Skip to main content

Cure Kinetics of Epoxy/Rubber Polymer Blends

  • Reference work entry
  • First Online:
Book cover Handbook of Epoxy Blends

Abstract

During the past decades, the toughening of epoxy resins has received increasing attention because many different applications demand epoxy materials with improved mechanical properties. Different approaches have been employed to toughen the epoxy system: agents as liquid rubbers, block copolymers, core–shell particles, glass beads, epoxidized thermoplastics, hyperbranched organic, and hybrid compounds and combinations of them have been considered as toughening agents for epoxy systems. The morphology of epoxy resins and, consequently, their mechanical properties strongly depend on the cure kinetics, and in the case of soluble liquid rubbers, phase separation takes place as the polymerization proceeds. Subsequently, the evolution of size and distribution of the rubber particles in the epoxy during the curing reaction represents a critical point for the success of the effect of rubber systems in terms of mechanical improvement of neat resin system. Therefore, different methods have been studied and developed to control the cure kinetic parameters of epoxy resins, in order to develop models and control their final morphology and properties. Among them, some of the most used are those based on chemical changes such as differential scanning calorimetry (DSC) and infrared (IR) spectroscopy methods, as well as those centered on bulk property changes such as rheological and pressure–volume–temperature (PVT) methods. In this chapter, these methods are discussed and the results obtained on toughening various types of epoxy systems are compared. Moreover, the studies are extended to nanostructured systems, where the presence of the nanofiller plays a crucial role in the evolution of the reaction kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdolreza M, Siamak Z (2010) Epoxy/acrylonitrile-butadiene-styrene copolymer/clay ternary nanocomposite as impact toughened epoxy. J Polym Res 17:191–201

    Article  Google Scholar 

  • Akbari R, Beheshty MH, Shervin M (2013) Toughening of dicyandiamide-cured DGEBA-based epoxy resins by CTBN liquid rubber Iran. Polym J 22:313–324

    CAS  Google Scholar 

  • Bagheri R, Marouf BT, Pearson RA (2009) Rubber-toughened epoxies: a critical review. Polym Rev 49(3):201–225

    Article  CAS  Google Scholar 

  • Bascom WD, Hunston DL (1989) Rubber toughened plastics, vol 222, Advances in Chemistry Series. American Chemical Society, Washington, DC, p 193

    Book  Google Scholar 

  • Becker O, Simon GP, Vaiuey RJ, Halley PJ (2003) Layered silicate nanocomposites based on various high-functionality epoxy resins: the influence of an organoclay on resin cure. Polym Eng Sci 2003(43):850

    Article  Google Scholar 

  • Brown ME (1988) Introduction to thermal analysis. Chapman & Hall, London

    Book  Google Scholar 

  • Calabrese L, Valenza A (2003) The effect of a liquid CTBN rubber modifier on the thermo-kinetic parameters of an epoxy resin during a pultrusion process. Compos Sci Technol 63(6):851–860

    Article  CAS  Google Scholar 

  • Castro J, Macosko C (1982) Effects of cure, temperature and shear on rheology of epoxy systems Polym Eng Sci 28:250

    CAS  Google Scholar 

  • Chen JP, Lee YD (1995) A real time study of the phase-separation process during polymerization of rubber-modified epoxy. Polymer 36:55–65

    Article  CAS  Google Scholar 

  • Chen D, Pascault JP, Sautereau H (1993) Rubber-modified epoxies. I. Influence of presence of a low level of rubber on the polymerization. Polym Int 32:361–367

    Article  Google Scholar 

  • Cueto E, Monge R, Chinesta F, Poitou A, Alfaro I, Mackley MR (2010) Rheological modeling and forming process simulation of CNT nanocomposites. Int J Mater Form 3(2):1327–1338

    Article  Google Scholar 

  • Dealy JM, Wissburn KF (1990) Melt rheology and its role in plastic processing. Van Nostrand Reinhold, New York, p 410

    Book  Google Scholar 

  • Fischer F, Beier U, Wolff-Fabris F, Altstädt V (2011) Toughened high performance epoxy resin system for aerospace applications. Sci Eng Compos Mat 18(4):209–215

    CAS  Google Scholar 

  • Francis B, Rao VL, Jose S, Katherine BK, Ramaswamy R, Jose J, Thomas S (2006) Poly(ether ether ketone) with pendent methyl groups as a toughening agent for amine cured DGEBA epoxy resin J. Mater Sci 41:5467–5479

    Article  CAS  Google Scholar 

  • Frohlich J, Kautz H, Thomann R, Frey H, Mulhaupt R (2004) Reactive core/shell type hyperbranched blockcopolyethers as new liquid rubbers for epoxy toughening. Polymer 45:2155–2164

    Article  Google Scholar 

  • George SM, Puglia D, Kenny JM, Parameswaranpillai J, Thomas S (2012) Cure kinetics and thermal stability of micro and nanostructured thermosetting blends of epoxy resin and epoxidized styrene-block-butadiene-block-styrene triblock copolymer systems. Polym Eng Sci 52:2336–2347

    Article  CAS  Google Scholar 

  • George SM, Puglia D, Kenny JM, Causin V, Parameswaranpillai J, Thomas J (2013) Morphological and mechanical characterization of nanostructured thermosets from epoxy and styrene- block- butadiene- block- styrene triblock copolymer. Ind Eng Chem Res 52(26):9121–9129

    Article  CAS  Google Scholar 

  • George SM, Puglia D, Kenny JM, Parameswaranpillai J, Thomas S (2014) Reaction induced viscoelastic phase separation and thermo-mechanical properties in epoxidised styrene- block- butadiene- block- styrene triblock copolymer modified epoxy-DDM system. Ind Eng Chem Res 53(17):6941–6950

    Article  CAS  Google Scholar 

  • George SM, Puglia D, Kenny JM, Parameswaranpillai J, Vijayan PP, Pionteck J, Thomas S (2015) Volume shrinkage and rheological studies of epoxidised and unepoxidised poly(styrene-block-butadiene-block-styrene) triblock copolymer modified epoxy resin-diamino diphenyl methane nanostructured blend systems. Phys Chem Chem Phys 17(19):12760–12770

    Article  CAS  Google Scholar 

  • Girard-Reydet E, Pascault JP, Bonner A, Court F, Leibler L (2003) A new class of epoxy thermosets. Macromol Symp 198:309–322

    Article  CAS  Google Scholar 

  • Gleiter H (2000) Nanostructured materials: basic concepts and microstructure. Acta Mater 48:1–29

    Article  CAS  Google Scholar 

  • Hale A, Garcia M, Macosko C, Manzione L (1989) DSC and C13-NMR studies of the imidazole-accelerated reaction between epoxides and phenols society of plastics engineers annual proceedings ANTEC, p796

    Google Scholar 

  • Halley PJ (2012) Rheology of thermosets: the use of chemorheology to characterise and model thermoset flow behaviour. In: Guo Q (ed) Thermosets structure, properties and applications. Woodhead Publishing Limited, New Delhi, India

    Google Scholar 

  • Halley PJ, MacKay ME (1996) Chemorheology of thermosets – an overview. Polym Eng Sci 36:593–609

    Article  CAS  Google Scholar 

  • Heise MS, Martin GC (1990) Gelation in thermosets formed by chain addition polymerization. Polym Eng Sci 30:83–89

    Article  CAS  Google Scholar 

  • Henton DE, Pickelman DM, Arends CB, Meyer VE US Patent 4,778,851, 1988

    Google Scholar 

  • Hesekamp D, Broecker HC, Pahl MH (1998) Chemorheology of cross-linking polymers. Chem Eng Technol 21:149–153

    Article  CAS  Google Scholar 

  • Hsich HSY (1990) Thermodynamically reversible and irreversible control on morphology of multiphase systems. J Mater Sci 25:1568–1584

