Abuladze T, Li M, Menetrez MY, Dean T, Senecal A, Sulakvelidze A (2008) Bacteriophages reduce experimental contamination of hard surfaces, tomato, spinach, broccoli, and ground beef by Escherichia coli O157:H7. Appl Environ Microbiol 74:6230–6238
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Agún S, Fernández L, González Menéndez E, Martínez B, Rodríguez A, García P (2018) Study of the interactions between bacteriophage phiIPLA-RODI and four chemical disinfectants for the elimination of Staphylococcus aureus contamination. Viruses 10:103
PubMed Central
CrossRef
CAS
Google Scholar
Ahiwale S, Koparde P, Deore P, Gunale V, Kapadnis BP (2012) Bacteriophage based technology for disinfection of different water systems. In: Satyanarayana T, Johri BN (eds) Microorganisms in environmental management: microbes and environment. Springer Netherlands, Dordrecht, pp 289–313
CrossRef
Google Scholar
Alavidze Z, Brown TC, Morris JG, Pasternack GR, Sulakvelidze A (2004) Method and device for sanitation using bacteriophages. Google Patents
Google Scholar
Allegranzi B, Bagheri Nejad S, Combescure C, Graafmans W, Attar H, Donaldson L, Pittet D (2011) Burden of endemic health-care-associated infection in developing countries: systematic review and meta-analysis. Lancet 377:228–241
CrossRef
PubMed
Google Scholar
Alves DR, Gaudion A, Bean JE, Perez Esteban P, Arnot TC, Harper DR, Kot W, Hansen LH, Enright MC, Jenkins AT (2014) Combined use of bacteriophage K and a novel bacteriophage to reduce Staphylococcus aureus biofilm formation. Appl Environ Microbiol 80:6694–6703
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Banach LJ, Sampers I, van Haute S, van der Fels-Klerx HJ (2015) Effect of disinfectants on preventing the cross-contamination of pathogens in fresh produce washing water. Int J Environ Res Public Health 12:8658–8677
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Barnes LM, Lo MF, Adams MR, Chamberlain AH (1999) Effect of milk proteins on adhesion of bacteria to stainless steel surfaces. Appl Environ Microbiol 65:4543–4548
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Bower CK, Daeschel MA (1999) Resistance responses of microorganisms in food environments. Int J Food Microbiol 50:33–44
CAS
PubMed
CrossRef
Google Scholar
Brenner FW, Villar RG, Angulo FJ, Tauxe R, Swaminathan B (2000) Salmonella nomenclature. J Clin Microbiol 38:2465–2467
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Brown HL, Reuter M, Salt LJ, Cross KL, Betts RP, van Vliet AH (2014) Chicken juice enhances surface attachment and biofilm formation of campylobacter jejuni. Appl Environ Microbiol 80:7053–7060
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Brudzinski L, Harrison MA (1998) Influence of incubation conditions on survival and acid tolerance response of Escherichia coli O157:H7 and non-O157:H7 isolates exposed to acetic acid. J Food Prot 61:542–546
CAS
PubMed
CrossRef
Google Scholar
Bruttin A, Brüssow H (2005) Human volunteers receiving Escherichia coli phage T4 orally: a safety test of phage therapy. Antimicrob Agents Chemother 49:2874–2878
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Buchanan RL, Edelson SG (1999) Effect of pH-dependent, stationary phase acid resistance on the thermal tolerance of Escherichia coli O157:H7. Food Microbiol 16:447–458
CrossRef
Google Scholar
Canadian Patient Safety Institute (2020) Healthcare associated infections (Available here). Accessed on 27 Oct 2017
Google Scholar
Centers for Disease Control and Prevention (2020) Reports of selected E. coli outbreak investigations (Available here). Accessed on 27 Oct 2017
Google Scholar
Chaitiemwong N, Hazeleger WC, Beumer RR (2014) Inactivation of Listeria monocytogenes by disinfectants and bacteriophages in suspension and stainless steel carrier tests. J Food Prot 77:2012–2020
