Skip to main content

The Barker Hypothesis

  • Living reference work entry
  • First Online:
Handbook of Famine, Starvation, and Nutrient Deprivation

Abstract

The Barker hypothesis proposed that adverse nutrition in early life, including prenatally as measured by birth weight, increased susceptibility to the metabolic syndrome which includes obesity, diabetes, insulin insensitivity, hypertension, and hyperlipidemia and complications that include coronary heart disease and stroke. Periods of rapid postnatal growth associated with high-energy intake seem to be risk factors, along with a high-energy western diet. Theories proposing the mechanism of this association include the thrifty gene , bet-hedging , fetal predictive adaptive response , and drifty phenotype hypotheses. The cause of metabolic syndrome is likely to be multifactorial, with many nuclear DNA and cellular RNA sequences acting in concert with environmental influences. Epidemiological data in humans and experimental data indicate that transgenerational epigenetic inheritance is a possible mechanism where a history of starvation or deprivation during early life is seen in a grandparent and transgenerational effects are seen in their grandchildren. It remains to be seen whether this is mediated by heritable RNA sequences, or by acquired, possibly mosaic mutations in DNA coding for example for regulatory RNAs. Recent research has raised the possibility that the nature and quantity of gastrointestinal microorganisms (microbiota ) can be modified by diet and conversely can modify an animal’s metabolic program. As the microbiota is inherited largely from the mother, modification of her nutrition, health before and during pregnancy, and mode of delivery could influence the child’s microbiota, introducing further potential avenues to improve the prevention, reduction of complications, and treatment of malnutrition and metabolic syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

siRNA Small or short interfering RNA:

targets messenger RNA (mRNA) of specific sequence for inactivation or degradation

miRNA MicroRNA:

small noncoding RNA 22 nucleotides long which regulates gene expression by targeting mRNA

XIST X-inactive specific transcript:

a gene located on the X chromosome that encodes RNA, which inactivates the same X chromosome

References

  • Ahmadian M, Suh JM, Hah N, Liddle C, Atkins AR, Downes M, Evans RM (2013) PPARgamma signaling and metabolism: the good, the bad and the future. Nat Med 19(5):557–566

    Article  CAS  PubMed  Google Scholar 

  • Ardissone AN, de la Cruz DM, Davis-Richardson AG, Rechcigl KT, Li N, Drew JC, Murgas-Torrazza R, Sharma R, Hudak ML, Triplett EW, Neu J (2014) Meconium microbiome analysis identifies bacteria correlated with premature birth. PLoS One 9(3):e90784

    Article  PubMed  PubMed Central  Google Scholar 

  • Barker DJ (2002) Fetal programming of coronary heart disease. Trends Endocrinol Metab 13(9):364–368

    Article  CAS  PubMed  Google Scholar 

  • Bateson P (2001) Fetal experience and good adult design. Int J Epidemiol 30(5):928–934

    Article  CAS  PubMed  Google Scholar 

  • Bo S, Cavallo-Perin P, Scaglione L, Ciccone G, Pagano G (2000) Low birthweight and metabolic abnormalities in twins with increased susceptibility to Type 2 diabetes mellitus. Diabet Med 17(5):365–370

    Article  CAS  PubMed  Google Scholar 

  • Brunet A, Berger SL (2014) Epigenetics of aging and aging-related disease. J Gerontol A Biol Sci Med Sci 69(Suppl 1):S17–S20

    Article  PubMed  PubMed Central  Google Scholar 

  • Constancia M, Hemberger M, Hughes J, Dean W, Ferguson-Smith A, Fundele R, Stewart F, Kelsey G, Fowden A, Sibley C, Reik W (2002) Placental-specific IGF-II is a major modulator of placental and fetal growth. Nature 417(6892):945–948

    Article  CAS  PubMed  Google Scholar 

  • Diamond J (2003) The double puzzle of diabetes. Nature 423(6940):599–602

    Article  CAS  PubMed  Google Scholar 

  • Dolinoy DC, Weidman JR, Waterland RA, Jirtle RL (2006) Maternal genistein alters coat color and protects Avy mouse offspring from obesity by modifying the fetal epigenome. Environ Health Perspect 114(4):567–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dolinoy DC, Huang D, Jirtle RL (2007) Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development. Proc Natl Acad Sci USA 104(32):13056–13061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dowse GK, Zimmet PZ, Finch CF, Collins VR (1991) Decline in incidence of epidemic glucose intolerance in Nauruans: implications for the “thrifty genotype”. Am J Epidemiol 133(11):1093–1104

    Article  CAS  PubMed  Google Scholar 

  • Edwards MJ (2012) Genetic selection of embryos that later develop the metabolic syndrome. Med Hypotheses 78(5):621–625

    Article  CAS  PubMed  Google Scholar 

  • Ellis PJ, Morris TJ, Skinner BM, Sargent CA, Vickers MH, Gluckman PD, Gilmour S, Affara NA (2014) Thrifty metabolic programming in rats is induced by both maternal undernutrition and postnatal leptin treatment, but masked in the presence of both: implications for models of developmental programming. BMC Genomics 15:49

    Article  PubMed  PubMed Central  Google Scholar 

  • Fahrner JA, Bjornsson HT (2014) Mendelian disorders of the epigenetic machinery: tipping the balance of chromatin states. Annu Rev Genomics Hum Genet 15:269–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forsdahl A (1977) Are poor living conditions in childhood and adolescence an important risk factor for arteriosclerotic heart disease? Br J Prev Soc Med 31(2):91–95

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frost M, Petersen I, Brixen K, Beck-Nielsen H, Holst JJ, Christiansen L, Hojlund K, Christensen K (2012) Adult glucose metabolism in extremely birthweight-discordant monozygotic twins. Diabetologia 55(12):3204–3212

    Article  CAS  PubMed  Google Scholar 

  • Gillman MW (2005) Developmental origins of health and disease. N Engl J Med 353(17):1848–1850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gluckman PD, Hanson MA (2004) The developmental origins of the metabolic syndrome. Trends Endocrinol Metab 15(4):183–187

    Article  CAS  PubMed  Google Scholar 

  • Hales CN, Barker DJ (1992) Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia 35(7):595–601

    Article  CAS  PubMed  Google Scholar 

  • Hall JG (1996) Twinning: mechanisms and genetic implications. Curr Opin Genet Dev 6(3):343–347

    Article  CAS  PubMed  Google Scholar 

  • Hattersley AT, Beards F, Ballantyne E, Appleton M, Harvey R, Ellard S (1998) Mutations in the glucokinase gene of the fetus result in reduced birth weight. Nat Genet 19(3):268–270

    Article  CAS  PubMed  Google Scholar 

  • Houri-Zeevi L, Rechavi O (2017) A matter of time: small RNAs regulate the duration of epigenetic inheritance. Trends Genet 33(1):46–57

    Article  CAS  PubMed  Google Scholar 

  • Hulshoff Pol HE, Hoek HW, Susser E, Brown AS, Dingemans A, Schnack HG, van Haren NE, Pereira Ramos LM, Gispen-de Wied CC, Kahn RS (2000) Prenatal exposure to famine and brain morphology in schizophrenia. Am J Psychiatry 157(7):1170–1172

    Article  CAS  PubMed  Google Scholar 

  • Iliadou A, Cnattingius S, Lichtenstein P (2004) Low birthweight and Type 2 diabetes: a study on 11 162 Swedish twins. Int J Epidemiol 33(5):948–953. discussion 953–944

    Article  CAS  PubMed  Google Scholar 

  • Issa JP (2003) Age-related epigenetic changes and the immune system. Clin Immunol 109(1):103–108

    Article  CAS  PubMed  Google Scholar 

  • Jimenez-Chillaron JC, Nijland MJ, Ascensao AA, Sardao VA, Magalhaes J, Hitchler MJ, Domann FE, Oliveira PJ (2015) Back to the future: transgenerational transmission of xenobiotic-induced epigenetic remodeling. Epigenetics 10(4):259–273

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones JH (2005) Fetal programming: adaptive life-history tactics or making the best of a bad start? Am J Hum Biol 17(1):22–33

    Article  PubMed  Google Scholar 

  • Jones PA, Laird PW (1999) Cancer epigenetics comes of age. Nat Genet 21(2):163–167

    Article  CAS  PubMed  Google Scholar 

  • Kaati G, Bygren LO, Edvinsson S (2002) Cardiovascular and diabetes mortality determined by nutrition during parents’ and grandparents’ slow growth period. Eur J Hum Genet 10(11):682–688

    Article  CAS  PubMed  Google Scholar 

  • Khambalia A, Phongsavan P, Smith BJ, Keke K, Dan L, Fitzhardinge A, Bauman AE (2011) Prevalence and risk factors of diabetes and impaired fasting glucose in Nauru. BMC Public Health 11:719

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuzawa C (2008) The developmental origins of adult health: intergenerational inertia in adaptation and disease. In: Trevathan W, Smith EO, McKenna JJ (eds) Evolutionary medicine and health : new perspectives. Oxford University Press, New York

    Google Scholar 

  • Lewis MW, Brant JO, Kramer JM, Moss JI, Yang TP, Hansen PJ, Williams RS, Resnick JL (2015) Angelman syndrome imprinting center encodes a transcriptional promoter. Proc Natl Acad Sci USA 112(22):6871–6875

    Article  CAS  PubMed  Google Scholar 

  • Mueller NT, Mao G, Bennet WL, Hourigan SK, Dominguez-Bello MG, Appel LJ, Wang X (2017) Does vaginal delivery mitigate or strengthen the intergenerational association of overweight and obesity? Findings from the Boston Birth Cohort. Int J Obes 41(4):497–501

    Article  CAS  Google Scholar 

  • Neel JV (1962) Diabetes mellitus: a “thrifty” genotype rendered detrimental by “progress”? Am J Hum Genet 14:353–362

    CAS  PubMed  PubMed Central  Google Scholar 

  • Neel JV (1989) The study of natural selection in primitive and civilized human populations. 1958. Hum Biol 61(5–6):781–810. discussion 811–723

    CAS  PubMed  Google Scholar 

  • Negri I, Jablonka E (2016) Editorial: epigenetics as a deep intimate dialogue between host and symbionts. Front Genet 7:7

    Article  PubMed  PubMed Central  Google Scholar 

  • Okamoto I, Patrat C, Thepot D, Peynot N, Fauque P, Daniel N, Diabangouaya P, Wolf JP, Renard JP, Duranthon V, Heard E (2011) Eutherian mammals use diverse strategies to initiate X-chromosome inactivation during development. Nature 472(7343):370–374

    Article  CAS  PubMed  Google Scholar 

  • Osmanovic D, Kessler D, Rabin Y, Soen Y (2016) Darwinian selection induces Lamarckian adaptation in a holobiont model. From arXiv:1612.03567 [q-bio.PE]

    Google Scholar 

  • Pembrey ME, Bygren LO, Kaati G, Edvinsson S, Northstone K, Sjostrom M, Golding J (2006) Sex-specific, male-line transgenerational responses in humans. Eur J Hum Genet 14(2):159–166

    Article  PubMed  Google Scholar 

  • Pembrey M, Saffery R, Bygren LO, Carstensen J, Edvinsson S, Faresjo T, Franks P, Gustafsson JA, Kaati G, Lindahl BIB, Ludvigsson J, Lumey LH, Modin B, Nilsson H, Sjostrom M, Tinghog P, Vagero D (2014) Human transgenerational responses to early-life experience: potential impact on development, health and biomedical research. J Med Genet 51(9):590–595

    Article  Google Scholar 

  • Petersen I, Nielsen MM, Beck-Nielsen H, Christensen K (2011) No evidence of a higher 10 year period prevalence of diabetes among 77,885 twins compared with 215,264 singletons from the Danish birth cohorts 1910–1989. Diabetologia 54(8):2016–2024

    Article  CAS  PubMed  Google Scholar 

  • Prentice AM, Hennig BJ, Fulford AJ (2008) Evolutionary origins of the obesity epidemic: natural selection of thrifty genes or genetic drift following predation release? Int J Obes 32(11):1607–1610

    Article  CAS  Google Scholar 

  • Ravelli GP, Stein ZA, Susser MW (1976) Obesity in young men after famine exposure in utero and early infancy. N Engl J Med 295(7):349–353

    Article  CAS  PubMed  Google Scholar 

  • Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, Griffin NW, Lombard V, Henrissat B, Bain JR, Muehlbauer MJ, Ilkayeva O, Semenkovich CF, Funai K, Hayashi DK, Lyle BJ, Martini MC, Ursell LK, Clemente JC, Van Treuren W, Walters WA, Knight R, Newgard CB, Heath AC, Gordon JI (2013) Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341(6150):1241214

    Article  PubMed  Google Scholar 

  • de Rooij SR, Wouters H, Yonker JE, Painter RC, Roseboom TJ (2010) Prenatal undernutrition and cognitive function in late adulthood. Proc Natl Acad Sci USA 107(39):16881–16886

    Article  PubMed  PubMed Central  Google Scholar 

  • Roseboom T, de Rooij S, Painter R (2006) The Dutch famine and its long-term consequences for adult health. Early Hum Dev 82(8):485–491

    Article  PubMed  Google Scholar 

  • Roy A, Jana M, Corbett GT, Ramaswamy S, Kordower JH, Gonzalez FJ, Pahan K (2013) Regulation of cyclic AMP response element binding and hippocampal plasticity-related genes by peroxisome proliferator-activated receptor alpha. Cell Rep 4(4):724–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaffer WM (1974) Optimal reproductive effort in fluctuating environments. Am Nat 108(964):783–790

    Article  Google Scholar 

  • Speakman JR (2008) Thrifty genes for obesity, an attractive but flawed idea, and an alternative perspective: the ‘drifty gene’ hypothesis. Int J Obes 32(11):1611–1617

    Article  CAS  Google Scholar 

  • St Clair D, Xu M, Wang P, Yu Y, Fang Y, Zhang F, Zheng X, Gu N, Feng G, Sham P, He L (2005) Rates of adult schizophrenia following prenatal exposure to the Chinese famine of 1959–1961. JAMA 294(5):557–562

    Article  CAS  PubMed  Google Scholar 

  • Stanner SA, Yudkin JS (2001) Fetal programming and the Leningrad Siege study. Twin Res 4(5):287–292

    Article  CAS  PubMed  Google Scholar 

  • Stein Z (1975) Famine and human development: the Dutch Hunger Winter of 1944–45. Oxford University Press, Oxford

    Google Scholar 

  • Stinson LF, Payne MS, Keelan JA (2017) Planting the seed: origins, composition, and postnatal health significance of the fetal gastrointestinal microbiota. Crit Rev Microbiol 43(3):352–369

    Article  CAS  PubMed  Google Scholar 

  • Stoger R (2008) The thrifty epigenotype: an acquired and heritable predisposition for obesity and diabetes? Bioessays 30(2):156–166

    Article  PubMed  Google Scholar 

  • Tan Q, Frost M, Heijmans BT, von Bornemann Hjelmborg J, Tobi EW, Christensen K, Christiansen L (2014) Epigenetic signature of birth weight discordance in adult twins. BMC Genomics 15:1062

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomson JP, Moggs JG, Wolf CR, Meehan RR (2014) Epigenetic profiles as defined signatures of xenobiotic exposure. Mutat Res Genet Toxicol Environ Mutagen 764–765:3–9

    Article  PubMed  Google Scholar 

  • Varga O, Harangi M, Olsson IA, Hansen AK (2010) Contribution of animal models to the understanding of the metabolic syndrome: a systematic overview. Obes Rev: Off J Int Assoc Study Obes 11(11):792–807

    Article  CAS  Google Scholar 

  • Ventura-Junca P, Irarrazaval I, Rolle AJ, Gutierrez JI, Moreno RD, Santos MJ (2015) In vitro fertilization (IVF) in mammals: epigenetic and developmental alterations. Scientific and bioethical implications for IVF in humans. Biol Res 48:68

    Article  PubMed  PubMed Central  Google Scholar 

  • Victora CG, Adair L, Fall C, Hallal PC, Martorell R, Richter L, Sachdev HS, Maternal and Child Undernutrition Study (2008) Maternal and child undernutrition: consequences for adult health and human capital. Lancet 371(9609):340–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wannamethee SG, Lawlor DA, Whincup PH, Walker M, Ebrahim S, Davey-Smith G (2004) Birthweight of offspring and paternal insulin resistance and paternal diabetes in late adulthood: cross sectional survey. Diabetologia 47(1):12–18

    Article  CAS  PubMed  Google Scholar 

  • Weksberg R, Shuman C, Beckwith JB (2010) Beckwith-Wiedemann syndrome. Eur J Hum Genet 18(1):8–14

    Article  PubMed  Google Scholar 

  • Wells JC (2003) The thrifty phenotype hypothesis: thrifty offspring or thrifty mother? J Theor Biol 221(1):143–161

    Article  PubMed  Google Scholar 

  • Wells JC (2009) Thrift: a guide to thrifty genes, thrifty phenotypes and thrifty norms. Int J Obes 33(12):1331–1338

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Edwards .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Edwards, M. (2017). The Barker Hypothesis. In: Preedy, V., Patel, V. (eds) Handbook of Famine, Starvation, and Nutrient Deprivation. Springer, Cham. https://doi.org/10.1007/978-3-319-40007-5_71-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40007-5_71-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40007-5

  • Online ISBN: 978-3-319-40007-5

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics