Skip to main content

Detection of Bacteriophages: Electron Microscopy and Visualisation

  • 17 Accesses

Abstract

Electron microscopy (EM) is an information-rich, aesthetically satisfying methodology. EM has given us tremendous structural and functional insights into the fascinating world of phages. Bacteriophages were one of the first EM specimens, and phages and EM have enjoyed a warm relationship ever since. Thousands of EM-phage studies have been published. Specimen preparation techniques include both staining and nonstaining methods. Care must be taken during sample preparation, and drying of specimens typically results in artifacts. Because of its ease of use and information richness, negative staining is an especially helpful, and the most commonly used, technique. Cryogenic, nonstaining methods are the best way to preserve native structure, but also require more effort. Thin-sectioning methods are useful techniques for phage-host studies. Surface-rendering EM methods are used to image isolated phages, phage-host interactions, and isolated phage DNA. Immuno-labeling allows specific phage components to be located. Computer image processing enables vast improvements in resolution and comprehension through two-dimensional averaging and three-dimensional reconstruction, including through tomography.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

References

  • Ackermann H-W (2003) Bacteriophage observations and evolution. Res Microbiol 154:245–251

    CAS  PubMed  CrossRef  Google Scholar 

  • Ackermann H-W (2007) 5500 phages examined in the electron microscope. Arch Virol 152:227–243

    CAS  PubMed  CrossRef  Google Scholar 

  • Ackermann H-W (2009) Basic phage electron microscopy. Methods Mol Biol 501:113–126

    CAS  PubMed  CrossRef  Google Scholar 

  • Ackermann H-W (2011a) The first phage electron micrographs. Bacteriophage 1:225–227

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Ackermann H-W (2011b) Pfankuch E, Kausche GA. Isolation and supra-microscopic representation of a bacteriophage. Naturwissenschaften 1940; 28:46. Bacteriophage 1:186–187

    Google Scholar 

  • Ackermann H-W (2011c) Ruska H. Visualization of bacteriophage lysis in the hypermicroscope. Naturwissenschaften 1940; 28:45-6. Bacteriophage 1:183–185

    Google Scholar 

  • Ackermann H-W (2012) Bacteriophage electron microscopy. Adv Virus Res 82:1–32

    CAS  PubMed  CrossRef  Google Scholar 

  • Ackermann H-W (2014) Sad state of phage electron microscopy. Please shoot the messenger. Microorganisms 2:1–10

    CrossRef  Google Scholar 

  • Ackermann H-W, Nguyen T-M (1983) Sewage coliphages studied by electron microscopy. Appl Environ Microbiol 45:1049–1059

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Ackermann H-W, Prangishvili D (2012) Prokaryote viruses studied by electron microscopy. Arch Virol 157:1843–1849

    CAS  PubMed  CrossRef  Google Scholar 

  • Ackermann H-W, Tiekotter KL (2012) Murphy’s law – if anything can go wrong, it will: problems in phage electron microscopy. Bacteriophage 2:122–129

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Adrian M, Dubochet J, Fuller SD, Harris JR (1998) Cryo-negative staining. Micron 29:145–160

    CAS  PubMed  CrossRef  Google Scholar 

  • Aebi U, ten Heggeler B, Onorato L, Kistler J, Showe MK (1977) New method for localizing proteins in periodic structures: Fab fragment labeling combined with image processing of electron micrographs. Proc Natl Acad Sci U S A 74:5514–5518

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Aksyuk AA, Leiman PG, Kurochkina LP, Shneider MM, Kostyuchenko VA, Mesyanzhinov VV, Rossmann MG (2009) The tail sheath structure of bacteriophage T4: a molecular machine for infecting bacteria. EMBO J 28:821–829

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Aksyuk AA, Leiman PG, Kurochkina LP, Shneider MM, Kostyuchenko VA, Mesyanzhinov VV, Rossmann MG (2012) Corrigendum: the tail sheath structure of bacteriophage T4: a molecular machine for infecting bacteria. EMBO J 31:3507

    CAS  PubMed Central  CrossRef  Google Scholar 

  • Al-Amoudi A, Chang J-J, Leforestier A, McDowall A, Salamin LM, Norlén LPO, Richter K, Blanc NS, Studer D, Dubochet J (2004) Cryo-electron microscopy of vitreous sections. EMBO J 23:3583–3588

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Almeida GM, Leppänen M, Maasilta IJ, Sundberg L-R (2018) Bacteriophage imaging: past, present and future. Res Microbiol 169:488–494

    PubMed  CrossRef  Google Scholar 

  • Anderson TF (1952) Stereoscopic studies of cells and viruses in the electron microscope. Am Nat 86:91–100

    CrossRef  Google Scholar 

  • Anderson DL, Hickman DD, Reilly BE (1966) Structure of Bacillus subtilis bacteriophage ϕ29 and the length of ϕ29 deoxyribonucleic acid. J Bacteriol 91:2081–2089

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Bamford DH, Lounatmaa K (1978) Freeze-fracturing of Pseudomonas phaseolicola infected by the lipid-containing bacteriophage φ6. J Gen Virol 39:161–170

    CrossRef  Google Scholar 

  • Bayer ME, Bayer MH (1986) Effects of bacteriophage fd infection on Escherichia coli HB11 envelope: a morphological and biochemical study. J Virol 57:258–266

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Bayfield OW, Klimuk E, Winkler DC, Hesketh EL, Chechik M, Cheng N, Dykeman EC, Minakhin L, Ranson NA, Severinov K, Steven AC, Antson AA (2019) Cryo-EM structure and in vitro DNA packaging of a thermophilic virus with supersized T=7 capsids. Proc Natl Acad Sci U S A 116:3556–3561

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Belnap DM (2015) Electron microscopy and image processing: essential tools for structural analysis of macromolecules. Curr Protoc Protein Sci 82:17.2.1–17.2.61

    Google Scholar 

  • Bertin A, de Frutos M, Letellier L (2011) Bacteriophage–host interactions leading to genome internalization. Curr Opin Microbiol 14:492–496

    CAS  PubMed  CrossRef  Google Scholar 

  • Bielmann R, Habann M, Eugster MR, Lurz R, Calendar R, Klumpp J, Loessner MJ (2015) Receptor binding proteins of Listeria monocytogenes bacteriophages A118 and P35 recognize serovar-specific teichoic acids. Virology 477:110–118

    CAS  PubMed  CrossRef  Google Scholar 

  • Bozzola JJ (2014a) Conventional specimen preparation techniques for scanning electron microscopy of biological specimens. Methods Mol Biol 1117:133–150