CAS
PubMed
CrossRef
Google Scholar
Chan BK, Abedon ST (2015) Bacteriophages and their enzymes in biofilm control. Curr Pharm Des 21:85–99
CAS
PubMed
CrossRef
Google Scholar
Chanishvili N, Chanishvili T, Tediashvili M, Barrow PA (2001) Phages and their application against drug-resistant bacteria. J Chem Technol Biotechnol 76:689–699
CAS
CrossRef
Google Scholar
Chen LK, Liu YL, Hu A, Chang KC, Lin NT, Lai MJ, Tseng CC (2013) Potential of bacteriophage PhiAB2 as an environmental biocontrol agent for the control of multidrug-resistant Acinetobacter baumannii. BMC Microbiol 13:154
PubMed
PubMed Central
CrossRef
Google Scholar
Curtin JJ, Donlan RM (2006) Using bacteriophages to reduce formation of catheter- associated biofilms by Staphylococcus epidermidis. Antimicrob Agents Chemother 50:1268–1275
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Dancer SJ (2014) Controlling hospital-acquired infection: focus on the role of the environment and new technologies for decontamination. Clin Microbiol Rev 27:665–690
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Davidson PM, Harrison MA (2002) Resistance and adaptation to food antimicrobials, sanitizers, and other process controls. Food Technol Mag 56:69–78
Google Scholar
De Oliveira DC, Fernandes Junior A, Kaneno R, Silva MG, Araujo Junior JP, Silva NC, Rall VL (2014) Ability of Salmonella spp. to produce biofilm is dependent on temperature and surface material. Foodborne Pathog Dis 11:478–483
PubMed
CrossRef
CAS
Google Scholar
Debarbieux L, Pirnay JP, Verbeken G, De Vos D, Merabishvili M, Huys I, Patey O, Schoonjans D, Vaneechoutte M, Zizi M, Rohde C (2016) A bacteriophage journey at the European medicines agency. FEMS Microbiol Lett 363:fnv225
PubMed
CrossRef
CAS
Google Scholar
d’Herelle F (1917) Sur un microbe invible antagoniste des bacilles dysenteriques. C R Acad Sci 165:373–375
Google Scholar
Di Bonaventura G, Piccolomini R, Paludi D, D’Orio V, Vergara A, Conter M, Ianieri A (2008) Influence of temperature on biofilm formation by Listeria monocytogenes on various food-contact surfaces: relationship with motility and cell surface hydrophobicity. J Appl Microbiol 104:1552–1561
PubMed
CrossRef
Google Scholar
Dourou D, Beauchamp CS, Yoon Y, Geornaras I, Belk KE, Smith GC, Nychas GJ, Sofos JN (2011) Attachment and biofilm formation by Escherichia coli O157:H7 at different temperatures, on various food-contact surfaces encountered in beef processing. Int J Food Microbiol 149:262–268
PubMed
CrossRef
Google Scholar
El-Gohary FA, Huff WE, Huff GR, Rath NC, Zhou ZY, Donoghue AM (2014) Environmental augmentation with bacteriophage prevents colibacillosis in broiler chickens. Poult Sci 93:2788–2792
CAS
PubMed
CrossRef
Google Scholar
European Centre for Disease Prevention and Control (2013) Point prevalence survey of healthcare-associated infections and antimicrobial use in European acute care hospitals. In: Surveillance report, Stockholm, pp 1–141
Google Scholar
Fenton M, Keary R, McAuliffe O, Ross RP, O’Mahony J, Coffey A (2013) Bacteriophage- derived peptidase CHAP(K) eliminates and prevents staphylococcal biofilms. Int J Microbiol 2013:625341
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Ferreira V, Wiedmann M, Teixeira P, Stasiewicz MJ (2014) Listeria monocytogenes persistence in food-associated environments: epidemiology, strain characteristics, and implications for public health. J Food Prot 77:150–170
CAS
PubMed
CrossRef
Google Scholar
Fischetti VA (2005) Bacteriophage lytic enzymes: novel anti-infectives. Trends Microbiol 13:491–496
CAS
PubMed
CrossRef
Google Scholar
Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633
