Abshire T, Brown J, Ezzell J (2005) Production and validation of the use of gamma phage for identification of Bacillus anthracis. J Clin Microbiol 43:4780–4788
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Ackers GK, Johnson AD, Shea MA (1982) Quantitative model for gene regulation by lambda phage repressor. Proc Natl Acad Sci 79:1129–1133
CAS
PubMed
CrossRef
PubMed Central
Google Scholar
Adhya S, Gottesman M, De Crombrugghe B (1974) Release of polarity in Escherichia coli by gene N of phage λ: termination and antitermination of transcription. Proc Natl Acad Sci 71:2534–2538
CAS
PubMed
CrossRef
PubMed Central
Google Scholar
Arber W, Dussoix D (1962) Host specificity of DNA produced by Escherichia coli: I. Host controlled modification of bacteriophage λ. J Mol Biol 5:18–36
CAS
PubMed
CrossRef
Google Scholar
Arkin A, Ross J, McAdams HH (1998) Stochastic kinetic analysis of developmental pathway bifurcation in phage λ-infected Escherichia coli cells. Genetics 149:1633–1648
CAS
PubMed
PubMed Central
Google Scholar
Astrachan L, Volkin E (1958) Properties of ribonucleic acid turnover in T2-infected Escherichia coli. Biochim Biophys Acta 29:536–544
CAS
PubMed
CrossRef
Google Scholar
Atlung T, Nielsen A, Rasmussen LJ, Nellemann LJ, Holm F (1991) A versatile method for integration of genes and gene fusions into the λ attachment site of Escherichia coli. Gene 107:11–17
CAS
PubMed
CrossRef
Google Scholar
Auvray F, Coddeville M, Ritzenthaler P, Dupont L (1997) Plasmid integration in a wide range of bacteria mediated by the integrase of Lactobacillus delbrueckii bacteriophage mv4. J Bacteriol 179:1837–1845
Google Scholar
Bail O (1922) Elementarbakteriophagen des Shigabacillus. Wien klin Wochenschr: 743
Google Scholar
Barner HD, Cohen SS (1954) The induction of thymine synthesis by T2 infection of a thymine requiring mutant of Escherichia coli. J Bacteriol 68:80
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Battle A, Khan Z, Wang SH, Mitrano A, Ford MJ, Pritchard JK, Gilad Y (2015) Impact of regulatory variation from RNA to protein. Science 347:664–667
CAS
PubMed
CrossRef
Google Scholar
Beadle GW, Tatum EL (1941) Genetic control of biochemical reactions in Neurospora. Proc Natl Acad Sci 27:499–506
CAS
PubMed
CrossRef
PubMed Central
Google Scholar
Benzer S (1959) On the topology of the genetic fine structure. Proc Natl Acad Sci 45:1607–1620
CAS
PubMed
CrossRef
PubMed Central
Google Scholar
Bertani G (1951) Studies on lysogenesis I. The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol 62:293
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Bertani G (2004) Lysogeny at mid-twentieth century: P1, P2, and other experimental systems. J Bacteriol 186:595–600
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Bertani G, Weigle J (1953) Host controlled variation in bacterial viruses. J Bacteriol 65:113
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Betz UA, Voßhenrich CA, Rajewsky K, Müller W (1996) Bypass of lethality with mosaic mice generated by Cre–loxP-mediated recombination. Curr Biol 6:1307–1316
CAS
PubMed
CrossRef
Google Scholar
Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314
CAS
PubMed
PubMed Central
Google Scholar
Breitbart M, Salamon P, Andresen B, Mahaffy JM, Segall AM, Mead D, Azam F, Rohwer F (2002) Genomic analysis of uncultured marine viral communities. Proc Natl Acad Sci 99:14250–14255
CAS
PubMed
CrossRef
PubMed Central
Google Scholar
Brenner S, Jacob F, Meselson M (1961) An unstable intermediate carrying information from genes to ribosomes for protein synthesis. Nature 190:576–581
CAS
PubMed
CrossRef
Google Scholar
Cairns J, Stent GS, Watson JD (1968) Phage and the origins of molecular biology. J Hist Biol 1(1):155–161
CrossRef
Google Scholar
Calef E, Licciardello G (1960) Recombination experiments on prophage host relationships. Virology 12:81–103
CrossRef
Google Scholar
Campbell AM (1963) Episomes. Adv Genet 11:101–145
CrossRef
Google Scholar