    CAS  PubMed  CrossRef  Google Scholar 

  • Bozzola JJ (2014b) Conventional specimen preparation techniques for transmission electron microscopy of cultured cells. Methods Mol Biol 1117:1–19

    CAS  PubMed  CrossRef  Google Scholar 

  • Bozzola JJ, Russell LD (1999a) Electron microscopy: principles and techniques for biologists, 2nd edn. Jones and Bartlett Publishers, Sudbury

    Google Scholar 

  • Bozzola JJ, Russell LD (1999b) Specimen preparation for transmission electron microscopy. In: Electron microscopy: principles and techniques for biologists, 2nd edn. Jones and Bartlett Publishers, Sudbury, pp 16–71

    Google Scholar 

  • Bozzola JJ, Russell LD (1999c) Specimen staining and contrast methods for transmission electron microscopy. In: Electron microscopy: principles and techniques for biologists, 2nd edn. Jones and Bartlett Publishers, Sudbury, pp 120–147

    Google Scholar 

  • Bozzola JJ, Russell LD (1999d) Ultramicrotomy. In: Electron microscopy: principles and techniques for biologists, 2nd edn. Jones and Bartlett Publishers, Sudbury, pp 72–118

    Google Scholar 

  • Bradley DE (1962) A study of the negative staining process. J Gen Microbiol 29:503–516

    CAS  PubMed  CrossRef  Google Scholar 

  • Bradley DE (1967) Ultrastructure of bacteriophages and bacteriocins. Bacteriol Rev 31:230–314

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Bremer A, Henn C, Engel A, Baumeister W, Aebi U (1992) Has negative staining still a place in biomacromolecular electron microscopy? Ultramicroscopy 46:85–111

    CAS  PubMed  CrossRef  Google Scholar 

  • Brenner S, Horne RW (1959) A negative staining method for high resolution electron microscopy of viruses. Biochim Biophys Acta 34:103–110

    CAS  PubMed  CrossRef  Google Scholar 

  • Brenner S, Streisinger G, Horne RW, Champe SP, Barnett L, Benzer S, Rees MW (1959) Structural components of bacteriophage. J Mol Biol 1:281–292

    CAS  CrossRef  Google Scholar 

  • Broers AN, Panessa BJ, Gennaro JF Jr (1975) High-resolution scanning electron microscopy of bacteriophages 3C and T4. Science 189:637–639

    CAS  PubMed  CrossRef  Google Scholar 

  • Cardone G, Duda RL, Cheng N, You L, Conway JF, Hendrix RW, Steven AC (2014) Metastable intermediates as stepping stones on the maturation pathways of viral capsids. mBio 5:e02067–14

    Google Scholar 

  • Casjens SR, Leavitt JC, Hatfull GF, Hendrix RW (2014) Genome sequence of Salmonella phage 9NA. Genome Announc 2:e00531–14

    Google Scholar 

  • Castón JR (2013) Conventional electron microscopy, cryo-electron microscopy and cryo-electron tomography of viruses. Subcell Biochem 68:79–115

    PubMed  CrossRef  CAS  Google Scholar 

  • Cerritelli ME, Wall JS, Simon MN, Conway JF, Steven AC (1996) Stoichiometry and domainal organization of the long tail-fiber of bacteriophage T4: a hinged viral adhesin. J Mol Biol 260:767–780

    CAS  PubMed  CrossRef  Google Scholar 

  • Cerritelli ME, Cheng N, Rosenberg AH, McPherson CE, Booy FP, Steven AC (1997) Encapsidated conformation of bacteriophage T7 DNA. Cell 91:271–280

    CAS  PubMed  CrossRef  Google Scholar 

  • Chaikeeratisak V, Nguyen K, Khanna K, Brilot AF, Erb ML, Coker JKC, Vavilina A, Newton GL, Buschauer R, Pogliano K, Villa E, Agard DA, Pogliano J (2017) Assembly of a nucleus-like structure during viral replication in bacteria. Science 355:194–197

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Chandler DE (1986) Rotary shadowing with platinum-carbon in biological electron microscopy: a review of methods and applications. J Electron Microsc Tech 3:305–335

    CrossRef  Google Scholar 

  • Chang JT, Schmid MF, Haase-Pettingell C, Weigele PR, King JA, Chiu W (2010) Visualizing the structural changes of bacteriophage epsilon15 and its Salmonella host during infection. J Mol Biol 402:731–740

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Cheng N, Wu W, Watts NR, Steven AC (2014) Exploiting radiation damage to map proteins in nucleoprotein complexes: the internal structure of bacteriophage T7. J Struct Biol 185:250–256

    CAS  PubMed  CrossRef  Google Scholar 

  • Chlanda P, Sachse M (2014) Cryo-electron microscopy of vitreous sections. Methods Mol Biol 1117:193–214

    CAS  PubMed  CrossRef  Google Scholar 

  • Conway JF, Duda RL, Cheng N, Hendrix RW, Steven AC (1995) Proteolytic and conformational control of virus capsid maturation: the bacteriophage HK97 system. J Mol Biol 253:86–99

    CAS  PubMed  CrossRef  Google Scholar 

  • Conway JF, Wikoff WR, Cheng N, Duda RL, Hendrix RW, Johnson JE, Steven AC (2001) Virus maturation involving large subunit rotations and local refolding. Science 292:744–748

    CAS  PubMed  CrossRef  Google Scholar 

  • Crowther RA (2004) Viruses and the development of quantitative biological electron microscopy. IUBMB Life 56:239–248

    CAS  PubMed  CrossRef  Google Scholar 

  • Crowther RA, Klug A (1975) Structural analysis of macromolecular assemblies by image reconstruction from electron micrographs. Annu Rev Biochem 44:161–182

    CAS  PubMed  CrossRef  Google Scholar 

  • Dai W, Hodes A, Hui WH, Gingery M, Miller JF, Zhou ZH (2010) Three-dimensional structure of tropism-switching Bordetella bacteriophage. Proc Natl Acad Sci U S A 107:4347–4352

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Dai W, Fu C, Raytcheva D, Flanagan J, Khant HA, Liu X, Rochat RH, Haase-Pettingell C, Piret J, Ludtke SJ, Nagayama K, Schmid MF, King JA, Chiu W (2013) Visualizing virus assembly intermediates inside marine cyanobacteria. Nature 502:707–710

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Dai X, Li Z, Lai M, Shu S, Du Y, Zhou ZH, Sun R (2017) In situ structures of the genome and genome-delivery apparatus in a single-stranded RNA virus. Nature 541:112–116

    CAS  PubMed  CrossRef  Google Scholar 

  • Daum B, Quax TEF, Sachse M, Mills DJ, Reimann J, Yildiz Ö, Häder S, Saveanu C, Forterre P, Albers S-V, Kühlbrandt W, Prangishvili D (2014) Self-assembly of the general membrane-remodeling protein PVAP into sevenfold virus-associated pyramids. Proc Natl Acad Sci U S A 111:3829–3834

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • De Carlo S, Harris JR (2011) Negative staining and cryo-negative staining of macromolecules and viruses for TEM. Micron 42:117–131

    PubMed  CrossRef  CAS  Google Scholar 

  • de Jonge N, Ross FM (2011) Electron microscopy of specimens in liquid. Nat Nanotechnol 6:695–704

    PubMed  CrossRef  CAS  Google Scholar 

  • de Jonge N, Peckys DB, Kremers GJ, Piston DW (2009) Electron microscopy of whole cells in liquid with nanometer resolution. Proc Natl Acad Sci U S A 106:2159–2164

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • DeRosier DJ, Klug A (1968) Reconstruction of three dimensional structures from electron micrographs. Nature 217:130–134

    CAS  CrossRef  Google Scholar 

  • Dubochet J, Adrian M, Chang J-J, Homo J-C, Lepault J, McDowall AW, Schultz P (1988) Cryo-electron microscopy of vitrified specimens. Q Rev Biophys 21:129–228

    CAS  PubMed  CrossRef  Google Scholar 

  • Dukes MJ, Thomas R, Damiano J, Klein KL, Balasubramaniam S, Kayandan S, Riffle JS, Davis RM, McDonald SM, Kelly DF (2014) Improved microchip design and application for in situ transmission electron microscopy of macromolecules. Microsc Microanal 20:338–345

    CAS  PubMed  CrossRef  Google Scholar 

  • Effantin G, Hamasaki R, Kawasaki T, Bacia M, Moriscot C, Weissenhorn W, Yamada T, Schoehn G (2013) Cryo-electron microscopy three-dimensional structure of the jumbo phage FRSL1 infecting the phytopathogen Ralstonia solanacearum. Structure 21:298–305

    CAS  PubMed  CrossRef  Google Scholar 

  • Egelman EH (2010) Reconstruction of helical filaments and tubes. Methods Enzymol 482:167–183

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Ellis EA (2014) Staining sectioned biological specimens for transmission electron microscopy: conventional and en bloc stains. Methods Mol Biol 1117:57–72

    CAS  PubMed  CrossRef  Google Scholar 

  • Evans JE, Browning ND (2013) Enabling direct nanoscale observations of biological reactions with dynamic TEM. Microscopy 62:147–156

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Evans JE, Jungjohann KL, Wong PCK, Chiu P-L, Dutrow GH, Arslan I, Browning ND (2012) Visualizing macromolecular complexes with in situ liquid scanning transmission electron microscopy. Micron 43:1085–1090

    CAS  PubMed  CrossRef  Google Scholar 

  • Frank J (2006) Three-dimensional electron microscopy of macromolecular assemblies: visualization of biological molecules in their native state, 2nd edn. Oxford University Press, New York

    CrossRef  Google Scholar 

  • Fraser D, Williams RC (1953) Details of frozen-dried T3 and T7 bacteriophages as shown by electron microscopy. J Bacteriol 65:167–170

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Fromm SA, Sachse C (2016) Cryo-EM structure determination using segmented helical image reconstruction. Methods Enzymol 579:307–328

    CAS  PubMed  CrossRef  Google Scholar 

  • Frost LS, Bazett-Jones DP (1991) Examination of the phosphate in conjugative F-like pili by use of electron spectroscopic imaging. J Bacteriol 173:7728–7731

    Google Scholar 

  • Fu C-y, Wang K, Gan L, Lanman J, Khayat R, Young MJ, Jensen GJ, Doerschuk PC, Johnson JE (2010) In vivo assembly of an archaeal virus studied with whole-cell electron cryotomography. Structure 18:1579–1586

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Gambelli L, Cremers G, Mesman R, Guerrero S, Dutilh BE, Jetten MSM, Op den Camp HJM, van Niftrik L (2016) Ultrastructure and viral metagenome of bacteriophages from an anaerobic methane oxidizing Methylomirabilis bioreactor enrichment culture. Front Microbiol 7:1740

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Gao Y, Cui Y, Fox T, Lin S, Wang H, de Val N, Zhou ZH, Yang W (2019) Structures and operating principles of the replisome. Science 363:eaav7003

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Gilmore BL, Showalter SP, Dukes MJ, Tanner JR, Demmert AC, McDonald SM, Kelly DF (2013) Visualizing viral assemblies in a nanoscale biosphere. Lab Chip 13:216–219

    CAS  PubMed  CrossRef  Google Scholar 

  • Glaeser RM, Downing K, DeRosier D, Chiu W, Frank J (2007) Electron crystallography of biological macromolecules. Oxford University Press, New York

    Google Scholar 

  • Goddard TD, Huang CC, Ferrin TE (2007) Visualizing density maps with UCSF Chimera. J Struct Biol 157:281–287

    CAS  PubMed  CrossRef  Google Scholar 

  • Gogokhia L, Buhrke K, Bell R, Hoffman B, Brown DG, Hanke-Gogokhia C, Ajami NJ, Wong MC, Ghazaryan A, Valentine JF, Porter N, Martens E, O’Connell R, Jacob V, Scherl E, Crawford C, Stephens WZ, Casjens SR, Longman RS, Round JL (2019) Expansion of bacteriophages is linked to aggravated intestinal inflammation and colitis. Cell Host Microbe 25:285–299

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Gorzelnik KV, Cui Z, Reed CA, Jakana J, Young R, Zhang J (2016) Asymmetric cryo-EM structure of the canonical Allolevivirus Qβ reveals a single maturation protein and the genomic ssRNA in situ. Proc Natl Acad Sci U S A 113:11519–11524

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Gowen B, Bamford JKH, Bamford DH, Fuller SD (2003) The tailless icosahedral membrane virus PRD1 localizes the proteins involved in genome packaging and injection at a unique vertex. J Virol 77:7863–7871

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Grassucci RA, Taylor DJ, Frank J (2007) Preparation of macromolecular complexes for cryo-electron microscopy. Nat Protoc 2:3239–3246

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Grose JH, Belnap DM, Jensen JD, Mathis AD, Prince JT, Burnett SH, Breakwell DP (2014) The genomes, proteomes, and structure of three novel phages that infect the Bacillus cereus group and carry putative virulence factors. J Virol 88:11846–11860

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Guerrero-Ferreira RC, Wright ER (2013) Cryo-electron tomography of bacterial viruses. Virology 435:179–186

    CAS  PubMed  CrossRef  Google Scholar 

  • Guerrero-Ferreira RC, Viollier PH, Ely B, Poindexter JS, Georgieva M, Jensen GJ, Wright ER (2011) Alternative mechanism for bacteriophage adsorption to the motile bacterium Caulobacter crescentus. Proc Natl Acad Sci U S A 108:9963–9968

    Google Scholar 

  • Guo F, Jiang W (2014) Single particle cryo-electron microscopy and 3-D reconstruction of viruses. Methods Mol Biol 1117:401–443

    Google Scholar 

  • Happonen LJ, Redder P, Peng X, Reigstad LJ, Prangishvili D, Butcher SJ (2010) Familial relationships in hyperthermo- and acidophilic archaeal viruses. J Virol 84:4747–4754

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Häring M, Rachel R, Peng X, Garrett RA, Prangishvili D (2005) Viral diversity in hot springs of Pozzuoli, Italy, and characterization of a unique archaeal virus, Acidianus bottle-shaped virus, from a new family, the Ampullaviridae. J Virol 79:9904–9911

    Google Scholar 

  • Harris JR (1997) Negative staining and cryoelectron microscopy: the thin film techniques. BIOS Scientific Publishers, Oxford

    CrossRef  Google Scholar 

  • Harris JR (2015) Transmission electron microscopy in molecular structural biology: a historical survey. Arch Biochem Biophys 581:3–18

    CAS  PubMed  CrossRef  Google Scholar 

  • Harris JR, De Carlo S (2014) Negative staining and cryo-negative staining: applications in biology and medicine. Methods Mol Biol 1117:215–258

    CAS  PubMed  CrossRef  Google Scholar 

  • Harris JR, Gebauer W, Markl J (1995) Keyhole limpet haemocyanin: negative staining in the presence of trehalose. Micron 26:25–33

    CAS  CrossRef  Google Scholar 

  • Harris JR, Schröder E, Isupov MN, Scheffler D, Kristensen P, Littlechild JA, Vagin AA, Meissner U (2001) Comparison of the decameric structure of peroxiredoxin-II by transmission electron microscopy and X-ray crystallography. Biochim Biophys Acta 1547:221–234

    CAS  PubMed  CrossRef  Google Scholar 

  • Hart JL, Lang AC, Leff AC, Longo P, Trevor C, Twesten RD, Taheri ML (2017) Direct detection electron energy-loss spectroscopy: a method to push the limits of resolution and sensitivity. Sci Rep 7:8243

    Google Scholar 

  • Hartman R, Munson-McGee J, Young MJ, Lawrence CM (2019) Survey of high-resolution archaeal virus structures. Curr Opin Virol 36:74–83

    CAS  PubMed  CrossRef  Google Scholar 

  • Hawkes PW, Valdrè U (eds) (1990) Biophysical electron microscopy: basic concepts and modern techniques. Academic Press, London

    Google Scholar 

  • Hayat MA (1986) Basic techniques for transmission electron microscopy. Academic Press, Orlando

    Google Scholar 

  • Hayat MA, Miller SE (1990) Negative staining. McGraw-Hill, New York

    Google Scholar 

  • He W, He Y (2014) Electron tomography for organelles, cells, and tissues. Methods Mol Biol 1117:445–483

    CAS  PubMed  CrossRef  Google Scholar 

  • Hendricks GM (2014) Metal shadowing for electron microscopy. Methods Mol Biol 1117:73–93

    CAS  PubMed  CrossRef  Google Scholar 

  • Hermann R, Müller M (1991) High resolution biological scanning electron microscopy: a comparative study of low temperature metal coating techniques. J Electron Microsc Tech 18:440–449

    CAS  PubMed  CrossRef  Google Scholar 

  • Hermann R, Schwartz H, Müller M (1991) High precision immunoscanning electron microscopy using Fab fragments coupled to ultra-small colloidal gold. J Struct Biol 107:38–47

    CAS  PubMed  CrossRef  Google Scholar 

  • Heymann JB, Chagoyen M, Belnap DM (2005) Common conventions for interchange and archiving of three-dimensional electron microscopy information in structural biology. J Struct Biol 151:196–207

    PubMed  CrossRef  Google Scholar 

  • Heymann JB, Chagoyen M, Belnap DM (2006) Corrigendum to “common conventions for interchange and archiving of three-dimensional electron microscopy information in structural biology” [J. Struct. Biol. 151 (2005) 196–207]. J Struct Biol 153:312

    CrossRef  Google Scholar 

  • Hochstein R, Bollschweiler D, Dharmavaram S, Lintner NG, Plitzko JM, Bruinsma R, Engelhardt H, Young MJ, Klug WS, Lawrence CM (2018) Structural studies of Acidianus tailed spindle virus reveal a structural paradigm used in the assembly of spindle-shaped viruses. Proc Natl Acad Sci U S A 115:2120–2125

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Hong C, Pietilä MK, Fu CJ, Schmid MF, Bamford DH, Chiu W (2015) Lemon-shaped halo archaeal virus His1 with uniform tail but variable capsid structure. Proc Natl Acad Sci U S A 112:2449–2454

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Hoppe SM, Sasaki DY, Kinghorn AN, Hattar K (2013) In-situ transmission electron microscopy of liposomes in an aqueous environment. Langmuir 29:9958–9961

    CAS  PubMed  CrossRef  Google Scholar 

  • Hrebík D, Štveráková D, Škubník K, Füzik T, Pantůček R, Plevka P (2019) Structure and genome ejection mechanism of Staphylococcus aureus phage P68. Sci Adv 5:eaaw7414

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Hryc CF, Chen D-H, Afonine PV, Jakana J, Wang Z, Haase-Pettingell C, Jiang W, Adams PD, King JA, Schmid MF, Chiu W (2017) Accurate model annotation of a near-atomic resolution cryo-EM map. Proc Natl Acad Sci U S A 114:3103–3108

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Hu B, Margolin W, Molineux IJ, Liu J (2013) The bacteriophage T7 virion undergoes extensive structural remodeling during infection. Science 339:576–579

    CAS  PubMed  CrossRef  Google Scholar 

  • Hu B, Margolin W, Molineux IJ, Liu J (2015) Structural remodeling of bacteriophage T4 and host membranes during infection initiation. Proc Natl Acad Sci U S A 112:E4919–E4928