CAS
PubMed
CrossRef
Google Scholar
Food and Drug Administration (2006) Food additives permitted for direct addition to food for human consumption, bacteriophage preparation. 21 CFR Part 172 Fed Regis 71:47729–47732
Google Scholar
Fu W, Forster T, Mayer O, Curtin JJ, Lehman SM, Donlan RM (2010) Bacteriophage cocktail for the prevention of biofilm formation by Pseudomonas aeruginosa on catheters in an in vitro model system. Antimicrob Agents Chemother 54:397–404
CAS
PubMed
CrossRef
Google Scholar
Ganegama Arachchi GJ, Cridge AG, Dias-Wanigasekera BM, Cruz CD, McIntyre L, Liu R, Flint SH, Mutukumira AN (2013) Effectiveness of phages in the decontamination of Listeria monocytogenes adhered to clean stainless steel, stainless steel coated with fish protein, and as a biofilm. J Ind Microbiol Biotechnol 40:1105–1116
CAS
PubMed
CrossRef
Google Scholar
Gaulin C, Lê ML, Shum M, Fong D (2011) Disinfectants and sanitizers for use on food contact surfaces. National Collaborating Centre for Environmental Health, Vancouver (Available here). Accessed on 27 Oct 2017
Google Scholar
Germano F, Testi D, Melone P, Arcuri C (2014) Cell wall deficient bacteria in oral biofilm: prevalence and association with periodontitis systemic condition. In: conference abstract, meeting of ESCMID study group for biofilms (ESGB), biofilm – based Healthcare – associated infections: from microbiology to clinics
Google Scholar
Giaouris E, Heir E, Hébraud M, Chorianopoulos N, Langsrud S, Møretrø T, Habimana O, Desvaux M, Renier S, Nychas G-J (2014) Attachment and biofilm formation by foodborne bacteria in meat processing environments: causes, implications, role of bacterial interactions and control by alternative novel methods. Meat Sci 97:298–309
PubMed
CrossRef
Google Scholar
Gil MI, Selma MV, López-Gálvez F, Allende A (2009) Fresh-cut product sanitation and wash water disinfection: problems and solutions. Int J Food Microbiol 134:37–45
CAS
PubMed
CrossRef
Google Scholar
Gong C, Jiang X (2015) Application of bacteriophages to reduce biofilms formed by hydrogen sulfide producing bacteria on surfaces in a rendering plant. Can J Microbiol 61:539–544
CAS
PubMed
CrossRef
Google Scholar
Goodridge L, Abedon ST (2003) Bacteriophage biocontrol and bioprocessing: application of phage therapy to industry. Soc Indus Microbio News 53:254–262
Google Scholar
Government of Canada (2019) Background information: reducing the risk of illness associated with frozen raw breaded chicken products (Available here). Accessed on 27 Oct 2017
Google Scholar
Gutiérrez D, Vandenheuvel D, Martínez B, Rodríguez A, Lavigne R, García P (2015) Two phages, phiIPLA-RODI and phiIPLA-C1C, lyse mono- and dual-species staphylococcal biofilms. Appl Environ Microbiol 81:3336–3348
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Gutiérrez D, Rodríguez-Rubio L, Martínez B, Rodríguez A, García P (2016) Bacteriophages as weapons against bacterial biofilms in the food industry. Front Microbiol 7:825
PubMed
PubMed Central
CrossRef
Google Scholar
Gutiérrez D, Rodríguez-Rubio L, Fernández L, Martínez B, Rodríguez A, García P (2017) Applicability of commercial phage-based products against Listeria monocytogenes for improvement of food safety in Spanish dry-cured ham and food contact surfaces. Food Control 73:1474–1482
CrossRef
CAS
Google Scholar
Guttman B, Raya R, Kutter E (2003) Basic phage biology. In: Kutter E, Sulakvelidze A (eds) Bacteriophage: biology and applications. CRC Press, pp 29–66
Google Scholar
Hazards EPoB (2012) Scientific Opinion on the evaluation of the safety and efficacy of Listex™ P100 for the removal of Listeria monocytogenes surface contamination of raw fish. EFSA J 10:2615–2n/a
Google Scholar
Heselpoth RD, Nelson DC (2012) A new screening method for the directed evolution of thermostable bacteriolytic enzymes. J Vis Exp 69
Google Scholar
Hibma AM, Jassim SA, Griffiths MW (1997) Infection and removal of L-forms of Listeria monocytogenes with bred bacteriophage. Int J Food Microbiol 34:197–207
CAS
PubMed
CrossRef
Google Scholar
Hingston PA, Stea EC, Knochel S, Hansen T (2013) Role of initial contamination levels, biofilm maturity and presence of salt and fat on desiccation survival of Listeria monocytogenes on stainless steel surfaces. Food Microbiol 36:46–56
CAS
PubMed
CrossRef
Google Scholar
Ho YH, Tseng CC, Wang LS, Chen YT, Ho GJ, Lin TY, Wang LY, Chen LK (2016) Application of bacteriophage-containing aerosol against nosocomial transmission of carbapenem-resistant acinetobacter Baumannii in an intensive care unit. PLoS One 11:e0168380
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Holah JT, Lavaud A, Peters W, Dye KA (1998) Future techniques for disinfectant efficacy testing. Int Biodeterior Biodegradation 41:273–279
CrossRef
Google Scholar
Horn H, Morgenroth E (2006) Transport of oxygen, sodium chloride, and sodium nitrate in biofilms. Chem Eng Sci 61:1347–1356
CAS
CrossRef
Google Scholar
Hosseinidoust Z, Tufenkji N, van de Ven TG (2013) Formation of biofilms under phage predation: considerations concerning a biofilm increase. Biofouling 29:457–468
CAS
PubMed
CrossRef
Google Scholar
Iacumin L, Manzano M, Comi G (2016) Phage inactivation of Listeria monocytogenes on San Daniele dry-cured ham and elimination of biofilms from equipment and working environments. Microorganisms 4
Google Scholar
Jajere SM (2019) A review of Salmonella enterica with particular focus on the pathogenicity and virulence factors, host specificity and antimicrobial resistance including multidrug resistance. Vet World 12:504–521
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Jassim SAA, Limoges RG (2017) Bacteriophages: practical applications for nature’s biocontrol. Springer International Publishing, Cham
CrossRef
Google Scholar
Jonczyk E, Klak M, Miedzybrodzki R, Gorski A (2011) The influence of external factors on bacteriophages—review. Folia Microbiol (Praha) 56:191–200
CAS
CrossRef
Google Scholar
Kelly D, McAuliffe O, Ross RP, Coffey A (2012) Prevention of Staphylococcus aureus biofilm formation and reduction in established biofilm density using a combination of phage K and modified derivatives. Lett Appl Microbiol 54:286–291
CAS
PubMed
CrossRef
Google Scholar
Klevens RM, Edwards JR, Richards CL Jr, Horan TC, Gaynes RP, Pollock DA, Cardo DM (2007) Estimating health care-associated infections and deaths in U.S. hospitals, 2002. Public Health Rep 122:160–166
PubMed
PubMed Central
CrossRef
Google Scholar
Kramer A, Schwebke I, Kampf G (2006) How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. BMC Infect Dis 6:130
PubMed
PubMed Central
CrossRef
Google Scholar
Krishnan J, Fey G, Stansfield C, Landry L, Nguy H, Klassen S, Robertson C (2012) Evaluation of a dry fogging system for laboratory decontamination. Appl Biosaf 17:132–141
CrossRef
Google Scholar
Liu H, Meng R, Wang J, Niu YD, Li J, Stanford K, McAllister TA (2015) Inactivation of Escherichia coli O157 bacteriophages by using a mixture of ferrous sulfate and tea extract. J Food Prot 78:2220–2226
CAS
PubMed
CrossRef
Google Scholar
Lopes A, Pereira C, Almeida A (2018) Sequential combined effect of phages and antibiotics on the inactivation of Escherichia coli. Microorganisms 6:125
CAS
PubMed Central
CrossRef
Google Scholar
Maillard J-Y, Sattar SA, Pinto F (2012) Virucidal activity of microbicides. In: Fraise AP, Maillard J-Y, Sattar SA (eds) Russell, Hugo & Ayliffe’s: principles and practice of disinfection, preservation and sterilization. Wiley-Blackwell, Hoboken, pp 178–207