Campbell AM (1993) Thirty years ago in genetics: prophage insertion into bacterial chromosomes. Genetics 133:433
CAS
PubMed
PubMed Central
Google Scholar
Chan LY, Kosuri S, Endy D (2005) Refactoring bacteriophage T7. Mol Syst Biol 1:1–10
Google Scholar
Cherry W, Davis BR, Edwards PR, Hogan R, others (1954) A simple procedure for the identification of the genus Salmonella by means of a specific bacteriophage. J Lab Clin Med 44:51–55
Google Scholar
Cohen SS (1948) The synthesis of bacterial viruses II. The origin of the phosphorus found in the desoxyribonucleic acids of the T2 and T4 bacteriophages. J Biol Chem 174:295–303
CAS
PubMed
Google Scholar
Cohen SS, Barner HD (1954) Studies on unbalanced growth in Escherichia coli. Proc Natl Acad Sci 40:885–893
CAS
PubMed
CrossRef
PubMed Central
Google Scholar
Cohen SS, Flaks JG, Barner HD, Loeb MR, Lichtenstein J (1958) The mode of action of 5-fluorouracil and its derivatives. Proc Natl Acad Sci 44:1004–1012
CAS
PubMed
CrossRef
PubMed Central
Google Scholar
Collins J, Hohn B (1978) Cosmids: a type of plasmid gene-cloning vector that is packageable in vitro in bacteriophage lambda heads. Proc Natl Acad Sci 75:4242–4246
CAS
PubMed
CrossRef
PubMed Central
Google Scholar
Cox CR (2012) 10 Bacteriophage-based methods of bacterial detection and identification. In: Hyman P, Abedon ST (Eds) Bacteriophages in health and disease, vol 24. CABI, Oxfordshire, UK, p 134
Google Scholar
Cox CR, Rees JC, Voorhees KJ (2012) Modeling bacteriophage amplification as a predictive tool for optimized MALDI-TOF MS-based bacterial detection. J Mass Spectrom 47:1435–1441
CAS
PubMed
CrossRef
Google Scholar
Crick F (1970) Central dogma of molecular biology. Nature 227:561–563
CAS
PubMed
CrossRef
Google Scholar
Crick F, Barnett L, Brenner S, Watts-Tobin RJ (1961) General nature of the genetic code for proteins. Macmillan Journals, London
CrossRef
Google Scholar
d’Herelle F (1917) Sur un microbe invisible antagoniste des bacilles dysentériques. CR Acad Sci Paris 165:373–375
Google Scholar
d’Herelle F (1931) Bacterial mutations. Yale J Biol Med 4:55
PubMed
PubMed Central
Google Scholar
Delbrück M (1945) Interference between bacterial viruses: III. The mutual exclusion effect and the depressor effect. J Bacteriol 50(2):151
PubMed
PubMed Central
CrossRef
Google Scholar
Dodd IB, Shearwin KE, Perkins AJ, Burr T, Hochschild A, Egan JB (2004) Cooperativity in long-range gene regulation by the λ CI repressor. Genes Dev 18:344–354
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Dussoix D, Arber W (1962) Host specificity of DNA produced by Escherichia coli: II. Control over acceptance of DNA from infecting phage λ. J Mol Biol 5:37–49
CAS
PubMed
CrossRef
Google Scholar
Ellis EL, Delbrück M (1939) The growth of bacteriophage. J Gen Physiol 22:365–384
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Elowitz MB, Leibler S (2000) A synthetic oscillatory network of transcriptional regulators. Nature 403:335
CAS
PubMed
CrossRef
Google Scholar
Endy D (2005) Foundations for engineering biology. Nature 438:449
CAS
PubMed
CrossRef
Google Scholar
Feiss M, Widner W, Miller G, Johnson G, Christiansen S (1983) Structure of the bacteriophage lambda cohesive end site: location of the sites of terminase binding (cosB) and nicking (cosN). Gene 24:207–218
CAS
PubMed
CrossRef
Google Scholar
Felix A (1956) Phage typing of Salmonella typhimurium: its place in epidemiological and epizootiological investigations. Microbiology 14:208–222
Google Scholar
Fisk RT (1942) Studies on staphylococci: I. occurrence of bacteriophage carriers among strains of Staphylococcus aureus. J Infect Dis 71:153–160
CrossRef
Google Scholar
Flaks JG, Cohen SS (1959) Virus-induced acquisition of metabolic function I. Enzymatic formation of 5-hydroxymethyldeoxycytidylate. J Biol Chem 234:1501–1506
CAS
PubMed
Google Scholar
Fokine A, Leiman PG, Shneider MM, Ahvazi B, Boeshans KM, Steven AC, Black LW, Mesyanzhinov VV, Rossmann MG (2005) Structural and functional similarities between the capsid proteins of bacteriophages T4 and HK97 point to a common ancestry. Proc Natl Acad Sci U S A 102:7163–7168
