Skip to main content

Influences of Prolonged Fasting on Behavioral and Brain Patterns

  • Living reference work entry
  • First Online:
Handbook of Famine, Starvation, and Nutrient Deprivation

Abstract

Brain functioning requires glucose utilization; however, glucose is a limited resource for the organism, by depending mainly on our food consumption. Prolonged fasting can inevitably reduce the amount of glucose necessary to maintain neuronal activities and therefore, can negatively affect cognitive processes. To date, fasting for esthetical reasons or for unhealthy habits are the common behaviors that lead to low blood glucose levels; however, their effects on brain functioning, such as memory processes, attention levels, and self-control are still poorly investigated. The present work wants to summarize some of the most recent evidences on prolonged fasting effects on brain functioning and attempts to integrate these evidences in a recent model of self-regulation. Additionally, the consequences of low blood glucose levels on neuronal activities (fMRI) are described and discussed from the practical and clinical point of view. Overall, prolonged fasting and subsequent low blood glucose levels seem to decrease self-regulation abilities and negatively affect the attentional system. These results suggest that glucose levels need to be taken in account in fMRI protocols and monitored in circumstances where brain functioning is already compromised, such as in dementia and psychiatric conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ATP:

Adenosin triphosphate

BGL:

Blood glucose levels

BOLD:

Blood-oxygenation level dependent

CBF:

Cerebral blood flow

CBV:

Cerebral blood volume

CMRglu:

Cerebral glucose consumption

CMRO2:

Cerebral metabolic rate of oxygen

CPT:

Continuous performance test

DMN:

Default mode network

fMRI:

Functional magnetic resonance imaging

HRF:

Hemodynamic response function

ICA:

Independent component analysis

pACC:

Pregenual anterior cingulate cortex

PCC:

Posterior cingulate cortex

PET:

Positron emission tomography

V1:

Primary visual cortex

References

  • Anderson AW, Heptulla RA, Driesenet N et al (2006) Effects of hypoglycemia on human brain activation measured with fMRI. Magn Reson Imaging 24(6):693–697

    Article  CAS  PubMed  Google Scholar 

  • Beck LH, Bransome ED, Mirsky AF Jr et al (1956) A continuous performance test of brain damage. J Consult Psychol 20(5):343–350

    Article  CAS  PubMed  Google Scholar 

  • Beckmann CF, Smith SM (2004) Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Trans Med Imaging 23(2):137–152

    Article  PubMed  Google Scholar 

  • Beedie CJ, Lane AM (2012) The role of glucose in self-control: another look at the evidence and an alternative conceptualization. Pers Soc Psychol Rev 16(2):143–153

    Article  PubMed  Google Scholar 

  • Ben-Ami H, Nagachandran P, Mendelson A et al (1999) Drug-induced hypoglycemic coma in 102 diabetic patients. Arch Intern Med 159(3):281–284

    Article  CAS  PubMed  Google Scholar 

  • Burdakov D, Luckman SM, Verkhratsky A (2005) Glucose-sensing neurons of the hypothalamus. Philos Trans R Soc Lond B Biol Sci 360(1464):2227–2235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buxton RB (2010) Interpreting oxygenation-based neuroimaging signals: the importance and the challenge of understanding brain oxygen metabolism. Front Neuroenergetics 2:8

    PubMed  PubMed Central  Google Scholar 

  • Buxton RB, Griffeth VE, Simon AB, Moradi F, Shmuel A (2014) Variability of the coupling of blood flow and oxygen metabolism responses in the brain: a problem for interpreting BOLD studies but potentially a new window on the underlying neural activity. Front Neurosci 8:139

    PubMed  PubMed Central  Google Scholar 

  • Callard F, Margulies DS (2014) What we talk about when we talk about the default mode network. Front Hum Neurosci 8

    Google Scholar 

  • Carter EC, McCullough ME (2014) Publication bias and the limited strength model of self-control: has the evidence for ego depletion been overestimated? Front Psychol 5:823

    PubMed  PubMed Central  Google Scholar 

  • Chechko N, Vocke S, Habel U et al (2015) Effects of overnight fasting on working memory-related brain network: an fMRI study. Hum Brain Mapp 36(3):839–851

    Article  PubMed  Google Scholar 

  • Cho ZH, Son YD, Kim HK et al (2011) Observation of glucose metabolism in the thalamic nuclei by fusion PET/MRI. J Nucl Med 52(3):401–404

    Article  CAS  PubMed  Google Scholar 

  • Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3(3):201–215

    Article  CAS  PubMed  Google Scholar 

  • Cryer PE (2007) Hypoglycemia, functional brain failure, and brain death. J Clin Invest 117(4):868–870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dang J (2016) Testing the role of glucose in self-control: a meta-analysis. Appetite 107:222–230