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Ionel A, Velázquez-Muriel JA, Luque D, Cuervo A, Castón JR, Valpuesta JM, Martín-Benito J, Carrascosa JL (2011) Molecular rearrangements involved in the capsid shell maturation of bacteriophage T7. J Biol Chem 286:234–242

    CAS  PubMed  CrossRef  Google Scholar 

  • Joens MS, Huynh C, Kasuboski JM, Ferranti D, Sigal YJ, Zeitvogel F, Obst M, Burkhardt CJ, Curran KP, Chalasani SH, Stern LA, Goetze B, Fitzpatrick JAJ (2013) Helium ion microscopy (HIM) for the imaging of biological samples at sub-nanometer resolution. Sci Rep 3:3514

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Kay D, Bradley DE (1962) The structure of bacteriophage ϕR. J Gen Microbiol 27:195–200

    CAS  PubMed  CrossRef  Google Scholar 

  • Kellenberger E, Edgar RS (1971) Structure and assembly of phage particles. In: Hershey AD (ed) The bacteriophage lambda. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 271–295

    Google Scholar 

  • Kellenberger E, Eiserling FA, Boy de la Tour E (1968) Studies on the morphopoiesis of the head of phage T-even III. The cores of head-related structures. J Ultrastruct Res 21:335–360

    CrossRef  Google Scholar 

  • Keller B, Dubochet J, Adrian M, Maeder M, Wurtz M, Kellenberger E (1988) Length and shape variants of the bacteriophage T4 head: mutations in the scaffolding core genes 68 and 22. J Virol 62:2960–2969

    Google Scholar 

  • Kennedy E, Nelson EM, Tanaka T, Damiano J, Timp G (2016) Live bacterial physiology visualized with 5 nm resolution using scanning transmission electron microscopy. ACS Nano 10:2669–2677

    CAS  PubMed  CrossRef  Google Scholar 

  • Kistler J, Aebi U, Onorato L, ten Heggeler B, Showe MK (1978) Structural changes during the transformation of bacteriophage T4 polyheads: characterization of the initial and final states by freeze-drying and shadowing Fab-fragment-labelled preparations. J Mol Biol 126:571–589

    CAS  PubMed  CrossRef  Google Scholar 

  • Kleinschmidt AK, Lang D, Jacherts D, Zahn RK (1962) Darstellung und längenmessungen des gesamten desoxyribonucleinsäure-inhaltes von T2-bakteriophagen. Biochim Biophys Acta 61:857–864

    CAS  PubMed  Google Scholar 

  • Kocsis E, Greenstone HL, Locke EG, Kessel M, Steven AC (1997) Multiple conformational states of the bacteriophage T4 capsid surface lattice induced when expansion occurs without prior cleavage. J Struct Biol 118:73–82

    CAS  PubMed  CrossRef  Google Scholar 

  • Koning RI, Gomez-Blanco J, Akopjana I, Vargas J, Kazaks A, Tars K, Carazo JM, Koster AJ (2016) Asymmetric cryo-EM reconstruction of phage MS2 reveals genome structure in situ. Nat Commun 7:12524

    Google Scholar 

  • Kruger DH, Schneck P, Gelderblom HR (2000) Helmut Ruska and the visualisation of viruses. Lancet 355:1713–1717

    CAS  PubMed  CrossRef  Google Scholar 

  • Labrie SJ, Tremblay DM, Moisan M, Villion M, Magadán AH, Campanacci V, Cambillau C, Moineau S (2012) Involvement of the major capsid protein and two early-expressed phage genes in the activity of the lactococcal abortive infection mechanism AbiT. Appl Environ Microbiol 78:6890–6899

    Google Scholar 

  • Lander GC, Tang L, Casjens SR, Gilcrease EB, Prevelige P, Poliakov A, Potter CS, Carragher B, Johnson JE (2006) The structure of an infectious P22 virion shows the signal for headful DNA packaging. Science 312:1791–1795

    CAS  PubMed  CrossRef  Google Scholar 

  • Leavitt JC, Heitkamp AJ, Bhattacharjee AS, Gilcrease EB, Casjens SR (2017) Genome sequence of Escherichia coli tailed phage Utah. Genome Announc 5:e01494–16

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Lenk E, Casjens S, Weeks J, King J (1975) Intracellular visualization of precursor capsids in phage P22 mutant infected cells. Virology 68:182–199

    CAS  PubMed  CrossRef  Google Scholar 

  • Lepault J, Dubochet J, Baschong W, Kellenberger E (1987) Organization of double-stranded DNA in bacteriophages: a study by cryo-electron microscopy of vitrified samples. EMBO J 6:1507–1512

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Leppänen M, Sundberg L-R, Laanto E, Almeida GMdF, Papponen P, Maasilta IJ (2017) Imaging bacterial colonies and phage–bacterium interaction at sub-nanometer resolution using helium-ion microscopy. Adv Biosys 1:1700070

    CrossRef  CAS  Google Scholar 

  • Lin J, Cheng N, Hogle JM, Steven AC, Belnap DM (2013) Conformational shift of a major poliovirus antigen confirmed by immuno-cryogenic electron microscopy. J Immunol 191:884–891

    CAS  PubMed  CrossRef  Google Scholar 

  • Liou W, Geuze HJ, Slot JW (1996) Improving structural integrity of cryosections for immunogold labeling. Histochem Cell Biol 106:41–58

    CAS  PubMed  CrossRef  Google Scholar 

  • Liou W, Sung Y-J, Tao M-H, Lo SJ (2008) Morphogenesis of the hepatitis B virion and subviral particles in the liver of transgenic mice. J Biomed Sci 15:311–316

    PubMed  CrossRef  Google Scholar 

  • Liu J, Chen C-Y, Shiomi D, Niki H, Margolin W (2011) Visualization of bacteriophage P1 infection by cryo-electron tomography of tiny Escherichia coli. Virology 417:304–311

    Google Scholar 

  • Luria SE, Anderson TF (1942) The identification and characterization of bacteriophages with the electron microscope. Proc Natl Acad Sci U S A 28:127–130

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • McNulty R, Cardone G, Gilcrease EB, Baker TS, Casjens SR, Johnson JE (2018) Cryo-EM elucidation of the structure of bacteriophage P22 virions after genome release. Biophys J 114:1295–1301

    Google Scholar 

  • Messaoudi C, Boudier T, Lechaire J-P, Rigaud J-L, Delacroix H, Gaill F, Marco S (2003) Use of cryo-negative staining in tomographic reconstruction of biological objects: application to T4 bacteriophage. Biol Cell 95:393–398

    Google Scholar 

  • Mielanczyk L, Matysiak N, Michalski M, Buldak R, Wojnicz R (2014) Closer to the native state. Critical evaluation of cryo-techniques for transmission electron microscopy: preparation of biological samples. Folia Histochem Cytobiol 52:1–17

    Google Scholar 

  • Mondal SI, Islam MR, Sawaguchi A, Asadulghani M, Ooka T, Gotoh Y, Kasahara Y, Ogura Y, Hayashi T (2016) Genes essential for the morphogenesis of the Shiga toxin 2-transducing phage from Escherichia coli O157:H7. Sci Rep 6:39036

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Müller M, Engel A, Aebi U (1994) Structural and physicochemical analysis of the contractile MM phage tail and comparison with the bacteriophage T4 tail. J Struct Biol 112:11–31

    PubMed  CrossRef  Google Scholar 

  • Nannenga BL, Gonen T (2019) The cryo-EM method microcrystal electron diffraction (MicroED). Nat Methods 16:369–379

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Nevsten P, Evilevitch A, Wallenberg R (2012) Chemical mapping of DNA and counter-ion content inside phage by energy-filtered TEM. J Biol Phys 38:229–240

    Google Scholar 

  • Obr M, Schur FKM (2019) Structural analysis of pleomorphic and asymmetric viruses using cryo-electron tomography and subtomogram averaging. Adv Virus Res 105:117–159

    CAS  PubMed  CrossRef  Google Scholar 

  • Ohi M, Li Y, Cheng Y, Walz T (2004) Negative staining and image classification – powerful tools in modern electron microscopy. Biol Proced Online 6:23–34

    Google Scholar 

  • Orlova EV, Gowen B, Dröge A, Stiege A, Weise F, Lurz R, van Heel M, Tavares P (2003) Structure of a viral DNA gatekeeper at 10 Å resolution by cryo-electron microscopy. EMBO J 22:1255–1262

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Ortega DR, Oikonomou CM, Ding HJ, Rees-Lee P, Alexandria, Jensen GJ (2019) ETDB-Caltech: a blockchain-based distributed public database for electron tomography. PLoS One 14:e0215531

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Özel M, Pauli G, Gelderblom HR (1990) Electron spectroscopic imaging (ESI) of viruses using thin-section and immunolabelling preparations. Ultramicroscopy 32:35–41

    Google Scholar 

  • Parent KN, Khayat R, Tu LH, Suhanovsky MM, Cortines JR, Teschke CM, Johnson JE, Baker TS (2010a) P22 coat protein structures reveal a novel mechanism for capsid maturation: stability without auxiliary proteins or chemical crosslinks. Structure 18:390–401

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Parent KN, Sinkovits RS, Suhanovsky MM, Teschke CM, Egelman EH, Baker TS (2010b) Cryo-reconstructions of P22 polyheads suggest that phage assembly is nucleated by trimeric interactions among coat proteins. Phys Biol 7:045004

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Parent KN, Gilcrease EB, Casjens SR, Baker TS (2012) Structural evolution of the P22-like phages: comparison of Sf6 and P22 procapsid and virion architectures. Virology 427:177–188

    CAS  PubMed  CrossRef  Google Scholar 

  • Parent LR, Bakalis E, Ramírez-Hernańdez A, Kammeyer JK, Park C, de Pablo J, Zerbetto F, Patterson JP, Gianneschi NC (2017) Directly observing micelle fusion and growth in solution by liquid-cell transmission electron microscopy. J Am Chem Soc 139:17140–17151

    CAS  PubMed  CrossRef  Google Scholar 

  • Parent KN, Schrad JR, Cingolani G (2018) Breaking symmetry in viral icosahedral capsids as seen through the lenses of X-ray crystallography and cryo-electron microscopy. Viruses 10:67

    PubMed Central  CrossRef  CAS  Google Scholar 

  • Park K, Debyser Z, Tabor S, Richardson CC, Griffith JD (1998) Formation of a DNA loop at the replication fork generated by bacteriophage T7 replication proteins. J Biol Chem 273:5260–5270

    CAS  PubMed  CrossRef  Google Scholar 

  • Peralta B, Gil-Carton D, Castaño-Díez D, Bertin A, Boulogne C, Oksanen HM, Bamford DH, Abrescia NGA (2013) Mechanism of membranous tunnelling nanotube formation in viral genome delivery. PLoS Biol 11:e1001667

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Pfankuch E, Kausche GA (1940) Isolierung und übermikroskopische abbildung eines bakteriophagen. Naturwissenschaften 28:46

    CAS  CrossRef  Google Scholar 

  • Pietilä MK, Demina TA, Atanasova NS, Oksanen HM, Bamford DH (2014) Archaeal viruses and bacteriophages: comparisons and contrasts. Trends Microbiol 22:334–344

    PubMed  CrossRef  CAS  Google Scholar 

  • Plançon L, Chami M, Letellier L (1997) Reconstitution of FhuA, an Escherichia coli outer membrane protein, into liposomes. J Biol Chem 272:16868–16872

    PubMed  CrossRef  Google Scholar 

  • Popenko VI, Kutter EM, Ackermann H-W (2013) Anna S. Tikhonenko. Bacteriophage 3:e23646

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Prasad BVV, Burns JW, Marietta E, Estes MK, Chiu W (1990) Localization of VP4 neutralization sites in rotavirus by three-dimensional cryo-electron microscopy. Nature 343:476–479

    CAS  PubMed  CrossRef  Google Scholar 

  • Preux O, Durand D, Huet A, Conway JF, Bertin A, Boulogne C, Drouin-Wahbi J, Trévarin D, Pérez J, Vachette P, Boulanger P (2013) A two-state cooperative expansion converts the procapsid shell of bacteriophage T5 into a highly stable capsid isomorphous to the final virion head. J Mol Biol 425:1999–2014

    CAS  PubMed  CrossRef  Google Scholar 

  • Rachel R, Bettstetter M, Hedlund BP, Häring M, Kessler A, Stetter KO, Prangishvili D (2002) Remarkable morphological diversity of viruses and virus-like particles in hot terrestrial environments. Arch Virol 147:2419–2429

    CAS  PubMed  CrossRef  Google Scholar 

  • Raytcheva DA, Haase-Pettingell C, Piret J, King JA (2014) Two novel proteins of cyanophage Syn5 compose its unusual horn structure. J Virol 88:2047–2055

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Revet B, Zarling DA, Jovin TM, Delain E (1984) Different Z DNA forming sequences are revealed in ϕX174 RFI by high resolution darkfield immuno-electron microscopy. EMBO J 3:3353–3358

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Ruska H (1940) Die sichtbarmachung der bakteriophagen lyse im übermikroskop. Naturwissenschaften 28:45–46

    CAS  CrossRef  Google Scholar 

  • Sachse C (2015) Single-particle based helical reconstruction – how to make the most of real and Fourier space. AIMS Biophys 2:219–244

    CrossRef  Google Scholar 

  • Saigo K (1975) Denaturation mapping and chromosome structure in bacteriophage T5. Virology 68:166–172

    CAS  PubMed  CrossRef  Google Scholar 

  • Scheres SHW (2012) RELION: implementation of a Bayesian approach to cryo-EM structure determination. J Struct Biol 180:519–530

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Scheres SHW, Gao H, Valle M, Herman GT, Eggermont PPB, Frank J, Carazo J-M (2007) Disentangling conformational states of macromolecules in 3D-EM through likelihood optimization. Nat Methods 4:27–29

    CAS  PubMed  CrossRef  Google Scholar 

  • Schur FKM (2019) Toward high-resolution in situ structural biology with cryo-electron tomography and subtomogram averaging. Curr Opin Struct Biol 58:1–9

    CAS  PubMed  CrossRef  Google Scholar 

  • Severs NJ (2007) Freeze-fracture electron microscopy. Nat Protoc 2:547–576

    CAS  PubMed  CrossRef  Google Scholar 

  • Shen PS, Domek MJ, Sanz-García E, Makaju A, Taylor RM, Hoggan R, Culumber M, Oberg C, Breakwell DP, Prince JT, Belnap DM (2012) Sequence and structural characterization of Great Salt Lake bacteriophage CW02, a member of the T7-like supergroup. J Virol 86:7907–7917

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Sigworth FJ (2016) Principles of cryo-EM single-particle image processing. Microscopy 65:57–67

    PubMed  CrossRef  Google Scholar 

  • Simon LD (1972) Infection of Escherichia coli by T2 and T4 bacteriophages as seen in the electron microscope: T4 head morphogenesis. Proc Natl Acad Sci U S A 69:907–911

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Spilman MS, Dearborn AD, Chang JR, Damle PK, Christie GE, Dokland T (2011) A conformational switch involved in maturation of Staphylococcus aureus bacteriophage 80α capsids. J Mol Biol 405:863–876

    CAS  PubMed  CrossRef  Google Scholar 

  • Steven AC, Navia MA (1980) Fidelity of structure representation in electron micrographs of negatively stained protein molecules. Proc Natl Acad Sci U S A 77:4721–4725

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Steven AC, Bauer AC, Bisher ME, Robey FA, Black LW (1991) The maturation-dependent conformational change of phage T4 capsid involves the translocation of specific epitopes between the inner and the outer capsid surfaces. J Struct Biol 106:221–236

    CAS  PubMed  CrossRef  Google Scholar 

  • Stoops JK, Baker TS, Schroeter JP, Kolodziej SJ, Niu X-D, Reed LJ (1992) Three-dimensional structure of the truncated core of the Saccharomyces cerevisiae pyruvate dehydrogenase complex determined from negative stain and cryoelectron microscopy images. J Biol Chem 267:24769–24775

    CAS  PubMed  CrossRef  Google Scholar 

  • Tarahovsky YS, Khusainov AA, Deev AA, Kim YV (1991) Membrane fusion during infection of Escherichia coli cells by phage T4. FEBS Lett 289:18–22

    CAS  PubMed  CrossRef  Google Scholar 

  • Teschke CM, Parent KN (2010) ‘Let the phage do the work’: using the phage P22 coat protein structures as a framework to understand its folding and assembly mutants. Virology 401:119–130

    CAS  PubMed  CrossRef  Google Scholar 

  • Thomas D, Schultz P, Steven AC, Wall JS (1994) Mass analysis of biological macromolecular complexes by STEM. Biol Cell 80:181–192

    CAS  PubMed  CrossRef  Google Scholar 

  • Thomas JA, Rolando MR, Carroll CA, Shen PS, Belnap DM, Weintraub ST, Serwer P, Hardies SC (2008) Characterization of Pseudomonas chlororaphis myovirus 201ϕ2-1 via genomic sequencing, mass spectrometry, and electron microscopy. Virology 376:330–338

    CAS  PubMed  CrossRef  Google Scholar 

  • Tiekotter KL, Ackermann H-W (2009) High-quality virus images obtained by transmission electron microscopy and charge coupled device digital camera technology. J Virol Methods 159:87–92

    CAS  PubMed  CrossRef  Google Scholar 

  • Tikhonenko AS (1970) Ultrastructure of Bacterial Viruses (trans: Haigh B). Plenum Press, New York

    Google Scholar 

  • Tokuyasu KT (1973) A technique for ultracryotomy of cell suspensions and tissues. J Cell Biol 57:551–565

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Varano AC, Rahimi A, Dukes MJ, Poelzing S, McDonald SM, Kelly DF (2015) Visualizing virus particle mobility in liquid at the nanoscale. Chem Commun 51:16176–16179

    CrossRef  CAS  Google Scholar 

  • Veesler D, Ng T-S, Sendamarai AK, Eilers BJ, Lawrence CM, Lok S-M, Young MJ, Johnson JE, Fu C-y (2013) Atomic structure of the 75 MDa extremophile Sulfolobus turreted icosahedral virus determined by CryoEM and X-ray crystallography. Proc Natl Acad Sci U S A 110:5504–5509

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Villa E, Schaffer M, Plitzko JM, Baumeister W (2013) Opening windows into the cell: focused-ion-beam milling for cryo-electron tomography. Curr Opin Struct Biol 23:771–777

    CAS  PubMed  CrossRef  Google Scholar 

  • Wall JS, Hainfeld JF (1986) Mass mapping with the scanning transmission electron microscope. Annu Rev Biophys Biophys Chem 15:355–376

    CAS  PubMed  CrossRef  Google Scholar 

  • Wan W, Briggs JAG (2016) Cryo-electron tomography and subtomogram averaging. Methods Enzymol 579:329–367

    CAS  PubMed  CrossRef  Google Scholar 

  • Wang Y, Zhang X (2008) Characterization of a novel portal protein from deep-sea thermophilic bacteriophage GVE2. Gene 421:61–66

    CAS  PubMed  CrossRef  Google Scholar 

  • Wang YA, Yu X, Overman S, Tsuboi M, Thomas GJ Jr, Egelman EH (2006) The structure of a filamentous bacteriophage. J Mol Biol 361:209–215

    CAS  PubMed  CrossRef  Google Scholar 

  • Wang C, Tu J, Liu J, Molineux IJ (2019) Structural dynamics of bacteriophage P22 infection initiation revealed by cryo-electron tomography. Nat Microbiol 4:1049–1056

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Watts NRM, Hainfeld J, Coombs DH (1990) Localization of the proteins gp7, gp8 and gp10 in the bacteriophage T4 baseplate with colloidal gold:F(ab)2 and undecagold: Fab’ conjugates. J Mol Biol 216:315–325

    CAS  PubMed  CrossRef  Google Scholar 

  • Wendelschafer-Crabb G, Erlandsen SL, Walker DH Jr (1975) Conditions critical for optimal visualization of bacteriophage adsorbed to bacterial surfaces by scanning electron microscopy. J Virol 15:1498–1503

    Google Scholar 

  • Williams RC, Fraser D (1953) Morphology of the seven T-bacteriophages. J Bacteriol 66:458–464

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Wollin R, Eriksson U, Lindberg AA (1981) Salmonella bacteriophage glycanases: endorhamnosidase activity of bacteriophages P27, 9NA, and KB1. J Virol 38:1025–1033

    Google Scholar 

  • Wu S, Liu B, Zhang X (2009) Identification of a tail assembly gene cluster from deep-sea thermophilic bacteriophage GVE2. Virus Genes 38:507–514

    CAS  PubMed  CrossRef  Google Scholar 

  • Wu W, Thomas JA, Cheng N, Black LW, Steven AC (2012) Bubblegrams reveal the inner body of bacteriophage ϕKZ. Science 335:182

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Wu J, Shan H, Chen W, Gu X, Tao P, Song C, Shang W, Deng T (2016a) In situ environmental TEM in imaging gas and liquid phase chemical reactions for materials research. Adv Mater 28:9686–9712

    CAS  PubMed  CrossRef  Google Scholar 

  • Wu W, Leavitt JC, Cheng N, Gilcrease EB, Motwani T, Teschke CM, Casjens SR, Steven AC (2016b) Localization of the Houdinisome (ejection proteins) inside the bacteriophage P22 virion by bubblegram imaging. mBio 7:e01152–16

    Google Scholar 

  • Wurtz M (1992) Bacteriophage structure. Electron Microsc Rev 5:283–309

    CAS  PubMed  CrossRef  Google Scholar 

  • Wyckoff RWG (1948) The electron microscopy of developing bacteriophage: II. Growth of T4 in liquid culture. Biochim Biophys Acta 2:246–253

    CAS  PubMed  CrossRef  Google Scholar 

  • Xu J, Dayan N, Goldbourt A, Xiang Y (2019) Cryo-electron microscopy structure of the filamentous bacteriophage IKe. Proc Natl Acad Sci U S A 116:5493–5498

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Yap ML, Klose T, Arisaka F, Speir JA, Veesler D, Fokine A, Rossmann MG (2016) Role of bacteriophage T4 baseplate in regulating assembly and infection. Proc Natl Acad Sci U S A 113:2654–2659

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Yu G, Vago F, Zhang D, Snyder JE, Yan R, Zhang C, Benjamin C, Jiang X, Kuhn RJ, Serwer P, Thompson DH, Jiang W (2014) Single-step antibody-based affinity cryo-electron microscopy for imaging and structural analysis of macromolecular assemblies. J Struct Biol 187:1–9

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Yu G, Li K, Jiang W (2016) Antibody-based affinity cryo-EM grid. Methods 100:16–24

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Zhao H, Li K, Lynn AY, Aron KE, Yu G, Jiang W, Tang L (2017) Structure of a headful DNA-packaging bacterial virus at 2.9 Å resolution by electron cryo-microscopy. Proc Natl Acad Sci U S A 114:3601–3606

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Zheng W, Wang F, Taylor NMI, Guerrero-Ferreira RC, Leiman PG, Egelman EH (2017) Refined cryo-EM structure of the T4 tail tube: exploring the lowest dose limit. Structure 25:1436–1441

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

Download references

Acknowledgments

I thank Linda Nikolova and Willisa Liou for help with the thin-sectioning portion of this chapter and Brian Van Devener for help with the in situ liquid-cell and analytical EM portions. I thank my editors for their helpful suggestions. I thank those who provided samples for me to image and permission to use the images, and I thank those who provided images from their own work. Eddie B. Gilcrease and Sherwood R. Casjens provided samples of bacteriophages Utah and 9NA. Julianne H. Grose provided samples of bacteriophages Basilisk and T7. Edward H. Egelman provided an image of bacteriophage fd. Willisa Liou infected cells, prepared thin-section specimens, and recorded the images used in Fig. 7c, d; Kelly T. Hughes and Christopher E. Wozniak provided Salmonella and phage P22 that Willisa used in her infection experiment. Matthew J. Domek and Brent Nelson provided halophage BN samples. Matthew Domek provided halophage CW02 samples. Lasha Gogokhia and June Round provided samples of phage NC-B and NC-G. Julie Thomas and Philip Serwer provided phage 201ϕ2-1 samples. Miika Leppänen and Ilari J. Maasilta provided an image of E. coli and bacteriophage T4. Jun Liu provided images of bacteriophage P1 and E. coli. Jochen Klumpp provided images of antibody-labeled phage A118. Melanie Ohi and Thomas Walz are thanked for an image of T7 helicase/primase. Paul Jardine and Dwight Anderson are thanked for an image of bacteriophages T2 and ϕ29. I thank Khim Karki, Jordan Moering, Madeline Dukes, Alasdair Steven, and Sherwood Casjens for helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Belnap .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Verify currency and authenticity via CrossMark

Cite this entry

Belnap, D.M. (2021). Detection of Bacteriophages: Electron Microscopy and Visualisation. In: Harper, D.R., Abedon, S.T., Burrowes, B.H., McConville, M.L. (eds) Bacteriophages. Springer, Cham. https://doi.org/10.1007/978-3-319-40598-8_18-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40598-8_18-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40598-8

  • Online ISBN: 978-3-319-40598-8

  • eBook Packages: Springer Reference Biomedicine & Life SciencesReference Module Biomedical and Life Sciences

Chapter History

  1. Latest

    Detection of Bacteriophages: Electron Microscopy and Visualisation
    Published:
    09 September 2021

    DOI: https://doi.org/10.1007/978-3-319-40598-8_18-2

  2. Original

    Detection of Bacteriophages: Electron Microscopy and Visualisation
    Published:
    07 January 2020

    DOI: https://doi.org/10.1007/978-3-319-40598-8_18-1