    Article  CAS  Google Scholar 

  • Ivankovic M, Incarnato L, Kenny JM, Nicolais L (2003) Curing kinetics and chemorheology of epoxy/anhydride system. J Appl Polym Sci 90:3012–3019

    Article  CAS  Google Scholar 

  • Jose J, Joseph K, Pionteck J, Thomas S (2008) PVT behavior of thermoplastic poly(styrene-co-acrylonitrile)-modified epoxy systems: relating polymerization-induced viscoelastic phase separation with the cure shrinkage performance. J Phys Chem B 112:14793

    Article  CAS  Google Scholar 

  • Jyotishkumar P, Koetz J, Tiersch B, Strehmel V, Özdilek C, Moldenaers P, Hässler R, Thomas S (2009) Complex phase separation in poly(acrylonitrile-butadiene-styrene)-modified epoxy/4,4′-diaminodiphenyl sulfone blends: generation of new micro- and nanosubstructures. J Phys Chem B 113:5418–5430

    Article  CAS  Google Scholar 

  • Jyotishkumar P, Özdilek C, Moldenaers P, Sinturel C, Janke A, Pionteck J, Thomas S (2010) Dynamics of phase separation in poly(acrylonitrile-butadiene-styrene)-modified epoxy/DDS system: kinetics and viscoelastic effects. Phys Chem B 114:13271–13281

    Article  CAS  Google Scholar 

  • Jyotishkumar P, Pionteck J, Hasler R, George S, Cvelbar U, Thomas S (2011) Studies on stress relaxation and thermomechanical properties of poly(acrylonitrile-butadiene-styrene) modified epoxy – amine systems. Ind Eng Chem Res 50:4432–4440

    Article  CAS  Google Scholar 

  • Kamal MR (1974) Thermoset characterization for moldability analysis. Polym Eng Sci 14:231–239

    Article  Google Scholar 

  • Kargarzadeh H, Ahmad I, Abdullah I, Thomas R, Dufresne A, Thomas S, Hassan A (2015) Functionalized liquid natural rubber and liquid epoxidized natural rubber: a promising green toughening agent for polyester. J Appl Polym Sci 132:41292

    Article  Google Scholar 

  • Kenny JM (1994) Determination of autocatalytic kinetic model parameters describing thermoset cure. J Appl Polym Sci 51:761–764

    Article  CAS  Google Scholar 

  • Kim SC, Ko MB, Jo WK (1995) The effect of the viscosity of epoxy prepolymer on the generated morphology in rubber-toughened epoxy resin. Polymer 36:2189–2195

    Article  CAS  Google Scholar 

  • Kim SW, Lu MG, Shim MJ (1998) The isothermal cure kinetic of epoxy/amine system analyzed by phase change theory. Polymer 30:90–94

    Article  CAS  Google Scholar 

  • Kissinger HE (1957) Reaction kinetics in differential thermal analysis. Anal Chem 29:1702–1706

    Article  CAS  Google Scholar 

  • Klug JH, Seferis JC (1999) Phase separation influence on the performance of CTBN-toughened epoxy adhesives. Polym Eng Sci 39:1837–1848

    Article  CAS  Google Scholar 

  • Kong J, Tang Y, Zhang X, Gu J (2008) Synergic effect of acrylate liquid rubber and bisphenol A on toughness of epoxy resins. Polym Bull 60:229–236

    Article  CAS  Google Scholar 

  • Lionetto L, Maffezzoli A (2013) Monitoring the cure state of thermosetting resins by ultrasound. Materials 6:3783–3804

    Article  CAS  Google Scholar 

  • Mijovic J, Lee CH (1989) Modeling of chemorheology of thermoset cure by modified WLF equation. J Appl Polym Sci 37:889–900

    Article  CAS  Google Scholar 

  • Montserrat S, Roman F, Hutchinson JM, Campos L (2008) Analysis of the cure of epoxy based layered silicate nanocomposites: reaction kinetics and nanostructure development. J Appl Polym Sci 108:923–938

