Skip to main content

Detection of Bacteriophages: Phage Plaques

Abstract

Plaques are spatially constrained populations of bacteriophages that become visible to the eye as they locally deplete numbers of susceptible bacterial hosts. Plaques develop within what are known as “lawns” of bacteria, as grown either on or in solid or semi-solid media, media which typically is agar-based. These plaques, by definition, are initiated from an approximation of a point source, that is, usually from a single phage virion or instead from a phage-infected bacterium, what often collectively can be described as plaque-forming units or PFUs. These point sources then spread spherically to form circular “holes” of reduced turbidity, i.e., less cloudiness in the bacterial lawn. Phage plaques are important for at least four reasons. First, the process of their growth can vary in interesting ways, with differences in outcomes that are dependent on differences in phage and bacterial types along with differences in plaquing conditions. Second, phage plaques are the most readily accessible and common circumstance in which spatially structured phage growth is observed in the laboratory. As such, plaques can serve as first-approximation models for phage population growth within naturally occurring spatially structured bacterial populations. Third, phage plaques are a common means by which phage activity can be macroscopically observed for the sake of phage isolation, phage clonal purification, and phage enumeration. Four, phage plaques may be employed to biologically characterize phages such as in terms of their efficiency of plating or host range. Provided here is an overview of the biology of phage plaques and their formation.

Keywords

  • Efficiency of center of infection
  • Efficiency of plating
  • Infective center
  • Plaque
  • Plaque-forming unit
  • Spot test

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Abedon ST (1994) Lysis and the interaction between free phages and infected cells. In: Karam JD, Kutter E, Carlson K, Guttman B (eds) The molecular biology of bacteriophage T4. ASM Press, Washington, DC, pp 397–405

    Google Scholar 

  • Abedon ST (2011a) Bacteriophages and biofilms: ecology, phage therapy, Plaques. Nova Science Publishers/Hauppauge, New York

    Google Scholar 

  • Abedon ST (2011b) Lysis from without. Bacteriophage 1:46–49

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Abedon ST (2012) Thinking about microcolonies as phage targets. Bacteriophage 2:200–204

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Abedon ST (2015) Bacteriophage secondary infection. Virol Sin 30:3–10

    CrossRef  CAS  PubMed  Google Scholar 

  • Abedon ST (2016a) Bacteriophage exploitation of bacterial biofilms: phage preference for less mature targets? FEMS Microbiol Lett 363:fnv246

    CrossRef  PubMed  Google Scholar 

  • Abedon ST (2016b) Phage therapy dosing: the problem(s) with multiplicity of infection (MOI). Bacteriophage 6:e1220348

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Abedon ST (2017a) Active bacteriophage biocontrol and therapy on sub-millimeter scales towards removal of unwanted bacteria from foods and microbiomes. AIMS Microbiol 3:649–688

    CrossRef  Google Scholar 

  • Abedon ST (2017b) Phage “delay” towards enhancing bacterial escape from biofilms: a more comprehensive way of viewing resistance to bacteriophages. AIMS Microbiol 3:186–226

    CrossRef  Google Scholar 

  • Abedon ST (2017c) Plaques. In Reference module in life sciences. Elsevier. https://doi.org/10.1016/B978-0-12-809633-8.06915-6

    Google Scholar 

  • Abedon ST (2017d) Commentary: communication between viruses guides lysis-lysogeny decisions. Front Microbiol 8:983

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Abedon ST, Culler RR (2007a) Bacteriophage evolution given spatial constraint. J Theor Biol 248:111–119

    CrossRef  PubMed  Google Scholar 

  • Abedon ST, Culler RR (2007b) Optimizing bacteriophage plaque fecundity. J Theor Biol 249:582–592

    CrossRef  CAS  PubMed  Google Scholar 

  • Abedon ST, Katsaounis TI (2017) Basic phage mathematics. Methods Mol Biol 1681:3–30. https://www.ncbi.nlm.nih.gov/pubmed/29134583

  • Abedon ST, Thomas-Abedon C (2010) Phage therapy pharmacology. Curr Pharm Biotechnol 11:28–47

    CrossRef  CAS  PubMed  Google Scholar 

  • Abedon ST, Yin J (2008) Impact of spatial structure on phage population growth. In: Abedon ST (ed) Bacteriophage ecology. Cambridge University Press, Cambridge, UK, pp 94–113

    CrossRef  Google Scholar 

  • Abedon ST, Yin J (2009) Bacteriophage plaques: theory and analysis. Methods Mol Biol 501:161–174

    CrossRef  CAS  PubMed  Google Scholar 

  • Adams MH (1959) Bacteriophages. InterScience, New York

    Google Scholar 

  • Carlson K (2005) Working with bacteriophages: common techniques and methodological approaches. In: Kutter E, Sulakvelidze A (eds) Bacteriophages: biology and application. CRC Press, Boca Raton, pp 437–494

    Google Scholar 

  • Carlson K, Miller ES (1994) Enumerating phage: the plaque assay. In: Karam JD (ed) Molecular biology of bacteriophage T4. ASM Press, Washington, DC, pp 427–429

    Google Scholar 

  • d’Hérelle F (1917) Sur un microbe invisible antagoniste des bacilles dysentériques. C R Acad Sci Ser D 165:373–375

    Google Scholar 

  • d’Hérelle F (2011) On an invisible microbe antagonistic to dysentery bacilli. Note by M. F. d’Herelle, presented by M. Roux. Comptes Rendus Academiedes Sciences 1917; 165:373–5. Bacteriophage 1:3–5

    CrossRef  Google Scholar 

  • Dennehy JJ, Abedon ST, Turner PE (2007) Host density impacts relative fitness of bacteriophage Φ6 genotypes in structured habitats. Evolution 61:2516–2527

    CrossRef  PubMed  Google Scholar 

  • Dulbecco R (1949) Appendix: on the reliability of the Poisson distribution as a distribution of the number of phage particles infecting individual bacteria in a population. Genetics 34:122–125

    Google Scholar 

  • Gallet R, Shao Y, Wang I-N (2009) High adsorption rate is detrimental to bacteriophage fitness in a biofilm-like environment. BMC Evol Biol 9:241

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallet R, Kannoly S, Wang IN (2011) Effects of bacteriophage traits on plaque formation. BMC Microbiol 11:181

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Hadas H, Einav M, Fishov I, Zaritsky A (1997) Bacteriophage T4 development depends on the physiology of its host Escherichia coli. Microbiology 143:179–185

    CrossRef  CAS  PubMed  Google Scholar 

  • Hyman P (1993) The genetics of the Luria-Latarjet effect in bacteriophage T4: evidence for the involvement of multiple DNA repair pathways. Genet Res 62:1–9

    CrossRef  CAS  PubMed  Google Scholar 

  • Hyman P, Abedon ST (2009) Practical methods for determining phage growth parameters. Methods Mol Biol 501:175–202

    CrossRef  CAS  PubMed  Google Scholar 

  • Hyman P, Abedon ST (2010) Bacteriophage host range and bacterial resistance. Adv Appl Microbiol 70:217–248

    CrossRef  CAS  PubMed  Google Scholar 

  • Krone SM, Abedon ST (2008) Modeling phage plaque growth. In: Abedon ST (ed) Bacteriophage ecology. Cambridge University Press, Cambridge, UK, pp 415–438

    CrossRef  Google Scholar 

  • Kropinski AM, Mazzocco A, Waddell TE, Lingohr E, Johnson RP (2009) Enumeration of bacteriophages by double agar overlay plaque assay. Methods Mol Biol 501:69–76

    CrossRef  CAS  PubMed  Google Scholar 

  • Labrie SJ, Samson JE, Moineau S (2010) Bacteriophage resistance mechanisms. Nat Rev Microbiol 8:317–327

    CrossRef  CAS  PubMed  Google Scholar 

  • Mazzocco A, Waddell TE, Lingohr E, Johnson RP (2009a) Enumeration of bacteriophages by the direct plating plaque assay. Methods Mol Biol 501:77–80

    CrossRef  CAS  PubMed  Google Scholar 

  • Mazzocco A, Waddell TE, Lingohr E, Johnson RP (2009b) Enumeration of bacteriophages using the small drop plaque assay system. Methods Mol Biol 501:81–85

    CrossRef  CAS  PubMed  Google Scholar 

  • Millard AD (2009) Isolation of cyanophages from aquatic environments. Methods Mol Biol 501:33–42

    CrossRef  CAS  PubMed  Google Scholar 

  • Mirzaei MK, Nilsson AS (2015) Isolation of phages for phage therapy: a comparison of spot tests and efficiency of plating analyses for determination of host range and efficacy. PLoS One 10:e0118557

    CrossRef  CAS  Google Scholar 

  • Pires DP, Oliveira H, Melo LD, Sillankorva S, Azeredo J (2016) Bacteriophage-encoded depolymerases: their diversity and biotechnological applications. Appl Microbiol Biotechnol 100:2141–2151

    CrossRef  CAS  PubMed  Google Scholar 

  • Rizvi S, Mora PT (1963) Bacteriophage plaque-count assay and confluent lysis on plates without bottom agar layer. Nature 200:1324–1325

    CrossRef  CAS  PubMed  Google Scholar 

  • Roychoudhury P, Shrestha N, Wiss VR, Krone SM (2014) Fitness benefits of low infectivity in a spatially structured population of bacteriophages. Proc Biol Sci 281:20132563

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Salivar WO, Tzagoloff H, Pratt D (1964) Some physical-chemical and biological properties of the rod-shaped coliphage M13. Virology 24:359–371

    CrossRef  CAS  PubMed  Google Scholar 

  • Sanders ER (2012) Aseptic laboratory techniques: plating methods. J Vis Exp 11:e3064

    Google Scholar 

  • Sing WD, Klaenhammer TR (1990) Characteristics of phage abortion conferred in lactococci by the conjugal plasmid pTR2030. J Gen Microbiol 136:1807–1815

    CrossRef  CAS  Google Scholar 

  • Stent GS (1963) Molecular biology of bacterial viruses. WH Freeman, San Francisco

    Google Scholar 

  • Sutherland IW, Hughes KA, Skillman LC, Tait K (2004) The interaction of phage and biofilms. FEMS Microbiol Lett 232:1–6

    CrossRef  CAS  PubMed  Google Scholar 

  • Yin J (1991) A quantifiable phenotype of viral propagation. Biochem Biophys Res Com 174:1009–1014

    CrossRef  CAS  PubMed  Google Scholar 

  • Yin J (1993) Evolution of bacteriophage T7 in a growing plaque. J Bacteriol 175:1272–1277

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin J (1994) Spatially resolved evolution of viruses. Ann N Y Acad Sci 745:399–408

    CrossRef  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen T. Abedon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Verify currency and authenticity via CrossMark

Cite this entry

Abedon, S.T. (2018). Detection of Bacteriophages: Phage Plaques. In: Harper, D., Abedon, S., Burrowes, B., McConville, M. (eds) Bacteriophages. Springer, Cham. https://doi.org/10.1007/978-3-319-40598-8_16-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40598-8_16-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40598-8

  • Online ISBN: 978-3-319-40598-8

  • eBook Packages: Springer Reference Biomedicine & Life SciencesReference Module Biomedical and Life Sciences