    Article  PubMed  Google Scholar 

  • Driesen NR, Goldberg PA, Anderson AW et al (2007) Hypoglycemia reduces the blood-oxygenation level dependent signal in primary auditory and visual cortex: a functional magnetic resonance imaging study. J Neurosci Res 85(3):575–582

    Article  CAS  PubMed  Google Scholar 

  • Dyck M, Loughead J, Kellermann T et al (2011) Cognitive versus automatic mechanisms of mood induction differentially activate left and right amygdala. Neuroimage 54(3):2503–2513

    Article  PubMed  Google Scholar 

  • Fitzgerald PB, Laird AR, Maller J et al (2008) A meta-analytic study of changes in brain activation in depression. Hum Brain Mapp 29(6):683–695

    Article  PubMed  PubMed Central  Google Scholar 

  • Gailliot MT, Baumeister RF (2007) The physiology of willpower: linking blood glucose to self-control. Pers Soc Psychol Rev 11(4):303–327

    Article  PubMed  Google Scholar 

  • Gailliot MT, Baumeister RF, DeWall CN et al (2007) Self-control relies on glucose as a limited energy source: willpower is more than a metaphor. J Pers Soc Psychol 92(2):325–336

    Article  PubMed  Google Scholar 

  • Goodale MA, Milner AD (1992) Separate visual pathways for perception and action. Trends Neurosci 15(1):20–25

    Article  CAS  PubMed  Google Scholar 

  • Grayson BE, Seeley RJ, Sandoval DA (2013) Wired on sugar: the role of the CNS in the regulation of glucose homeostasis. Nat Rev Neurosci 14(1):24–37

    Article  CAS  PubMed  Google Scholar 

  • Greicius MD, Flores BH, Menon V et al (2007) Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus. Biol Psychiatry 62(5):429–437

    Article  PubMed  PubMed Central  Google Scholar 

  • Habel U, Klein M, Kellermann T et al (2005) Same or different? Neural correlates of happy and sad mood in healthy males. Neuroimage 26(1):206–214

    Article  PubMed  Google Scholar 

  • Hagger MS, Wood C, Stiff C, Chatzisarantis NLD (2009) The strength model of self-regulation failure and health-related behaviour. Health Psychol Rev 3(2):208–238. doi:10.1080/17437190903414387

  • Hagger MS, Chatzisarantis NL (2013) The sweet taste of success: the presence of glucose in the oral cavity moderates the depletion of self-control resources. Pers Soc Psychol Bull 39(1):28–42

    Article  PubMed  Google Scholar 

  • Heatherton TF, Wagner DD (2011) Cognitive neuroscience of self-regulation failure. Trends Cogn Sci 15(3):132–139

    Article  PubMed  PubMed Central  Google Scholar 

  • Hermans EJ, Henckens MJ, Joels M et al (2014) Dynamic adaptation of large-scale brain networks in response to acute stressors. Trends Neurosci 37(6):304–314

    Article  CAS  PubMed  Google Scholar 

  • Hyder F, Rothman DL, Bennett MR (2013) Cortical energy demands of signaling and nonsignaling components in brain are conserved across mammalian species and activity levels. Proc Natl Acad Sci USA 110(9):3549–3554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Itti L, Koch C (2001) Computational modelling of visual attention. Nat Rev Neurosci 2(3):194–203

    Article  CAS  PubMed  Google Scholar 

  • Killgore WD, Gruber SA, Yurgelun-Todd DA (2007) Depressed mood and lateralized prefrontal activity during a Stroop task in adolescent children. Neurosci Lett. 416(1):43–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohn N, Toygar T, Weidenfeld C et al (2015) In a sweet mood? Effects of experimental modulation of blood glucose levels on mood-induction during fMRI. Neuroimage 113:246–256

    Article  CAS  PubMed  Google Scholar 

  • Kohn N, Wassenberg A, Toygar T et al (2016) Prolonged fasting impairs neural reactivity to visual stimulation. Brain Struct Funct 221(1):147–158

    Article  PubMed  Google Scholar 

  • Kurzban R (2010) Does the brain consume additional glucose during self-control tasks? Evol Psychol 8(2):244–259

    Article  PubMed  Google Scholar 

  • Laird AR, Fox PM, Eickhoff SB et al (2011) Behavioral interpretations of intrinsic connectivity networks. J Cogn Neurosci 23(12):4022–4037

    Article  PubMed  PubMed Central  Google Scholar 

  • Lindquist KA, Wager TD, Kober H et al (2012) The brain basis of emotion: a meta-analytic review. Behav Brain Sci 35(3):121–143

    Article  PubMed  PubMed Central  Google Scholar 

  • Magistretti PJ, Allaman I (2015) A cellular perspective on brain energy metabolism and functional imaging. Neuron 86(4):883–901

    Article  CAS  PubMed  Google Scholar 

  • McNab F, Klingberg T (2008) Prefrontal cortex and basal ganglia control access to working memory. Nat Neurosci 11(1):103–107

    Article  CAS  PubMed  Google Scholar 

  • Menon V, Uddin LQ (2010) Saliency, switching, attention and control: a network model of insula function. Brain Struct Funct 214(5-6):655–667

    Article  PubMed  PubMed Central  Google Scholar 

  • Mergenthaler P, Lindauer U, Diene GA et al (2013) Sugar for the brain: the role of glucose in physiological and pathological brain function. Trends Neurosci 36(10):587–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orquin JL, Kurzban R (2016) A meta-analysis of blood glucose effects on human decision making. Psychol Bull 142(5):546–567

    Article  PubMed  Google Scholar 

  • Passow S, Specht K, Adamsen TC et al (2015) Default-mode network functional connectivity is closely related to metabolic activity. Hum Brain Mapp 36(6):2027–2038

    Article  PubMed  PubMed Central  Google Scholar 

  • Paulson OB, Hasselbalch SG, Rostrup E et al (2010) Cerebral blood flow response to functional activation. J Cereb Blood Flow Metab 30(1):2–14

    Article  PubMed  Google Scholar 

  • Riccio CA, Reynolds CR, Lowe P et al (2002) The continuous performance test: a window on the neural substrates for attention? Arch Clin Neuropsychol 17(3):235–272

    Article  PubMed  Google Scholar 

  • Riedl V, Bienkowska K, Strobel C et al (2014) Local activity determines functional connectivity in the resting human brain: a simultaneous FDG-PET/fMRI study. J Neurosci 34(18):6260–6266

    Article  CAS  PubMed  Google Scholar 

  • Roh E, Song do K, Kim MS (2016) Emerging role of the brain in the homeostatic regulation of energy and glucose metabolism. Exp Mol Med 48:e216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rooijackers HM, Wiegers EC, Tack CJ et al (2016) Brain glucose metabolism during hypoglycemia in type 1 diabetes: insights from functional and metabolic neuroimaging studies. Cell Mol Life Sci 73(4):705–722

    Article  CAS  PubMed  Google Scholar 

  • Rottschy C, Langner R, Dogan I et al (2012) Modelling neural correlates of working memory: a coordinate-based meta-analysis. Neuroimage 60(1):830–846

    Article  CAS  PubMed  Google Scholar 

  • Routh VH (2010) Glucose sensing neurons in the ventromedial hypothalamus. Sensors (Basel) 10(10):9002–9025

    Article  CAS  Google Scholar 

  • Smith SM, Fox PT, Miller KL et al (2009) Correspondence of the brain’s functional architecture during activation and rest. Proc Natl Acad Sci USA 106(31):13040–13045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sokoloff L (1999) Energetics of functional activation in neural tissues. Neurochem Res 24(2):321–329

    Article  CAS  PubMed  Google Scholar 

  • Sprague JE, Arbelaez AM (2011) Glucose counterregulatory responses to hypoglycemia. Pediatr Endocrinol Rev 9(1):463–473; quiz 474–465

    PubMed  PubMed Central  Google Scholar 

  • Thorens B (2011) Brain glucose sensing and neural regulation of insulin and glucagon secretion. Diabetes Obes Metab 13(Suppl 1):82–88

    Article  CAS  PubMed  Google Scholar 

  • Uddin LQ, Kelly AM, Biswal BB et al (2009) Functional connectivity of default mode network components: correlation, anticorrelation, and causality. Hum Brain Mapp 30(2):625–637

    Article  PubMed  Google Scholar 

  • Vogt BA (2009) Regions and subregions of the cingulates gyrus. Cingulate Neurobiol Dis:3–30

    Google Scholar 

  • Warren RE, Frier BM (2005) Hypoglycaemia and cognitive function. Diabetes Obes Metab 7(5):493–503

    Article  PubMed  Google Scholar 

  • Wehrl HF, Hossain M, Lankes K et al (2013) Simultaneous PET-MRI reveals brain function in activated and resting state on metabolic, hemodynamic and multiple temporal scales. Nat Med 19(9):1184–1189

    Article  CAS  PubMed  Google Scholar 

  • Westermann R, Spies K, Stahl G et al (1996) Relative effectiveness and validity of mood induction procedures: a meta-analysis. Eur J Soc Psychol 26(4):557–580

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nils Kohn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Papalini, S., Berthold-Losleben, M., Kohn, N. (2017). Influences of Prolonged Fasting on Behavioral and Brain Patterns. In: Preedy, V., Patel, V. (eds) Handbook of Famine, Starvation, and Nutrient Deprivation. Springer, Cham. https://doi.org/10.1007/978-3-319-40007-5_30-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40007-5_30-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40007-5

  • Online ISBN: 978-3-319-40007-5

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics