Skip to main content

Introduction to Rubber Toughened Epoxy Polymers

  • Reference work entry
  • First Online:

Abstract

Epoxy resins are a class of thermosetting polymers widely used for structural application. However, as epoxy resins are inherently brittle because of their highly cross-linked structure, a great effort has been made to improve the fracture toughness. A widely used method for this purpose is the addition of second-phase polymeric particles, and over the past decades, great success has been achieved in this area. This chapter provides a comprehensive overview of the development in rubber-toughened epoxy. First, we review the history of rubber-toughened epoxy and different kinds of rubbers used for toughening epoxy. Then, we summarize the factors affecting the toughening effect and mechanisms accounting for rubber-toughened epoxy. Finally, we discuss some new trends in this field.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bagheri R, Pearson RA (1996) Role of blend morphology in rubber-toughened polymers. J Mater Sci 31(15):3945–3954

    Article  CAS  Google Scholar 

  • Bagheri R, Marouf BT, Pearson RA (2009) Rubber-toughened epoxies: a critical review. Polym Rev 49(3):201–225

    Article  CAS  Google Scholar 

  • Baker CSL, Gelling IR, Newell R (1985) Epoxidized natural rubber. Rubber Chem Technol 58(1):67–85

    Article  CAS  Google Scholar 

  • Barcia FL, Abrahao MA, Soares BG (2002) Modification of epoxy resin by isocyanate-terminated polybutadiene. J Appl Polym Sci 83(4):838–849

    Article  CAS  Google Scholar 

  • Bascom WD, Hunston DL (1989) Rubber toughened plastics. American Chemical Society, Washington, DC

    Google Scholar 

  • Bascom WD, Cottington RL, Jones RL et al (1975) The fracture of epoxy- and elastomer-modified epoxy polymers in bulk and as adhesives. J Appl Polym Sci 19(9):2545–2562

    Article  CAS  Google Scholar 

  • Bécu-Longuet L, Bonnet A, Pichot C et al (1999) Epoxy networks toughened by core-shell particles: influence of the particle structure and size on the rheological and mechanical properties. J Appl Polym Sci 72(6):849–858

    Article  Google Scholar 

  • Boogh A, Pettersson B, Månson J-AE (1999) Hyperbranched polymers as tougheners for epoxy resins. Polymer 40:2249–2261

    Article  CAS  Google Scholar 

  • Bucknall CB, Gilbert AH (1989) Toughening tetrafunctional epoxy resins using polyetherimide. Polymer 30(2):213–217

    Article  CAS  Google Scholar 

  • Bucknall C, Partridge I (1983) Phase separation in epoxy resins containing polyethersulphone. Polymer 24(5):639–644

    Article  CAS  Google Scholar 

  • Bucknall CB, Partridge IK (1986) Phase separation in crosslinked resins containing polymeric modifiers. Polym Eng Sci 26(1):54–62

    Article  CAS  Google Scholar 

  • Bussi P, Ishida H (1994) Composition of the continuous phase in partially miscible blends of epoxy resin and epoxidized rubber by dynamic mechanical analysis. Polymer 35(5):956–966

    Article  CAS  Google Scholar 

  • Chen TK, Jan YH (1995) Effect of matrix ductility on the fracture behavior of rubber toughened epoxy resins. Polym Eng Sci 35(9):778–785

    Article  CAS  Google Scholar 

  • Chikhi N, Fellahi S, Bakar M (2002) Modification of epoxy resin using reactive liquid (ATBN) rubber. Eur Polym J 38(2):251–264

    Article  CAS  Google Scholar 

  • Cizravi J, Subramaniam K (1999) Thermal and mechanical properties of epoxidized natural rubber modified epoxy matrices. Polym Int 48(9):889–895

    Article  CAS  Google Scholar 

  • Day RJ, Lovell PA, Wazzan AA (2001) Toughened carbon/epoxy composites made by using core/shell particles. Compos Sci Technol 61(1):41–56

    Article  CAS  Google Scholar 

  • Dean JM, Lipic PM, Grubbs RB et al (2001) Micellar structure and mechanical properties of block copolymer-modified epoxies. J Polym Sci B 39(23):2996–3010

    Article  CAS  Google Scholar 

  • Dean JM, Grubbs RB, Saad W et al (2003a) Mechanical properties of block copolymer vesicle and micelle modified epoxies. J Polym Sci B 41(20):2444–2456

    Article  CAS  Google Scholar 

  • Dean JM, Verghese NE, Pham HQ et al (2003b) Nanostructure toughened epoxy resins. Macromolecules 36(25):9267–9270

    Article  CAS  Google Scholar 

  • Deng J, Liu X, Li C et al (2015) Synthesis and properties of a bio-based epoxy resin from 2,5-furandicarboxylic acid (FDCA). RSC Adv 5(21):15930–15939

    Article  CAS  Google Scholar 

  • Dompas D, Groeninckx G (1994) Toughening behaviour of rubber-modified thermoplastic polymers involving very small rubber particles: 1. A criterion for internal rubber cavitation. Polymer 35(22):4743–4749

    Article  CAS  Google Scholar 

  • Duseck K, Lendnicky F, Lunak S et al (1984) In rubber modified thermoset. American Chemistry Society, Washington, DC

    Google Scholar 

  • Gam KT, Miyamoto M, Nishimura R et al (2003) Fracture behavior of core-shell rubber-modified clay-epoxy nanocomposites. Polym Eng Sci 43(10):1635–1645

    Article  CAS  Google Scholar 

  • Gan S-N, Hamid ZA (1997) Partial conversion of epoxide groups to diols in epoxidized natural rubber. Polymer 38(8):1953–1956

    Article  CAS  Google Scholar 

  • Garg AC, Mai Y-W (1988) Failure mechanisms in toughened epoxy resins-a review. Compos Sci Technol 31(3):179–223

    Article  CAS  Google Scholar 

  • Giannakopoulos G, Masania K, Taylor AC (2010) Toughening of epoxy using core-shell particles. J Mater Sci 46(2):327–338

    Article  Google Scholar 

  • Gilbert AH, Bucknall CB (1991) Epoxy resin toughened with thermoplastic. Makromol Chem Macromol Symp 45(1):289–298

    Article  CAS  Google Scholar 

  • Gopala Krishnan PS, Ayyaswamy K, Nayak SK (2013) Hydroxy terminated polybutadiene: chemical modifications and applications. J Macromol Sci A 50(1):128–138

    Article  CAS  Google Scholar 

  • Grishchuk S, Sorochynska L, Vorster OC et al (2013) Structure, thermal, and mechanical properties of DDM-hardened epoxy/benzoxazine hybrids: effects of epoxy resin functionality and ETBN toughening. J Appl Polym Sci 127(6):5082–5093

    Article  CAS  Google Scholar 

  • Grubbs RB, Broz ME, Dean JM et al (2000a) Selectively epoxidized polyisoprene-polybutadiene block copolymers. Macromolecules 33(7):2308–2310

    Article  CAS  Google Scholar 

  • Grubbs RB, Dean JM, Broz ME et al (2000b) Reactive block copolymers for modification of thermosetting epoxy. Macromolecules 33(26):9522–9534

    Article  CAS  Google Scholar 

  • Grubbs RB, Dean JM, Bates FS (2001) Methacrylic block copolymers through metal-mediated living free radical polymerization for modification of thermosetting epoxy. Macromolecules 34(25):8593–8595

    Article  CAS  Google Scholar 

  • Guo Q, Dean JM, Grubbs RB et al (2003) Block copolymer modified novolac epoxy resin. J Polym Sci B 41(17):1994–2003

    Article  CAS  Google Scholar 

  • Hashim AS, Kohjiya S (1994) Curing of epoxidized natural rubber with p-phenylenediamine. J Polym Sci A Polym Chem 32(6):1149–1157

    Article  CAS  Google Scholar 

  • Hayes BS, Seferis JC (2001) Modification of thermosetting resins and composites through preformed polymer particles: a review. Polym Compos 22(4):451–467

    Article  CAS  Google Scholar 

  • Hillmyer MA, Lipic PM, Hajduk DA et al (1997) Self-assembly and polymerization of epoxy resin-amphiphilic block copolymer nanocomposites. J Am Chem Soc 119(11):2749–2750

    Article  CAS  Google Scholar 

  • Hong S-G, Chan C-K (2004) The curing behaviors of the epoxy/dicyanamide system modified with epoxidized natural rubber. Thermochem Acta 417(1):99–106

    Article  CAS  Google Scholar 

  • Iijima T, Yoshioka N, Tomoi M (1992) Effect of cross-link density on modification of epoxy resins with reactive acrylic elastomers. Eur Polym J 28(6):573–581

    Article  CAS  Google Scholar 

  • Jain S, Bates FS (2003) On the origins of morphological complexity in block copolymer surfactants. Science 300(5618):460–464

    Article  CAS  Google Scholar 

  • Jingqiang S, Yafeng Z, Jindong Q et al (2004) Core-shell particles with an acrylate polyurethane core as tougheners for epoxy resins. J Mater Sci 39(20):6383–6384

    Article  Google Scholar 

  • Karger-Kocsis J (1993) Instrumented impact fracture and related failure behavior in short- and long-glass-fiber-reinforced polypropylene. Compos Sci Technol 48(1–4):273–283

    Article  CAS  Google Scholar 

  • Kemp TJ, Wilford A, Howarth OW et al (1992) Structural and materials properties of a polysulphide-modified epoxide resin. Polymer 33(9):1860–1871

    Article  CAS  Google Scholar 

  • Kim HS, Ma P (1996) Correlation between stress-whitening and fracture toughness in rubber-modified epoxies. J Appl Polym Sci 61(4):659–662

    Article  CAS  Google Scholar 

  • Kinloch AJ, Hunston DL (1987) Effect of volume fraction of dispersed rubbery phase on the toughness of rubber-toughened epoxy polymers. J Mater Sci Lett 6(2):137–139

    Article  CAS  Google Scholar 

  • Kinloch AJ, Shaw SJ, Tod DA et al (1983) Deformation and fracture behaviour of a rubber-toughened epoxy: 1. Microstructure and fracture studies. Polymer 24(10):1341–1354

    Article  CAS  Google Scholar 

  • Kinloch AJ, Finch CA, Hashemi S (1987) Effect of segmental molecular mass between crosslinks of the matrix phase on the toughness of rubber-modified epoxies. Polym Commun 28:322–325

    CAS  Google Scholar 

  • Kozii VV, Rozenberg BA (1992) Mechanisms of energy dissipation in elastomer-modified thermosetting polymer matrics and composites based on such polymers. Polym Sci 34:919–951

    Google Scholar 

  • Kunz SC, Sayre JA, Assink RA (1982) Morphology and toughness characterization of epoxy resins modified with amine and carboxyl terminated rubbers. Polymer 23(13):1897–1906

    Article  CAS  Google Scholar 

  • Latha PB, Adhinarayanan K, Ramaswamy R (1994) Epoxidized hydroxy-terminated polybutadiene – synthesis, characterization and toughening studies. Int J Adhes Adhes 14(1):57–61

    Article  CAS  Google Scholar 

  • LeMay JD, Kelley FN (1986) Structure and ultimate properties of epoxy resins. Adv Polym Sci 78:115–148

    Article  CAS  Google Scholar 

  • Levita G, De Petris S, Marchetti A et al (1991) Crosslink density and fracture toughness of epoxy resins. J Mater Sci 26(9):2348–2352

    Article  CAS  Google Scholar 

  • Lin KF, Chung UL (1994) Phase-inversion investigations of rubber-modified epoxies by electron microscopy and X-ray diffraction. J Mater Sci 29(5):1198–1202

    Article  CAS  Google Scholar 

  • Lin K-F, Shieh Y-D (1998a) Core-shell particles to toughen epoxy resins. I. Preparation and characterization of core-shell particles. J Appl Polym Sci 69(10):2069–2078

    Article  CAS  Google Scholar 

  • Lin K-F, Shieh Y-D (1998b) Core-shell particles designed for toughening the epoxy resins. II. Core-shell-particle-toughened epoxy resins. J Appl Polym Sci 70(12):2313–2322

    Article  CAS  Google Scholar 

  • Lipic PM, Bates FS, Hillmyer MA (1998) Nanostructured thermosets from self-assembled amphiphilic block copolymer/epoxy resin mixtures. J Am Chem Soc 120(35):8963–8970

    Article  CAS  Google Scholar 

  • Liu J, Sue H-J, Thompson ZJ et al (2008) Nanocavitation in self-assembled amphiphilic block copolymer-modified epoxy. Macromolecules 41(20):7616–7624

    Article  CAS  Google Scholar 

  • Liu J, Thompson ZJ, Sue H-J et al (2010) Toughening of epoxies with block copolymer micelles of wormlike morphology. Macromolecules 43(17):7238–7243

    Article  CAS  Google Scholar 

  • Liu Y, Wang J, Xu S (2014) Synthesis and curing kinetics of cardanol-based curing agents for epoxy resin by in situ depolymerization of paraformaldehyde. J Polym Sci A Polym Chem 52(4):472–480

    Article  CAS  Google Scholar 

  • Lowe A, Kwon O-H, Mai Y-W (1996) Fatigue and fracture behaviour of novel rubber modified epoxy resins. Polymer 37(4):565–572

    Article  CAS  Google Scholar 

  • Maazouz A, Sautereau H, Gerard JF (1994) Toughening of epoxy networks using pre-formed core-shell particles or reactive rubbers. Polym Bull 33(1):67–74

    Article  CAS  Google Scholar 

  • Mafi ER, Ebrahimi M (2008) Role of core-shell rubber particle cavitation resistance on toughenability of epoxy resins. Polym Eng Sci 48(7):1376–1380

    Article  CAS  Google Scholar 

  • Mahmood N, Khan AU, Stöckelhuber KW, et al (2014) Carbon nanotubes-filled thermoplastic polyurethane-urea and carboxylated acrylonitrile butadiene rubber blend nanocomposites. J Appl Polym Sci 131(11):40341

    Google Scholar 

  • Mathew VS, Sinturel C, George SC et al (2010) Epoxy resin/liquid natural rubber system: secondary phase separation and its impact on mechanical properties. J Mater Sci 45(7):1769–1781

    Article  CAS  Google Scholar 

  • Mathew VS, George SC, Parameswaranpillai J et al (2014) Epoxidized natural rubber/epoxy blends: phase morphology and thermomechanical properties. J Appl Polym Sci 131(4):39906

    Google Scholar 

  • McGarry FJ (1970) Building design with fibre reinforced materials. Proc R Soc A: Math Phys Eng Sci 319(1536):59–68

    Article  CAS  Google Scholar 

  • Meeks AC (1974) Fracture and mechanical properties of epoxy resin and rubber-modified epoxies. Polymer 15:675–681

    Article  CAS  Google Scholar 

  • Nakamura Y, Tabata H, Suzuki H et al (1986) Internal stress of epoxy resin modified with acrylic core-shell particles prepared by seeded emulsion polymerization. J Appl Polym Sci 32(5):4865–4871

    Article  CAS  Google Scholar 

  • Nguyen-Thuc BH, Maazouz A (2002) Morphology and rheology relationships of epoxy/core-shell particle blends. Polym Eng Sci 42(1):120–133

    Article  CAS  Google Scholar 

  • Okamoto Y (1983) Thermal aging study of carboxyl-terminated polybutadiene and poly(butadiene-acrylonitrile)-reactive liquid polymers. Polym Eng Sci 23(4):222–225

    Article  CAS  Google Scholar 

  • Ozturk A, Kaynak C, Tincer T (2001) Effects of liquid rubber modification on the behaviour of epoxy resin. Eur Polym J 37(12):2353–2363

    Article  CAS  Google Scholar 

  • Pearson RA, Yee AF (1989) Toughening mechanisms in elastomer-modified epoxies. J Mater Sci 24(7):2571–2580

    Article  CAS  Google Scholar 

  • Pearson RA, Yee AF (1991) Influence of particle size and particle size distribution on toughening mechanisms in rubber-modified epoxies. J Mater Sci 26(14):3828–3844

    Article  CAS  Google Scholar 

  • Qian JY, Pearson RA, Dimonie VL et al (1995) Synthesis and application of core-shell particles as toughening agents for epoxies. J Appl Polym Sci 58(2):439–448

    Article  CAS  Google Scholar 

  • Ratna D (2009) Handbook of thermoset resins. Smithers Rapra, London

    Google Scholar 

  • Ratna D, Banthia AK (2004) Rubber toughened epoxy. Macromol Res 12(1):11–21

    Article  CAS  Google Scholar 

  • Sahoo SK, Mohanty S, Nayak SK (2014) Synthesis and characterization of bio-based epoxy blends from renewable resource based epoxidized soybean oil as reactive diluent. Chin J Polym Sci 33(1):137–152

    Article  Google Scholar 

  • Sprenger S (2013) Epoxy resins modified with elastomers and surface-modified silica nanoparticles. Polymer 54(18):4790–4797

    Article  CAS  Google Scholar 

  • Sue H-J (1991) Study of rubber-modified brittle epoxy systems. Part II: toughening mechanisms under mode-I fracture. Polym Eng Sci 31(4):275–288

    Article  CAS  Google Scholar 

  • Sue HJ, Garcia-Meitin EI, Orchard NA (1993a) Toughening of epoxies via craze-like damage. J Polym Sci B 31(5):595–608

    Article  CAS  Google Scholar 

  • Sue HJ, Garcia-Meitin EI, Pickelman DM et al (1993b) Toughened plastics. American Chemistry Society, Washington, DC

    Google Scholar 

  • Sultan JN, McGarry FJ (1973) Effect of rubber particle size on deformation mechanisms in glassy epoxy. Polym Eng Sci 13(1):29–34

    Article  CAS  Google Scholar 

  • Sultan JN, Liable RC, McGarry FJ (1971) Microstructure of two-phase polymers. Polym Symp 16:127–136

    Google Scholar 

  • Szeluga U, Kurzeja L, Galina H (2008) Curing of epoxy/novolac system modified with reactive liquid rubber and carbon filler. Polym Bull 60(4):555–567

    Article  CAS  Google Scholar 

  • Thomas R, Abraham J, Thomas PS et al (2004) Influence of carboxyl-terminated (butadiene-co-acrylonitrile) loading on the mechanical and thermal properties of cured epoxy blends. J Polym Sci B 42(13):2531–2544

    Article  CAS  Google Scholar 

  • Unnikrishnan KP, Thachil ET (2012) Toughening of epoxy resins. Des Monomers Polym 9(2):129–152

    Article  Google Scholar 

  • Verchère D, Sautereau H, Pascault JP et al (1989) Miscibility of epoxy monomers with carboxyl-terminated butadiene-acrylonitrile random copolymers. Polymer 30(1):107–115

    Article  Google Scholar 

  • Verchere D, Sautereau H, Pascault JP et al (1990) Rubber-modified epoxies. I. Influence of carboxyl-terminated butadiene-acrylonitrile random copolymers (CTBN) on the polymerization and phase separation processes. J Appl Polym Sci 41(3–4):467–485

    Article  CAS  Google Scholar 

  • Vijayan PP, Puglia D, Kenny JM et al (2013) Effect of organically modified nanoclay on the miscibility, rheology, morphology and properties of epoxy/carboxyl-terminated (butadiene-co-acrylonitrile) blend. Soft Matter 9(10):2899

    Article  CAS  Google Scholar 

  • Wang H-H, Chen J-C (1995) Toughening of epoxy resin by reacting with functional terminated-polyurethanes. J Appl Polym Sci 57(6):671–677

    Article  CAS  Google Scholar 

  • Wise CW, Cook WD, Goodwin AA (2000) CTBN rubber phase precipitation in model epoxy resins. Polymer 41(12):4625–4633

    Article  CAS  Google Scholar 

  • Wu S (1985) Phase structure and adhesion in polymer blends: a criterion for rubber toughening. Polymer 26(12):1855–1863

    Article  CAS  Google Scholar 

  • Wu S, Margolina A (1990) Reply to comments. Polymer 31(5):972–974

    Article  CAS  Google Scholar 

  • Wu J, Thio YS, Bates FS (2005) Structure and properties of PBO-PEO diblock copolymer modified epoxy. J Polym Sci B 43(15):1950–1965

    Article  CAS  Google Scholar 

  • Xu SA, Wang GT, Mai YW (2013) Effect of hybridization of liquid rubber and nanosilica particles on the morphology, mechanical properties, and fracture toughness of epoxy composites. J Mater Sci 48(9):3546–3556

    Article  CAS  Google Scholar 

  • Yahyaie H, Ebrahimi M, Tahami HV et al (2013) Toughening mechanisms of rubber modified thin film epoxy resins. Prog Org Coat 76(1):286–292

    Article  CAS  Google Scholar 

  • Yang X, Yi F, Xin Z et al (2009) Morphology and mechanical properties of nanostructured blends of epoxy resin with poly(ɛ-caprolactone) block poly(butadiene-co-acrylonitrile) block poly(ɛ-caprolactone) triblock copolymer. Polymer 50(16):4089–4100

    Article  CAS  Google Scholar 

  • Yee AF, Pearson RA (1986) Toughening mechanisms in elastomer-modified epoxies, part 1 mechanical studies. J Mater Sci 21:2462–2474

    Article  CAS  Google Scholar 

  • Yee AF, Du J, Thouless MD (2000) Polymer blends. Wiley, New York

    Google Scholar 

  • Zhou H-S, Song X-X, Xu S-A (2014) Mechanical and thermal properties of novel rubber-toughened epoxy blend prepared byin situpre-crosslinking. J Appl Polym Sci 131(22):41110

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Ai Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Xu, SA., Song, XX. (2017). Introduction to Rubber Toughened Epoxy Polymers. In: Parameswaranpillai, J., Hameed, N., Pionteck, J., Woo, E. (eds) Handbook of Epoxy Blends. Springer, Cham. https://doi.org/10.1007/978-3-319-40043-3_1

Download citation

Publish with us

Policies and ethics