination of bacteriophage as a biocontrol method for Salmonella on fresh-cut fruit: a model study. J Food Prot 64:1116–1121

    Article  CAS  PubMed  Google Scholar 

  • Leverentz B, Conway WS, Camp MJ, Janisiewicz WJ, Abuladze T, Yang M, Saftner R, Sulakvelidze A (2003) Biocontrol of Listeria monocytogenes on fresh-cut produce by treatment with lytic bacteriophages and a bacteriocin. Appl Environ Microbiol 69:4519–4526

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Leverentz B, Conway WS, Janisiewicz W, Camp MJ (2004) Optimizing concentration and timing of a phage spray application to reduce Listeria monocytogenes on honeydew melon tissue. J Food Prot 67:1682–1686

    Article  PubMed  Google Scholar 

  • Li M, Lin H, Khan MN, Wang J, Kong L (2014) Effects of bacteriophage on the quality and shelf life of Paralichthys olivaceus during chilled storage. J Sci Food Agric 94:1657–1662

    Article  CAS  PubMed  Google Scholar 

  • Lim TH, Lee DH, Lee YN, Park JK, Youn HN, Kim MS, Lee HJ, Yang SY, Cho YW, Lee JB, Park SY, Cho i IS, Song CS (2011) Efficacy of bacteriophage therapy on horizontal transmission of Salmonella gallinarum on commercial layer chickens. Avian Dis 55:435–438

    Article  PubMed  Google Scholar 

  • Loc Carrillo C, Atterbury RJ, el-Shibiny A, Connerton PL, Dillon E, Scott A, Connerton IF (2005) Bacteriophage therapy to reduce Campylobacter jejuni colonization of broiler chickens. Appl Environ Microbiol 71:6554–6563

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lone A, Anany H, Hakeem M, Aguis L, Avdjian AC, Bouget M, Atashi A, Brovko L, Rochefort D, Griffiths MW (2016) Development of prototypes of bioactive packaging materials based on immobilized bacteriophages for control of growth of bacterial pathogens in foods. Int J Food Microbiol 217:49–58

    Article  CAS  PubMed  Google Scholar 

  • Luangtongkum T, Jeon B, Han J, Plummer P, Logue CM, Zhang Q (2009) Antibiotic resistance in Campylobacter: emergence, transmission and persistence. Future Microbiol 4(2):189–200

    Article  CAS  PubMed  Google Scholar 

  • Luo N, Pereira S, Sahin O, Lin J, Huang S, Michel L, Zhang Q (2005) Enhanced in vivo fitness of fluoroquinolone-resistant Campylobacter jejuni in the absence of antibiotic selection pressure. Proc Natl Acad Sci 102(3):541–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magnone JP, Marek PJ, Sulakvelidze A, Senecal AG (2013) Additive approach for inactivation of Escherichia coli O157:H7, Salmonella, and Shigella spp. on contaminated fresh fruits and vegetables using bacteriophage cocktail and produce wash. J Food Prot 76:1336–1341

    Article  PubMed  Google Scholar 

  • McLean SK, Dunn LA, Palombo EA (2013) Phage inhibition of Escherichia coli in ultrahigh-temperature-treated and raw milk. Foodborne Pathog Dis 10:956–962

    Article  CAS  PubMed  Google Scholar 

  • Merril CR, Biswas B, Carlton R, Jensen NC, Creed GJ, Zullo S, Adhya S (1996) Long-circulating bacteriophage as antibacterial agents. Proc Natl Acad Sci U S A 93:3188–3192

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miller RW, Skinner EJ, Sulakvelidze A, Mathis GF, Hofacre CL (2010) Bacteriophage therapy for control of necrotic enteritis of broiler chickens experimentally infected with Clostridium perfringens. Avian Dis 54:33–40

    Article  PubMed  Google Scholar 

  • Modi R, Hirvi Y, Hill A, Griffiths MW (2001) Effect of phage on survival of Salmonella Enteritidis during manufacture and storage of cheddar cheese made from raw and pasteurized milk. J Food Prot 64:927–933