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Ghosh D, Kohli AG, Moser F, Endy D, Belcher AM (2012) Refactored M13 bacteriophage as a platform for tumor cell imaging and drug delivery. ACS Synth Biol 1:576–582
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Gildmeister E, Herzberg K (1924) Zur theorie der bakteriophagen (d’Herelle Lysine). 6. Mitteilung über das d’Herellesche phanomen. Zentr Bakteriol Parasitenk I Abt Orig 93:402–420
Google Scholar
Gill P, Jeffreys AJ, Werrett DJ (1985) Forensic application of DNA ‘fingerprints’. Nature 318:577–579
CAS
PubMed
CrossRef
Google Scholar
Gingery R, Echols H (1967) Mutants of bacteriophage lambda unable to integrate into the host chromosome. Proc Natl Acad Sci 58:1507–1514
CAS
PubMed
CrossRef
PubMed Central
Google Scholar
Gold M, Hurwitz J (1963) The enzymatic methylation of the nucleic acids. Cold Spring Harb Symp Quant Biol 28:149–156
CAS
CrossRef
Google Scholar
Guarneros G, Echols H (1970) New mutants of bacteriophage λ with a specific defect in excision from the host chromosome. J Mol Biol 47:565–574
CAS
PubMed
CrossRef
Google Scholar
Haldane JBS (1980) The origin of life. In: Goldsmith D (Ed) The quest for extraterrestrial life. University Science Books, Mill Valley, CA, p 28.
Google Scholar
Hall BD, Spiegelman S (1961) Sequence complementarity of T2-DNA and T2-specific RNA. Proc Natl Acad Sci 47:137–146
CAS
PubMed
CrossRef
PubMed Central
Google Scholar
Heidelberger C, Chaudhuri N, Danneberg P, Mooren D, Griesbach L, Duschinsky R, Schnitzer R, Pleven E, Scheiner J (1957) Fluorinated pyrimidines, a new class of tumour-inhibitory compounds. Nature 179:663–666
CAS
PubMed
CrossRef
Google Scholar
Hendrix RW, Smith MC, Burns RN, Ford ME, Hatfull GF (1999) Evolutionary relationships among diverse bacteriophages and prophages: all the world’sa phage. Proc Natl Acad Sci 96:2192–2197
CAS
PubMed
CrossRef
PubMed Central
Google Scholar
Hershey AD (1953) Nucleic acid economy in bacteria infected with bacteriophage T2. J Gen Physiol 37:1–23
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Hershey AD, Chase M (1952) Independent functions of viral protein and nucleic acid in growth of bacteriophage. J Gen Physiol 36:39–56
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Hillier K (2006) Babies and bacteria: phage typing, bacteriologists, and the birth of infection control. Bull Hist Med 80:733–761
PubMed
CrossRef
Google Scholar
Hoess RH, Ziese M, Sternberg N (1982) P1 site-specific recombination: nucleotide sequence of the recombining sites. Proc Natl Acad Sci 79:3398–3402
CAS
PubMed
CrossRef
PubMed Central
Google Scholar
Holland R, Wilkes J, Rafii F, Sutherland J, Persons C, Voorhees K, Lay J (1996) Rapid identification of intact whole bacteria based on spectral patterns using matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 10:1227–1232
CAS
PubMed
CrossRef
Google Scholar
Howell ES (2014) How many stars are in the universe? Space.com, May 31
Google Scholar
Iranzo J, Krupovic M, Koonin EV (2016) The double-stranded DNA virosphere as a modular hierarchical network of gene sharing. MBio 7:e00978–e00916
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Jackson DA, Symons RH, Berg P (1972) Biochemical method for inserting new genetic information into DNA of Simian Virus 40: circular SV40 DNA molecules containing lambda phage genes and the galactose operon of Escherichia coli. Proc Natl Acad Sci 69:2904–2909
CAS
PubMed
CrossRef
PubMed Central
Google Scholar
Jacob F, Monod J (1961) Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol 3:318–356
CAS
PubMed
CrossRef
Google Scholar
Jacob F, Wollman E (1956) Sur les processus de conjugaison et de recombinaison chez Escherichia coli. 1. Linduction par conjugaison ou induction zygotique. Ann Inst Pasteur (Paris) 91:486–510
Google Scholar