CrossRef
Google Scholar
Majowicz SE, Musto J, Scallan E, Angulo FJ, Kirk M, O’Brien SJ, Jones TF, Fazil A, Hoekstra RM (2010) The global burden of nontyphoidal Salmonella gastroenteritis. Clin Infect Dis 50:882–889
PubMed
CrossRef
Google Scholar
Manijeh M, Mohammad J, Roha KK (2008) Biofilm formation by salmonella Enteritidis on food contact surfaces. J Biol Sci 8:502–505
CrossRef
Google Scholar
Martinez-Suarez JV, Ortiz S, Lopez-Alonso V (2016) Potential impact of the resistance to quaternary ammonium disinfectants on the persistence of Listeria monocytogenes in food processing environments. Front Microbiol 7:638
PubMed
PubMed Central
CrossRef
Google Scholar
Melo LDR, Veiga P, Cerca N, Kropinski AM, Almeida C, Azeredo J, Sillankorva S (2016) Development of a phage cocktail to control Proteus mirabilis catheter-associated urinary tract infections. Front Microbiol 7:1024
PubMed
PubMed Central
CrossRef
Google Scholar
Miller RV, Day M (2008) Contribution of lysogeny, pseudolysogeny and starvation to phage ecology. In: Bacteriophage ecology. Cambridge University Press, Cambridge, pp 114–143
CrossRef
Google Scholar
Mokgatla RM, Gouws PA, Brozel VS (2002) Mechanisms contributing to hypochlorous acid resistance of a Salmonella isolate from a poultry-processing plant. J Appl Microbiol 92:566–573
CAS
PubMed
CrossRef
Google Scholar
Montanez-Izquierdo VY, Salas-Vazquez DI, Rodriguez-Jerez JJ (2012) Use of epifluorescence microscopy to assess the effectiveness of phage P100 in controlling Listeria monocytogenes biofilms on stainless steel surfaces. Food Control 23:470–477
CrossRef
Google Scholar
Morison J (1932) Bacteriphage in the treatment and prevention of cholera. H.K. Lewis and Co. Ltd., London
Google Scholar
Motlagh AM, Bhattacharjee AS, Goel R (2016) Biofilm control with natural and genetically- modified phages. World J Microbiol Biotechnol 32:67
PubMed
CrossRef
CAS
Google Scholar
Oliveira H, Thiagarajan V, Walmagh M, Sillankorva S, Lavigne R, Neves-Petersen MT, Kluskens LD, Azeredo J (2014) A thermostable Salmonella phage endolysin, Lys68, with broad bactericidal properties against gram-negative pathogens in presence of weak acids. PLoS One 9:e108376
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
OMAFRA (2017) Foods of plant origin cleaning and sanitation guidebook (Available here). Accessed on 27 Oct 2017
Google Scholar
Pan Y, Breidt F Jr, Kathariou S (2006) Resistance of Listeria monocytogenes biofilms to sanitizing agents in a simulated food processing environment. Appl Environ Microbiol 72:7711–7717
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Patel J, Sharma M, Millner P, Calaway T, Singh M (2011) Inactivation of Escherichia coli O157:H7 attached to spinach harvester blade using bacteriophage. Foodborne Pathog Dis 8:541–546
PubMed
CrossRef
Google Scholar
Pennone V, Sanz-Gaitero M, O’Connor P, Coffey A, Jordan K, van Raaij MJ, McAuliffe O (2019) Inhibition of L. monocytogenes biofilm formation by the amidase domain of the phage vB_LmoS_293 Endolysin. Viruses 11:722
CAS
PubMed Central
CrossRef
Google Scholar
Pires DP, Oliveira H, Melo LD, Sillankorva S, Azeredo J (2016) Bacteriophage-encoded depolymerases: their diversity and biotechnological applications. Appl Microbiol Biotechnol 100:2141–2151
CAS
PubMed
CrossRef
Google Scholar
Rahman M, Kim S, Kim SM, Seol SY, Kim J (2011) Characterization of induced Staphylococcus aureus bacteriophage SAP-26 and its anti-biofilm activity with rifampicin. Biofouling 27:1087–1093
CAS
PubMed
CrossRef
Google Scholar
Rashid MH, Revazishvili T, Dean T, Butani A, Verratti K, Bishop-Lilly KA, Sozhamannan S, Sulakvelidze A, Rajanna C (2012) A Yersinia pestis-specific, lytic phage preparation significantly reduces viable Y. pestis on various hard surfaces experimentally contaminated with the bacterium. Bacteriophage 2:168–177
PubMed
PubMed Central
CrossRef
Google Scholar
Reinhard RG, Kalinowski RM, Bodnaruk PW, Eifert JD, Boyer RR, Duncan SE, Bailey RH (2020) Fate of Listeria on various food contact and noncontact surfaces when treated with bacteriophage. J Food Saf 40:e12775
CAS
CrossRef
Google Scholar
Ripp S, Miller RV (1997) The role of pseudolysogeny in bacteriophage-host interactions in a natural freshwater environment. Microbiology-UK 143:2065–2070
CAS
CrossRef
Google Scholar
Rodríguez-Rubio L, Martínez B, Donovan DM, Rodríguez A, García P (2013) Bacteriophage virion-associated peptidoglycan hydrolases: potential new enzybiotics. Crit Rev Microbiol 39:427–434
PubMed
CrossRef
CAS
Google Scholar
Roy B, Ackermann HW, Pandian S, Picard G, Goulet J (1993) Biological inactivation of adhering Listeria monocytogenes by listeriaphages and a quaternary ammonium compound. Appl Environ Microbiol 59:2914–2917
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Russell AD (1997) Plasmids and bacterial resistance to biocides. J Appl Microbiol 83:155–165
CAS
PubMed
CrossRef
Google Scholar
Russell AD, Day MJ (1996) Antibiotic and biocide resistance in bacteria. Microbios 85:45–65
CAS
PubMed
Google Scholar
Ryan EM, Alkawareek MY, Donnelly RF, Gilmore BF (2012) Synergistic phage-antibiotic combinations for the control of Escherichia coli biofilms in vitro. FEMS Immunol Med Microbiol 65:395–398
CAS
PubMed
CrossRef
Google Scholar
Sadekuzzaman M, Yang S, Mizan MFR, Kim H-S, Ha S-D (2017) Effectiveness of a phage cocktail as a biocontrol agent against L. monocytogenes biofilms. Food Control 78:256–263
CrossRef
Google Scholar
Sass P, Bierbaum G (2007) Lytic activity of recombinant bacteriophage phi11 and phi12 endolysins on whole cells and biofilms of Staphylococcus aureus. Appl Environ Microbiol 73:347–352
CAS
PubMed
CrossRef
Google Scholar
Sharma M, Ryu JH, Beuchat LR (2005) Inactivation of Escherichia coli O157:H7 in biofilm on stainless steel by treatment with an alkaline cleaner and a bacteriophage. J Appl Microbiol 99:449–459
CAS
PubMed
CrossRef
Google Scholar
Sillankorva S, Oliveira R, Vieira MJ, Sutherland IW, Azeredo J (2004) Bacteriophage Phi S1 infection of Pseudomonas fluorescens planktonic cells versus biofilms. Biofouling 20:133–138
PubMed
CrossRef
Google Scholar
Sillankorva S, Neubauer P, Azeredo J (2008) Pseudomonas fluorescens biofilms subjected to phage phiIBB-PF7A. BMC Biotechnol 8:79
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Singh R, Paul D, Jain RK (2006) Biofilms: implications in bioremediation. Trends Microbiol 14:389–397
CAS
PubMed
CrossRef
Google Scholar
Skurnik M, Pajunen M, Kiljunen S (2007) Biotechnological challenges of phage therapy. Biotechnol Lett 29:995–1003
CAS
PubMed
CrossRef
Google Scholar
Smith HW, Huggins MB, Shaw KM (1987) The control of experimental Escherichia coli diarrhoea in calves by means of bacteriophages. J Gen Microbiol 133:1111–1126
CAS
PubMed
Google Scholar
Soni KA, Nannapaneni R (2010) Removal of Listeria monocytogenes biofilms with bacteriophage P100. J Food Prot 73:1519–1524
PubMed
CrossRef
Google Scholar
Srey S, Jahid IK, Ha S-D (2013) Biofilm formation in food industries: a food safety concern. Food Control 31:572–585
CrossRef
Google Scholar
Sulakvelidze A (2013) Using lytic bacteriophages to eliminate or significantly reduce contamination of food by foodborne bacterial pathogens. J Sci Food Agric 93:3137–3146
CAS
PubMed
CrossRef
Google Scholar
Sutherland IW (2001) The biofilm matrix—an immobilized but dynamic microbial environment. Trends Microbiol 9:222–227
CAS
PubMed
CrossRef
Google Scholar
Tebbutt GM (1984) A microbiological study of various food premises with an assessment of cleaning and disinfection practices. J Hyg (Lond) 93:365–375
CAS
CrossRef
Google Scholar
Thaden JT, Park LP, Maskarinec SA, Ruffin F, Fowler VG Jr, van Duin D (2017) Results from a 13-year prospective cohort study show increased mortality associated with bloodstream infections caused by pseudomonas aeruginosa compared to other bacteria. Antimicrob Agents Chemother 61:e02671–e02616
PubMed
PubMed Central
Google Scholar
Tomat D, Quiberoni A, Mercanti D, Balagué C (2014) Hard surfaces decontamination of enteropathogenic and Shiga toxin-producing Escherichia coli using bacteriophages. FRIN Food Res Int 57:123–129
CAS
CrossRef
Google Scholar
Troller JA (1993) Chapter 5 – Sanitizing. In: Sanitation in food processing, 2nd edn. Academic Press, London, pp 52–70
CrossRef
Google Scholar
Twort FW (1915) An investigation on the nature of ultra-microscopic viruses. Lancet Infect Dis II:1241–1243
Google Scholar
Valerio N, Oliveira C, Jesus V, Branco T, Pereira C, Moreirinha C, Almeida A (2017) Effects of single and combined use of bacteriophages and antibiotics to inactivate Escherichia coli. Virus Res 240:8–17
CAS
PubMed
CrossRef
Google Scholar
Vandenheuvel D, Lavigne R, Brüssow H (2015) Bacteriophage therapy: advances in formulation strategies and human clinical trials. Ann Rev Virology 2:599–618
CAS
CrossRef
Google Scholar
Viazis S, Akhtar M, Feirtag J, Diez-Gonzalez F (2011) Reduction of Escherichia coli O157:H7 viability on hard surfaces by treatment with a bacteriophage mixture. Int J Food Microbiol 145:37–42
PubMed
CrossRef
Google Scholar
Viazis S, Labuza TP, Diez-Gonzalez F (2015) Bacteriophage mixture inactivation kinetics against Escherichia coli O157:H7 on hard surfaces. J Food Saf 35:66–74
CAS
CrossRef
Google Scholar
Wang R, Kalchayanand N, King DA, Luedtke BE, Bosilevac JM, Arthur TM (2014) Biofilm formation and sanitizer resistance of Escherichia coli O157:H7 strains isolated from “high event period” meat contamination. J Food Prot 77:1982–1987
PubMed
CrossRef
CAS
Google Scholar
Wang H, Tay M, Palmer J, Flint S (2017) Biofilm formation of Yersinia enterocolitica and its persistence following treatment with different sanitation agents. JFCO Food Control 73:433–437
CAS
CrossRef
Google Scholar
Weber DJ, Rutala WA (1997) Role of environmental contamination in the transmission of vancomycin-resistant enterococci. Infect Control Hosp Epidemiol 18:306–309
CAS
PubMed
CrossRef
Google Scholar
Weber DJ, Rutala WA, Miller MB, Huslage K, Sickbert-Bennett E (2010) Role of hospital surfaces in the transmission of emerging health care-associated pathogens: norovirus, Clostridium difficile, and Acinetobacter species. Am J Infect Control 38:S25–S33
PubMed
CrossRef
Google Scholar
Woolston J, Parks AR, Abuladze T, Anderson B, Li M, Carter C, Hanna LF, Heyse S, Charbonneau D, Sulakvelidze A (2013) Bacteriophages lytic for Salmonella rapidly reduce Salmonella contamination on glass and stainless steel surfaces. Bacteriophage 3:e25697
PubMed
PubMed Central
CrossRef
Google Scholar
World Health Organization (2014) Health care-associated infections. In: Fact sheet (Available here). Accessed on 27 Oct 2017
Google Scholar
Young R (1992) Bacteriophage lysis: mechanism and regulation. Microbiol Rev 56:430–481
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Zhang Y, Hu Z (2013) Combined treatment of Pseudomonas aeruginosa biofilms with bacteriophages and chlorine. Biotechnol Bioeng 110:286–295
CAS
PubMed
CrossRef
Google Scholar
Zhang Y, Hunt HK, Hu Z (2013) Application of bacteriophages to selectively remove Pseudomonas aeruginosa in water and wastewater filtration systems. Water Res 47:4507–4518
CAS
PubMed
CrossRef
Google Scholar