    Article  CAS  PubMed  Google Scholar 

  • Nakai T, Park SC (2002) Bacteriophage therapy of infectious diseases in aquaculture. Res Microbiol 153:13–18

    Article  PubMed  Google Scholar 

  • Nakai T, Sugimoto R, Park KH, Matsuoka S, Mori K, Nishioka T, Maruyama K (1999) Protective effects of bacteriophage on experimental Lactococcus garvieae infection in yellowtail. Dis Aquat Org 37:33–41

    Article  CAS  Google Scholar 

  • O’Flynn G, Ross RP, Fitzgerald GF, Coffey A (2004) Evaluation of a cocktail of three bacteriophages for biocontrol of Escherichia coli O157:H7. Appl Environ Microbiol 70:3417–3424

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ojala V, Mattila S, Hoikkala V, Bamford JK, Hiltunen T, Jalasvuori M (2016) Scoping the effectiveness and evolutionary obstacles in using plasmid-dependent phages to fight antibiotic resistance. Future Microbiol 11:999–1009

    Article  CAS  PubMed  Google Scholar 

  • Oliveira A, Sereno R, Azeredo J (2010) In vivo efficiency evaluation of a phage cocktail in controlling severe colibacillosis in confined conditions and experimental poultry houses. Vet Microbiol 146:303–308

    Article  PubMed  Google Scholar 

  • Oliveira M, Viñas I, ColĂ s P, Anguera M, Usall J, Abadias M (2014) Effectiveness of a bacteriophage in reducing Listeria monocytogenes on fresh-cut fruits and fruit juices. Food Microbiol 38:137–142

    Article  CAS  PubMed  Google Scholar 

  • Perera MN, Abuladze T, Li MR, Woolston J, Sulakvelidze A (2015) Bacteriophage cocktail significantly reduces or eliminates Listeria monocytogenes contamination on lettuce, apples, cheese, smoked salmon and frozen foods. Food Microbiol 52:42–48

    Article  CAS  PubMed  Google Scholar 

  • PĂ©rez Pulido R, Grande Burgos MJ, GĂ¡lvez A, Lucas LĂ³pez R (2015) Application of bacteriophages in post-harvest control of human pathogenic and food spoiling bacteria. Crit Rev Biotechnol 4:1–11. Epub ahead of print

    Article  CAS  Google Scholar 

  • Pollitzer R (1959) Cholera. World Health Organisation, Geneva

    Google Scholar 

  • Pyle NJ (1926) Bacteriophage in relation to Salmonella Pullorum infection in domestic fowl. J Bacteriol 12:245–261

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rakieten TL, Rakieten ML (1943) Bacteriophagy in the developing chick embryo. J Bacteriol 45:477–484

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reardon S (2017) Modified viruses deliver death to antibiotic-resistant bacteria. Nature 546:586–587

    Article  CAS  PubMed  Google Scholar 

  • Ricci V, Piddock LJ (2010) Exploiting the role of TolC in pathogenicity: identification of a bacteriophage for eradication of Salmonella serovars from poultry. Appl Environ Microbiol 76:1704–1706

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rivas L, Coffey B, McAuliffe O, McDonnell MJ, Burgess CM, Coffey A, Ross RP, Duffy G (2010) In vivo and ex vivo evaluations of bacteriophages e11/2 and e4/1c for use in the control of Escherichia coli O157:H7. Appl Environ Microbiol 76:7210–7216

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • RodrĂ­guez-Rubio L, GarcĂ­a P, RodrĂ­guez A, Billington C, Hudson JA, MartĂ­nez B (2015) Listeriaphages and coagulin C23 act synergistically to kill Listeria monocytogenes in milk under refrigeration conditions. Int J Food Microbiol 16(205):68–72

    Article  CAS  Google Scholar 

  • Rosenquist H, Nielsen NL, Sommer HM, Norrung B, Christensen BB (2003) Quantitative risk assessment of human campylobacteriosis associated with thermophilic Campylobacter species in chickens. Int J Food Microbiol 83:87–103

    Article  PubMed  Google Scholar 

  • Rozema EA, Stephens TP, Bach SJ, Okine EK, Johnson RP, Stanford K, McAllister TA (2009) Oral and rectal administration of bacteriophages for control of Escherichia coli O157:H7 in feedlot cattle. J Food Prot 72:241–250

    Article  PubMed  Google Scholar 

  • Saez AC, Zhang J, Rostagno MH, Ebner PD (2011) Direct feeding of microencapsulated bacteriophages to reduce Salmonella colonization in pigs. Foodborne Pathog Dis 8:1269–1274

    Article  CAS  PubMed  Google Scholar 

  • Sarhan W, Azzazy H (2015) Phage approved in food, why not as a therapeutic? Expert Rev Anti-Infect Ther 13(1):91–101

    Article  CAS  PubMed  Google Scholar 

  • Schmelcher M, Powell AM, Camp MJ, Pohl CS, Donovan DM (2015) Synergistic streptococcal phage λSA2 and B30 endolysins kill streptococci in cow milk and in a mouse model of mastitis. Appl Microbiol Biotechnol 99:8475–8486

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Scott AE, Timms AR, Connerton PL, Carrillo CL, Radzum KA, Connerton IF (2007) Genome dynamics of Campylobacter jejuni in response to bacteriophage predation. PLoS Pathog 3:1142–1151

    Article  CAS  Google Scholar 

  • Sharma M, Patel JR, Conway WS, Ferguson S, Sulakvelidze A (2009) Effectiveness of bacteriophages in reducing Escherichia coli O157:H7 on fresh-cut cantaloupes and lettuce. J Food Prot 72:1481–1485

    Article  PubMed  Google Scholar 

  • Sheng H, Knecht HJ, Kudva IT, Hovde CJ (2006) Application of bacteriophages to control intestinal Escherichia coli O157:H7 levels in ruminants. Appl Environ Microbiol 72:5359–5366

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Silva YJ, Costa L, Pereira C, Mateus C, Cunha A, Calado R, Gomes NC, Pardo MA, Hernandez I, Almeida A (2014a) Phage therapy as an approach to prevent Vibrio anguillarum infections in fish larvae production. PLoS One 9(12):e114197. https://doi.org/10.1371/journal.pone.0114197

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Silva EN, Figueiredo AC, Miranda FA, de Castro Almeida RC (2014b) Control of Listeria monocytogenes growth in soft cheeses by bacteriophage P100. Braz J Microbiol 45:11–16

    Article  PubMed Central  PubMed  Google Scholar 

  • Smith HW, Huggins MB (1982) Successful treatment of experimental Escherichia coli infections in mice using phage: its general superiority over antibiotics. J Gen Microbiol 128:307–318

    CAS  PubMed  Google Scholar 

  • Smith HW, Huggins MB (1983) Effectiveness of phages in treating experimental Escherichia coli diarrhoea in calves, piglets and lambs. J Gen Microbiol 129:2659–2675

    CAS  PubMed  Google Scholar 

  • Smith HW, Huggins MB, Shaw KM (1987) The control of experimental Escherichia coli diarrhoea in calves by means of bacteriophages. J Gen Microbiol 133:1111–1126

    CAS  PubMed  Google Scholar 

  • Soffer N, Abuladze T, Woolston J, Li M, Hanna LF, Heyse S, Charbonneau D, Sulakvelidze A (2016) Bacteriophages safely reduce Salmonella contamination in pet food and raw pet food ingredients. Bacteriophage 6:e1220347

    Article  PubMed Central  PubMed  Google Scholar 

  • Soffer N, Woolston J, Li M, Das C, Sulakvelidze A (2017) Bacteriophage preparation lytic for Shigella significantly reduces Shigella sonnei contamination in various foods. PLoS One 12:e0175256

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Soni KA, Nannapaneni R (2010) Bacteriophage significantly reduces Listeria monocytogenes on raw salmon fillet tissue. J Food Prot 73:32–38

    Article  PubMed  Google Scholar 

  • Soni KA, Nannapaneni R, Hagens S (2010) Reduction of Listeria monocytogenes on the surface of fresh channel catfish fillets by bacteriophage Listex P100. Foodborne Pathog Dis 7:427–434

    Article  CAS  PubMed  Google Scholar 

  • Soni KA, Desai M, Oladunjoye A, Skrobot F, Nannapaneni R (2012) Reduction of Listeria monocytogenes in queso fresco cheese by a combination of listericidal and listeriostatic GRAS antimicrobials. Int J Food Microbiol 155:82–88

    Article  CAS  PubMed  Google Scholar 

  • Soothill JS (1992) Treatment of experimental infections of mice with bacteriophages. J Med Microbiol 37:258–261

    Article  CAS  PubMed  Google Scholar 

  • Spricigo DA, Bardina C, Cortes P, Llagostera M (2013) Use of a bacteriophage cocktail to control Salmonella in food and the food industry. Int J Food Microbiol 165:169–174

    Article  CAS  PubMed  Google Scholar 

  • Stanford K, McAllister TA, Niu YD, Stephens TP, Mazzocco A, Waddell TE, Johnson RP (2010) Oral delivery systems for encapsulated bacteriophages targeted at Escherichia coli O157:H7 in feedlot cattle. J Food Prot 73:1304–1312

    Article  CAS  PubMed  Google Scholar 

  • Sukumaran AT, Nannapaneni R, Kiess A, Sharma CS (2015) Reduction of Salmonella on chicken meat and chicken skin by combined or sequential application of lytic bacteriophage with chemical antimicrobials. Int J Food Microbiol 207:8–15

    Article  CAS  PubMed  Google Scholar 

  • Sukumaran AT, Nannapaneni R, Kiess A, Sharma CS (2016) Reduction of Salmonella on chicken breast fillets stored under aerobic or modified atmosphere packaging by the application of lytic bacteriophage preparation SalmoFreshTM. Poult Sci 95:668–675

    Article  CAS  PubMed  Google Scholar 

  • Sulakvelidze A (2013) Using lytic bacteriophages to eliminate or significantly reduce contamination of food by foodborne bacterial pathogens. J Sci Food Agric 93(13):3137–3146

    Article  CAS  PubMed  Google Scholar 

  • Topley WWC, Wilson J, Lewis ER (1925a) Role of Twort-d’Herelle phenomenon in epidemics of mouse typhoid. J Hyg 24:17–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Topley WWC, Wilson J, Lewis ER (1925b) Further observations of the role of the Twort-d’Herelle phenomenon in the epidemic spread of murine typhoid. J Hyg 24:17–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsonos J, Oosterik LH, Tuntufye HN, Klumpp J, Butaye P, De Greve H, Hernalsteens JP, Lavigne R, Goddeeris BM (2014) A cocktail of in vitro efficient phages is not a guarantee for in vivo therapeutic results against avian colibacillosis. Vet Microbiol 171:470–479

    Article  PubMed  Google Scholar 

  • Viazis S, Akhtar M, Feirtag J, Diez-Gonzalez F (2011) Reduction of Escherichia coli O157:H7 viability on leafy green vegetables by treatment with a bacteriophage mixture and trans-cinnamaldehyde. Food Microbiol 28:149–157

    Article  PubMed  Google Scholar 

  • Wagenaar J, Van Bergen MA, Mueller MA, Wassenaar T, Carlton R (2005) Phage therapy reduces Campylobacter jejuni colonization in broilers. Vet Microbiol 109:275–283

    Article  PubMed  Google Scholar 

  • Wales AD, Davies RH (2015) Co-selection of resistance to antibiotics, biocides and heavy metals, and its relevance to foodborne pathogens. Antibiotics 4(4):567–604