Jaschke PR, Lieberman EK, Rodriguez J, Sierra A, Endy D (2012) A fully decompressed synthetic bacteriophage øX174 genome assembled and archived in yeast. Virology 434:278–284
CAS
PubMed
CrossRef
Google Scholar
Judson HF (1979) The eighth day of creation. Touchstone Books, New York, p 550
Google Scholar
Kelly TJ, Smith HO (1970) A restriction enzyme from Hemophilus influenzae: II. Base sequence of the recognition site. J Mol Biol 51:393–409
Google Scholar
Kikuchi Y, Nash HA (1978) The bacteriophage lambda int gene product. A filter assay for genetic recombination, purification of int, and specific binding to DNA. J Biol Chem 253:7149–7157
CAS
PubMed
Google Scholar
Koch AL, Putnam FW, Evans E Jr (1952) The purine metabolism of Escherichia coli. J Biol Chem 197:105–112
CAS
PubMed
Google Scholar
Koob M, Grimes E, Szybalski W (1988) Conferring operator specificity on restriction endonucleases. Science 241:1084–1087
CAS
PubMed
CrossRef
Google Scholar
Koonin EV (2009) On the origin of cells and viruses. Ann N Y Acad Sci 1178:47–64
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Kutter E, Sulakvelidze A (2004) Bacteriophages: biology and applications. CRC Press, New York
Google Scholar
Landy A, Ruedisueli E, Robinson L, Foeller C, Ross W (1974) Digestion of deoxyribonucleic acids from bacteriophage T7, λ, and ϖ80h with site-specific nucleases from Hemophilus influenzae strain Rc and strain Rd. Biochemistry 13:2134–2142
Google Scholar
Lay JO (2001) MALDI-TOF mass spectrometry of bacteria. Mass Spectrom Rev 20:172–194
CAS
PubMed
CrossRef
Google Scholar
Lederberg S (1957) Suppression of the multiplication of heterologous bacteriophages in lysogenic bacteria. Virology 3:496–513
CAS
PubMed
CrossRef
Google Scholar
Lederberg J, Lederberg EM (1952) Replica plating and indirect selection of bacterial mutants. J Bacteriol 63:399
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Lederberg EM, Lederberg J (1953) Genetic studies of lysogenicity in Escherichia coli. Genetics 38:51
CAS
PubMed
PubMed Central
Google Scholar
Lee MH, Pascopella L, Jacobs WR, Hatfull GF (1991) Site-specific integration of mycobacteriophage L5: integration-proficient vectors for Mycobacterium smegmatis, Mycobacterium tuberculosis, and bacille Calmette-Guerin. Proc Natl Acad Sci 88:3111–3115
Google Scholar
Lenski RE (2017) What is adaptation by natural selection? Perspectives of an experimental microbiologist. PLoS Genet 13:e1006668
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Livet J, Weissman TA, Kang H, Draft RW, Lu J, Bennis RA, Sanes JR, Lichtman JW (2007) Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450:56–62
CAS
PubMed
CrossRef
Google Scholar
Loenen WA, Dryden DT, Raleigh EA, Wilson GG, Murray NE (2014) Highlights of the DNA cutters: a short history of the restriction enzymes. Nucleic Acids Res 42:3–19
CAS
PubMed
CrossRef
Google Scholar
Luria SE, Delbrück M (1943) Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28:491
CAS
PubMed
PubMed Central
Google Scholar
Luria SE, Human ML (1952) A nonhereditary, host-induced variation of bacterial viruses. J Bacteriol 64:557
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Lwoff A (1953) Lysogeny. Bacteriol Rev 17:269
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Lwoff A (1966) The prophage and I. In: Phage and the origins of molecular biology. Cold Spring Harbor Laboratory Press, New York, pp 88–99
Google Scholar
MacLeod AO, McCarty M (1944) Studies of the chemical nature of the substance inducing transformation of pneumococcal types. Induction of transformation by a deoxyribonucleic acid fraction isolated from pneumococcus type III. J Exp Med 79:137–158
PubMed
PubMed Central
CrossRef
Google Scholar
Madonna AJ, Cuyk SV, Voorhees KJ (2003) Detection of Escherichia coli using immunomagnetic separation and bacteriophage amplification coupled with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 17:257–263
CAS
PubMed
CrossRef
Google Scholar
Madonna AJ, Voorhees KJ, Rees JC (2007) Method for detection of low concentrations of a target bacterium that uses phages to infect target bacterial cells. U.S. Patent US7166425B2
Google Scholar
Manson LA (1953) The metabolism of ribonucleic acid in normal and bacteriophage infected Escherichia coli. J Bacteriol 66:703
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Mertz JE, Davis RW (1972) Cleavage of DNA by R1 restriction endonuclease generates cohesive ends. Proc Natl Acad Sci 69:3370–3374
CAS
PubMed
CrossRef
PubMed Central
Google Scholar
Meyer JR, Dobias DT, Weitz JS, Barrick JE, Quick RT, Lenski RE (2012) Repeatability and contingency in the evolution of a key innovation in phage lambda. Science 335:428–432
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Meyer JR, Dobias DT, Medina SJ, Servilio L, Gupta A, Lenski RE (2016) Ecological speciation of bacteriophage lambda in allopatry and sympatry. Science 354(6317):1301–1304. https://doi.org/10.1126/science.aai8446
CAS
CrossRef
PubMed
Google Scholar
Nei M, Tajima F (1981) DNA polymorphism detectable by restriction endonucleases. Genetics 97:145–163
CAS
PubMed
PubMed Central
Google Scholar
Nicolle P, Le Minor L, Buttiaux R, Ducrest P (1952) Phage typing of Escherichia coli isolated from cases of infantile gastroenteritis. II. Relative frequency of types in different areas and the epidemiological value of the method. Bull Acad Natl Med 136:483–485
CAS
PubMed
Google Scholar
Nkrumah LJ, Muhle RA, Moura PA, Ghosh P, Hatfull GF, Jacobs WR, Fidock DA (2006) Efficient site-specific integration in Plasmodium falciparum chromosomes mediated by mycobacteriophage Bxb1 integrase. Nat Methods 3:615–621
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Oppenheim AB, Kobiler O, Stavans J, Court DL, Adhya S (2005) Switches in bacteriophage lambda development. Annu Rev Genet 39:409–429
CAS
PubMed
CrossRef
Google Scholar
Pardee AB, Jacob F, Monod J (1959) The genetic control and cytoplasmic expression of “inducibility” in the synthesis of β-galactosidase by E. coli. J Mol Biol 1:165–178
CAS
CrossRef
Google Scholar
Pfankuch E, Kausche G (1940) Isolierung und, übermikroskopische Abbildung eines Bakteriophagen. Naturwissenschaften 28:46–46
CAS
CrossRef
Google Scholar
Pleceas P, Brandis H (1974) Rapid group and species identification of enterococci by means of tests with pooled phages. J Med Microbiol 7:529–534
CAS
PubMed
CrossRef
Google Scholar
Postic C, Shiota M, Niswender KD, Jetton TL, Chen Y, Moates JM, Shelton KD, Lindner J, Cherrington AD, Magnuson MA (1999) Dual roles for glucokinase in glucose homeostasis as determined by liver and pancreatic β cell-specific gene knock-outs using Cre recombinase. J Biol Chem 274:305–315
CAS
PubMed
CrossRef
Google Scholar
Ptashne M (1986) A genetic switch: gene control and phage lambda. Cell Press and Blackwell Scientific Publications, Cambridge, MA
Google Scholar
Ptashne M (1967) Specific binding of the lambda phage repressor to lambda DNA. Nature 214:232–234
CAS
PubMed
CrossRef
Google Scholar
Rees JC, Voorhees KJ (2005) Simultaneous detection of two bacterial pathogens using bacteriophage amplification coupled with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 19:2757–2761
CAS
PubMed
CrossRef
Google Scholar
Reyes A, Semenkovich NP, Whiteson K, Rohwer F, Gordon JI (2012) Going viral: next generation sequencing applied to human gut phage populations. Nat Rev Microbiol 10:607
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Roberts JW (1969) Termination factor for RNA synthesis. Nature 224:1168–1174
CAS
PubMed
CrossRef
Google Scholar
Roszczyk E, Goodgal S (1975) Methylase activities from Haemophilus influenzae that protect Haemophilus parainfluenzae transforming deoxyribonucleic acid from inactivation by Haemophilus influenzae endonuclease R. J Bacteriol 123:287–293
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Roy PH, Smith HO (1973) DNA methylases of Hemophilus influenzae Rd: II. Partial recognition site base sequences. J Mol Biol 81:445–459
Google Scholar
Ruska H (1940) Die Sichtbarmachung der bakteriophagen lyse im übermikroskop. Naturwissenschaften 28:45–46
CAS
CrossRef
Google Scholar
Sauer B (1987) Functional expression of the cre-lox site-specific recombination system in the yeast Saccharomyces cerevisiae. Mol Cell Biol 7:2087–2096
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Sauer B, Henderson N (1989) Cre-stimulated recombination at loxP-containing DNA sequences placed into the mammalian genome. Nucleic Acids Res 17:147–161
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Schlesinger M (1936) The Feulgen reaction of the bacteriophage substance. Nature 138:508
CrossRef
Google Scholar
Segre G (2000) The big bang and the genetic code. Nature 404:437–437
CAS
PubMed
CrossRef
Google Scholar
Seng P, Drancourt M, Gouriet F, La Scola B, Fournier P-E, Rolain JM, Raoult D (2009) Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Infect Dis 49:543–551
CAS
PubMed
CrossRef
Google Scholar
Shcheglova MK, Neidbailik IN (1968) [Experience in phage typing of Listeria]. Veterinariia 45:102–103
Google Scholar
Staley JT, Konopka A (1985) Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu Rev Microbiol 39:321–346
CAS
PubMed
CrossRef
Google Scholar
Stent GS (1968) That was the molecular biology that was. Science 160:390–395
CAS
PubMed
CrossRef
Google Scholar
Sternberg N, Hamilton D, Hoess R (1981a) Bacteriophage P1 site-specific recombination: II. Recombination between loxP and the bacterial chromosome. J Mol Biol 150:487–507
CAS
PubMed
CrossRef
Google Scholar
Sternberg N, Hamilton D, Austin S, Yarmolinsky M, Hoess R (1981b) Site-specific recombination and its role in the life cycle of bacteriophage P1. Cold Spring Harb Symp Quant Biol 45:297–309
CAS
PubMed
CrossRef
Google Scholar
Stewart G, Jassim S, Denyer SP, Newby P, Linley K, Dhir V (1998) The specific and sensitive detection of bacterial pathogens within 4 h using bacteriophage amplification. J Appl Microbiol 84:777–783
CAS
PubMed
CrossRef
Google Scholar
Temme K, Zhao D, Voigt CA (2012) Refactoring the nitrogen fixation gene cluster from Klebsiella oxytoca. Proc Natl Acad Sci 109:7085–7090
Google Scholar
Thal E, Nordberg B (1968) On the diagnostic of Bacillus anthracis with bacteriophages. Berl Munch Tierarztl Wochenschr 81:11
CAS
PubMed
Google Scholar
Thomason L, Calendar R, Ow D (2001) Gene insertion and replacement in Schizosaccharomyces pombe mediated by the Streptomyces bacteriophage fC31 site-specific recombination system. Mol Gen Genomics 265:1031–1038
Google Scholar
Upholt WB (1977) Estimation of DNA sequence divergence from comparison of restriction endonuclease digests. Nucleic Acids Res 4:1257–1266
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Volkin E, Astrachan L (1956) Phosphorus incorporation in Escherichia coli ribonucleic acid after infection with bacteriophage T2. Virology 2:149–161
CAS
PubMed
CrossRef
Google Scholar
Wallmark G, Laurell G (1951) Phage typing of Staphylococcus aureus some bacteriological and clinical observations. Acta Pathol Microbiol Scand 30:109–114
Google Scholar
Wang G, Zhu X, Hood L, Ao P (2013) From phage lambda to human cancer: endogenous molecular-cellular network hypothesis. Quant Biol 1:32–49
CAS
CrossRef
Google Scholar
Weigt M, White RA, Szurmant H, Hoch JA, Hwa T (2009) Identification of direct residue contacts in protein – protein interaction by message passing. Proc Natl Acad Sci 106:67–72
CAS
PubMed
CrossRef
Google Scholar
Weisberg RA, Landy A (1983) Site-specific recombination in phage lambda. Cold Spring Harb Monogr Arch 13:211–250
CAS
Google Scholar
Wyatt G, Cohen SS (1953) The bases of the nucleic acids of some bacterial and animal viruses: the occurrence of 5-hydroxymethylcytosine. Biochem J 55:774
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Xiao Y, Weaver DT (1997) Conditional gene targeted deletion by Cre recombinase demonstrates the requirement for the double-strand break repair Mre11 protein in murine embryonic stem cells. Nucleic Acids Res 25:2985–2991
CAS
PubMed
PubMed Central
CrossRef
Google Scholar