    Article  CAS  Google Scholar 

  • Morancho JM, Salla JM (1999) Relaxation in partially cured samples of an epoxy resin and of the same resin modified with a carboxyl-terminated rubber. Polymer 40(10):2821–2828

    Article  CAS  Google Scholar 

  • Nguyen L (1993) Reactive flow simulation in transfer molding of ic packages Proceedings from the 43rd IEEE Electronic Component and Technology Conference. Buena Vista, FL, USA,1

    Google Scholar 

  • Ni Y, Zheng S (2007) Nanostructured thermosets from epoxy resin and an organic-inorganic amphiphile. Macromolecules 40:7009–7018

    Article  CAS  Google Scholar 

  • Ozawa T (1970) Kinetic analysis of derivative curves in thermal analysis. J Therm Anal 2:301–324

    Article  CAS  Google Scholar 

  • Ozturk A, Kaynak C, Tincer T (2001) Effects of liquid rubber modification on the behaviour of epoxy resin European. Polym J 37(12):2353–2363

    CAS  Google Scholar 

  • Pahl M, Hesekamp D (1993) Modified cox merz rule Appl Rheol, 70–77

    Google Scholar 

  • Palomo B, Habas-Ulloa A, Pignolet P, Quentin N, Fellmann D, Habas JP (2013) Rheological and thermal study of the curing process of a cycloaliphatic epoxy resin: application to the optimization of the ultimate thermomechanical and electrical properties. J Phys D: Appl Phys 46:6

    Article  Google Scholar 

  • Pearson RA, Yee AF (1986) Toughening mechanisms in elastomer-modified epoxies. J Mater Sci 21:2475–2488

    Article  CAS  Google Scholar 

  • Peters G, Spoelstra A, Meuwissen M, Corbey R, Meijer H (1993) Rheology and rheomerty for highly filled reactive materials. In: Dijksman J., Nieuwstadt FTM (eds) Topics in Applied Mechanics. The Netherlands: Kluwer Academic Publishers

    Google Scholar 

  • Prime RB (1981) In: Turi EA (ed) Thermal characterization of polymeric materials. Academic, New York, pp 435–569

    Chapter  Google Scholar 

  • Pucciariello R, Villani V, Bianchi N, Braglia R (1991) Relationship between gelation and morphology of rubber-modified epoxy resins. Polym Int 26:69–73

    Article  CAS  Google Scholar 

  • Qian JY, Pearson RA, Domonie VL, Shaffer OL, El-Aasser MS (1997) The role of dispersed phase morphology on toughening of epoxies. Polymer 38:21–30

    Article  CAS  Google Scholar 

  • Ramos VD, da Costa HM, Soares VLP, Nascimento RSV (2005) Modification of epoxy resin: a comparison of different types of elastomer. Polym Test Polym Test 24(3):387–394

    Article  CAS  Google Scholar 

  • Ratna D, Banthia AK (2004) Rubber toughened epoxy. Macromol Res 12(1):11–21

    Article  CAS  Google Scholar 

  • Riccardi C, Vazquez A (1989) Tube flow of a particulate-filled thermosetting polymer Polym Eng Sci 29:120–126

    Google Scholar 

  • Romano AM, Garbassi F, Braglia R (1994) Rubber- and thermoplastic-toughened epoxy adhesive films. J Appl Polym Sci 52:1775–1783

    Article  CAS  Google Scholar 

  • Romo-Uribe A, Arcos-Casarrubias JA, Flores A, Valerio-Cárdenas C, González AE (2014) Influence of rubber on the curing kinetics of DGEBA epoxy and the effect on the morphology and hardness of the composites. Polym Bull 71(5):1241–1262

    Article  CAS  Google Scholar 

  • Rudin A, Choi P (2012) Introductory Concepts and Definitions, in Elements of Polymer Science & Engineering (Third Edition), Ed. Rudin, Academic Press, Elsevier, 1–62

    Google Scholar 

  • Ruseckaite RA, Hu L, Riccardi CC, Williams RJJ (1993) Castor-oil-modified epoxy resins as model systems of rubber-modified thermosets. 2: influence of cure conditions on morphologies generated. Polym Int 30:287–295

    Article  CAS  Google Scholar 

  • Russell B, Chartoff R (2005) The influence of cure conditions on the morphology and phase distribution in a rubber-modified epoxy resin using scanning electron microscopy and atomic force microscopy. Polymer 46:785–798

    Article  CAS  Google Scholar 

  • Saad GR, Naguib HF, Elmenyawy SA (2013) Effect of organically modified montmorillonite filler on the dynamic cure kinetics, thermal stability, and mechanical properties of brominated epoxy/aniline formaldehyde condensates system. J Therm Anal Calorim 111:1409–1417

    Article  CAS  Google Scholar 

  • Sue HJ, Garcia-Meitin E, Pickelman MM, Yang PC (1993) In: Riew CK, Kinloeb AJ (Eds) “Toughened Plastics 1” ACS Series 233, Washington, DC., p 259

    Google Scholar 

  • Thomas R, Durix S, Sinturel C, Omonov T, Goossens S, Groeninckx G, Moldenaers P, Thomas S (2007) Cure kinetics, morphology and miscibility of modified DGEBA-based epoxy resin – effects of a liquid rubber inclusion. Polymer 48(6):1695–1710

    Article  CAS  Google Scholar 

  • Thomas R, Yumei D, Yuelong H, Le Y, Moldenaers P, Weimin Y, Czigany T, Thomas S (2008) Miscibility, morphology, thermal, and mechanical properties of a DGEBA based epoxy resin toughened with a liquid rubber. Polymer 49:278–294

    Article  Google Scholar 

  • Thomas R, Sinturel C, Pionteck J, Puliyalil H, Thomas S (2012) In-situ cure and cure kinetic analysis of a liquid rubber modified epoxy resin. Ind Eng Chem Res 51(38):12178–12191

    CAS  Google Scholar 

  • Ton-That MT, Ngo TD, Ding P, Fang G, Cole KC, Hoa SV (2004) Epoxy nanocomposites: analysis and kinetics of cure. Polym Eng Sci 44:1132–1141

    Article  CAS  Google Scholar 

  • Torre L, Frulloni E, Kenny JM, Manferti C, Camino G (2003) Processing and characterization of epoxy–anhydride-based intercalated nanocomposites. J Appl Polym Sci 90:2532–2539

    Article  CAS  Google Scholar 

  • Tripathi G, Srivastava D (2007) Effect of carboxyl-terminated butadiene acrylonitrile copolymer concentration on mechanical and morphological features of binary blends of nonglycidyl-type epoxy resins. Adv Polym Technol 26(4):258–271

    Article  CAS  Google Scholar 

  • Tripathi G, Srivastava D (2008) Studies on the physico-mechanical and thermal characteristics of blends of DGEBA epoxy, 3,4 epoxy cyclohexylmethyl, 3′, 4′-epoxycylohexane carboxylate and carboxyl terminated butadiene co-acrylonitrile (CTBN). Mater Sci Eng A 496:483–493

    Article  Google Scholar 

  • Tripathi G, Srivastava D (2009) Toughened cycloaliphatic epoxy resin for demanding thermal applications and surface coatings. J Appl Polym Sci 114:2769–2776

    Article  CAS  Google Scholar 

  • Turi EA (ed) (1981) Thermal characterization of polymeric materials. Academic, New York

    Google Scholar 

  • Vaia RA, Price G, Ruth PN, Nguyen HT, Lichtenhan JD (1999) Polymer/layered silicate nanocomposites as high performance ablative materials. Appl Clay Sci 15:67

    Article  CAS  Google Scholar 

  • Vazquez A, Rojas AJ, Adabbo HE, Borrajo J, Williams RJJ (1987) Rubber-modified thermosets: prediction of the particle size distribution of dispersed domains. Polymer 28:1156–1164

    Article  CAS  Google Scholar 

  • Vijayan PP, Puglia D, Jyotishkumar P, Kenny JM, Thomas S (2012) Effect of nanoclay and carboxyl-terminated (butadiene-co-acrylonitrile) (CTBN) rubber on the reaction induced phase separation and cure kinetics of an epoxy/cyclic anhydride system. Mater Sci 47:5241–5253. doi:10.1007/s10853-012-6409-z

    Article  CAS  Google Scholar 

  • Vijayan PP, Puglia D, Kenny JM, Thomas S (2013) Effect of organically modified nanoclay on the miscibility, rheology, morphology and properties of epoxy/carboxyl-terminated (butadiene-co-acrylonitrile) blend. Soft Matter 9:2899–2911

    Article  CAS  Google Scholar 

  • Vijayan PP, Pionteck J, Thomas S (2015) Volume shrinkage and cure kinetics in carboxyl-terminated poly(butadiene-co-acrylonitrile) (CTBN) modified epoxy/clay nanocomposites. J Macromol Sci A: Pure Appl Chem 52(5):2015. doi:10.1080/10601325.2015.1018805

    Article  Google Scholar 

  • Visakh PM, Thomas S, Chandra AK, Mathew AP (2013) Advances in elastomers I: blends and interpenetrating networks, Advanced structured materials, Springer-Verlag Berlin Heidelberg

    Google Scholar 

  • Wang TT, Zupko HM (1981) Phase separation behavior of rubber-modified epoxies. J Appl Polym Sci 26:2391–2401

    Article  CAS  Google Scholar 

  • Williams RJJ, Borrajo J, Adabbo HE, Rojas AJ (1984) In: Riewand CK, Gillham JK (eds) Rubber-modified thermosets resins, Advances in Chemistry Series 208. American Chemical Society, Washington, DC, p 195

    Chapter  Google Scholar 

  • Williams RJJ, Rozenberg RA, Pascault JP (1997) Polymer analysis polymer physics, advances in polymer science. Springer, Berlin, pp 95–156

    Book  Google Scholar 

  • Winter HH (1989) Gel point. In: Encyclopedia of polymer science and engineering, Supplement Volume, 2nd ed, John Wiley & Sons, Inc., New York, 349–351

    Google Scholar 

  • Winter HH, Chambon F (1986) Analysis of linear viscoelasticity of a crosslinking polymer at the gel point. J Rheol 30:367–382

    Article  CAS  Google Scholar 

  • Wise CW, Cook WD, Goodwin AA (2000) CTBN rubber phase precipitation in model epoxy resins. Polymer 41(12):4625–4633

    Article  CAS  Google Scholar 

  • Wu J, Thio YS, Bates FS (2005) Structure and properties of PBO–PEO diblock copolymer modified epoxy. J Polym Sci B: Polym Phys 43(15):1950–1965

    Article  CAS  Google Scholar 

  • Yamanaka K, Takagi Y, Inoue T (1989) Reaction-induced phase separation in rubber-modified epoxy resins. Polymer 30(10):1839–1844

    Article  CAS  Google Scholar 

  • Yingfeng Y (2014) Characterization of polymer blends: rheological studies. In: Thomas S, Grohens Y, Jyotishkumar P (eds) Characterization of polymer blends miscibility, morphology and interfaces. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany. pp 133–159

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debora Puglia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Puglia, D., Kenny, J.M. (2017). Cure Kinetics of Epoxy/Rubber Polymer Blends. In: Parameswaranpillai, J., Hameed, N., Pionteck, J., Woo, E. (eds) Handbook of Epoxy Blends. Springer, Cham. https://doi.org/10.1007/978-3-319-40043-3_8

Download citation

Publish with us

Policies and ethics