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Walker JE (1929) The protective effect of bacteriophage against the simultaneous injection of colon bacilli. J Infect Dis 45(1):73–78

    Article  Google Scholar 

  • Wall SK, Zhang J, Rostagno MH, Ebner PD (2010) Phage therapy to reduce pre-processing Salmonella infections in market-weight swine. Appl Environ Microbiol 76:48–53

    Article  CAS  PubMed  Google Scholar 

  • Ward WE (1943) Protective action of Vi bacteriophages in E. typhi infections in mice. J Infect Dis 72:172–176

    Article  Google Scholar 

  • Waseh S, Hanifi-Moghaddam P, Coleman R, Masotti M, Ryan S, Foss M, MacKenzie R, Henry M, Szymanski CM, Tanha J (2010) Orally administered P22 phage tailspike protein reduces salmonella colonization in chickens: prospects of a novel therapy against bacterial infections. PLoS One 5(11):e13904. https://doi.org/10.1371/journal.pone.0013904

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Whichard JM, Sriranganathan N, Pierson FW (2003) Suppression of Salmonella growth by wild-type and large-plaque variants of bacteriophage Felix O1 in liquid culture and on chicken frankfurters. J Food Prot 66:220–225

    Article  PubMed  Google Scholar 

  • Wong CL, Sieo CC, Tan WS, Abdullah N, Hair-Bejo M, Abu J, Ho YW (2014) Evaluation of a lytic bacteriophage, Φ st1, for biocontrol of Salmonella enterica serovar Typhimurium in chickens. Int J Food Microbiol 172:92–101

    Article  CAS  PubMed  Google Scholar 

  • World Health Organisation (2014) Antimicrobial resistance: global report on surveillance. WHO, Geneva

    Google Scholar 

  • Xie H, Zhuang X, Kong J, Ma G, Zhang H (2005) Bacteriophage Esc-A is an efficient therapy for Escherichia coli 3-1 caused diarrhea in chickens. J Gen Appl Microbiol 51:159–163

    Article  CAS  PubMed  Google Scholar 

  • Ye J, Kostrzynska M, Dunfield K, Warriner K (2010) Control of Salmonella on sprouting mung bean and alfalfa seeds by using a biocontrol preparation based on antagonistic bacteria and lytic bacteriophages. J Food Prot 73:9–17

    Article  CAS  PubMed  Google Scholar 

  • Yeh Y, de Moura FH, Van Den Broek K, de Mello AS (2018) Effect of ultraviolet light, organic acids, and bacteriophage on Salmonella populations in ground beef. Meat Sci 139:44–48

    Article  CAS  PubMed  Google Scholar 

  • Yen M, Cairns LS, Camilli A (2017) A cocktail of three virulent bacteriophages prevents Vibrio cholerae infection in animal models. Nat Commun 8:14187

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang H, Wang R, Bao HD (2013) Phage inactivation of foodborne Shigella on ready-to-eat spiced chicken. Poult Sci 92:211–217

    Article  PubMed  Google Scholar 

  • Zinno P, Devirgiliis C, Ercolini D, Ongeng D, Mauriello G (2014) Bacteriophage P22 to challenge Salmonella in foods. Int J Food Microbiol 191:69–74

    Article  CAS  PubMed  Google Scholar 

  • Zuber S, Boissin-Delaporte C, Michot L, Iversen C, Diep B, Brussow H, Breeuwer P (2008) Decreasing Enterobacter sakazakii (Cronobacter spp.) food contamination level with bacteriophages: prospects and problems. Microb Biotechnol 1:532–543

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Atterbury .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Atterbury, R.J., Barrow, P.A. (2019). The Use of Bacteriophages in Veterinary Therapy. In: Harper, D., Abedon, S., Burrowes, B., McConville, M. (eds) Bacteriophages. Springer, Cham. https://doi.org/10.1007/978-3-319-40598-8_32-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40598-8_32-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40598-8

  • Online ISBN: 978-3-319-40598-8

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics