Skip to main content

Selenium and Cognition: Mechanism and Evidence

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Handbook of Famine, Starvation, and Nutrient Deprivation

Abstract

Selenium (Se) is important for cognition by way of its contribution to the reduction of oxidative stress. Reactive species (RS) are generated during the normal course of metabolism in the body. Evidence shows that RS are known to regulate cellular functions. They also participate in the immune system and biosynthesis of macromolecules. On the other hand, accumulated RS are highly toxic to the body and they are major concern in the pathogenesis of chronic diseases including cancers, cardiovascular disease, and neurodegenerative diseases. Every aerobic cell is vulnerable to attack by RS consequently, resulting in oxidative stress. However, the brain is particularly susceptible to oxidative stress due to its composition and physiology. Oxidative stress to the brain is associated with cognitive deficits, mood disorders, and behavioral problems. Evidence from animal and human studies suggest the importance of selenium for cognitive performance, mood, and behavior through protection against oxidative damage to substrates including low-density lipoproteins (LDL), hydroperoxide, hydrogen peroxide, peroxynitrite, and tert-butyl hydroxyperoxide (t-BHP). The dose response relationship between Se and cognitive performance is nonlinear suggesting both deficiency and excess intake results in adverse neurobehavioral outcomes. In addition, through its role in thyroid metabolism, limited evidence suggests the importance of selenium in improving cognitive performance of persons with hypothyroidism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AD:

Alzheimer’s disease

ATP:

Adenosine triphosphate

CSF:

Cerebrospinal fluid

CuZn-SOD:

Copper, zinc-superoxide dismutase

DNA:

Deoxyribonucleic acid

GHS:

Glutathione

GPx:

Glutathione peroxidase

IL-6:

Interleukin-6

LDL:

Low density lipoprotein

MCI:

Mild cognitive impairment

NBNA:

Behavioral neurological assessment

PKU:

Phenylketonuria

RNA:

Ribonucleic acid

ROS:

Reactive oxygen species

RS:

Reactive species

rT3:

Reverse triiodothyronine

SeMet:

Selenomethionine

SePP:

Selenoprotein P

SOD:

Superoxide dismutase

T4:

Thyroxin

T3:

Tri-iodothyronine

T2:

Di-iodothyronine

TBARS:

Thiobarbituric acid reactive substances

t-BHP:

Tert-butyl hydroxyperoxide

TrxR:

Thioredoxin reductase

References

  • Ahmed OM, El-Gareib AW, El-Bakry AM et al (2008) Thyroid hormones states and brain development interactions. Int J Neurosci 26:147–209

    CAS  Google Scholar 

  • Akbaraly NT, Hininger-Favier I, Carriere I et al (2007) Plasma selenium over time and cognitive decline in the elderly. Epidemiology 18:52–58

    Article  Google Scholar 

  • Aksenov MY, Aksenova MV, Butterfield DA et al (2001) Protein oxidation in the brain in Alzheimer’s disease. Neuroscience 103:373–383

    Article  CAS  Google Scholar 

  • Alfadda AA, Sallam RM (2012) Reactive oxygen species in health and disease. J Biomed Biotechnol 936486

    Google Scholar 

  • Arteel GE, Sies H (2001) The biochemistry of selenium and the glutathione system. Environ Toxicol Pharmacol 10:153–158

    Article  CAS  Google Scholar 

  • Battin EE, Zimmerman MT, Ramoutar RR et al (2011) Preventing metal-mediated oxidative DNA damage with selenium compounds. Metallomics 3:503–512

    Article  CAS  Google Scholar 

  • Beckett GJ, Arthur JR (2005) Selenium and endocrine systems. J Endocrinol 184:455–465

    Article  CAS  Google Scholar 

  • Bellinger FP, He QP, Bellinger MT et al (2008) Association of selenoprotein P with Alzheimer’s pathology in human cortex. J Alzheimers Dis 15:465–472

    Article  CAS  Google Scholar 

  • Bernal J (2007) Thyroid hormone receptors in brain development and function. Nat Clin Pract Endocrinol Metab 3:249–259

    Article  CAS  Google Scholar 

  • Berr C, Arnaud J, Akbaraly TN (2012) Selenium and cognitive impairment: a brief-review based on results from the EVA study. Biofactors 38:139–144

    Article  CAS  Google Scholar 

  • Berr C, Balansard B, Arnaud J et al (2000) Cognitive decline is associated with systemic oxidative stress: the EVA study. J Am Geriatr Soc 48:1285–1291

    Article  CAS  Google Scholar 

  • Berr C, Richard MJ, Gourlet V et al (2004) Enzymatic antioxidant balance and cognitive decline in aging – the EVA study. Eur J Epidemiol 19:133–138

    Article  CAS  Google Scholar 

  • Brieger K, Schiavone S, Miller FJ Jr et al (2012) Reactive oxygen species: from health to disease. Swiss Med Wkly 142:w13659

    CAS  PubMed  Google Scholar 

  • Brigelius-Flohé R, Maiorino M (2013) Glutathione peroxidases. BBA-Gen Subjects 1830:3289–3303

    Article  Google Scholar 

  • Brown KM, Arthur JR (2001) Selenium, selenoproteins and human health: a review. Public Health Nutr 4:593–599

    Article  CAS  Google Scholar 

  • Burk RF, Hill KE, Motley AK et al (2006) Deletion of selenoprotein P up regulates urinary selenium excretion and depresses whole-body selenium content. BBA-Gen Subjects 1760:1789–1793

    Article  CAS  Google Scholar 

  • Burk RF, Hill KE, Read ROBERT et al (1991) Response of rat selenoprotein P to selenium administration and fate of its selenium. Am J Physiol-Endoc Metab 261:E26–E30

    Article  CAS  Google Scholar 

  • Butterfield DA, Drake J, Pocernich C et al (2001) Evidence of oxidative damage in Alzheimer’s disease brain: central role for amyloid β-peptide. Trends Mol Med 7:548–554

    Article  CAS  Google Scholar 

  • Cardoso BR, Bandeira VS, Jacob-Filho W et al (2014) Selenium status in elderly: relation to cognitive decline. J Trace Elem Med Biol 28:422–426

    Article  CAS  Google Scholar 

  • Cardoso BR, Ong TP, Jacob-Filho W et al (2010) Nutritional status of selenium in Alzheimer’s disease patients. Brit J Nutr 103:803–806

    Article  CAS  Google Scholar 

  • Castaño A, Ayala A, Rodrıguez-Gómez JA et al (1997) Low selenium diet increases the dopamine turnover in prefrontal cortex of the rat. Neurochem Int 30:549–555

    Article  Google Scholar 

  • Clouchoux C, Guizard N, Evans AC et al (2012) Normative fetal brain growth by quantitative in vivo magnetic resonance imaging. Am J Obstet Gynecol 206:173–1e1

    Article  Google Scholar 

  • Cui K, Luo X, Xu K et al (2004) Role of oxidative stress in neurodegeneration: recent developments in assay methods for oxidative stress and nutraceutical antioxidants. Prog Neuro-Psychoph 28:771–799

    Article  CAS  Google Scholar 

  • Datta K, Sinha S, Chattopadhyay P (2000) Reactive oxygen species in health and disease. Natl Med J India 13:304–310

    CAS  PubMed  Google Scholar 

  • del Ser QT, Delgado C, Martínez ES et al (2000) Cognitive deficiency in mild hypothyroidism. Neurologia 15:193–198

    Google Scholar 

  • Dias GRM, Vieira FA, Dobrachinski F et al (2012) Diphenyl diselenide diet intake improves spatial learning and memory deficits in hypothyroid female rats. Int J Dev Neurosci 30:83–89

    Article  CAS  Google Scholar 

  • Farkas IG, Czigner A, Farkas E et al (2003) Beta-amyloid peptide-induced blood-brain barrier disruption facilitates T-cell entry into the rat brain. Acta Histochem 105:115–125

    Article  Google Scholar 

  • Fukui K, Omoi NO, Hayasaka T et al (2002) Cognitive impairment of rats caused by oxidative stress and aging, and its prevention by vitamin E. Ann N Y Acad Sci 959:275–284

    Article  CAS  Google Scholar 

  • Gao S, Jin Y, Hall KS et al (2007) Selenium level and cognitive function in rural elderly Chinese. Am J Epidemiol 165:955–965

    Article  Google Scholar 

  • Gashu D, Stoecker BJ, Bougma K et al (2016) Stunting, selenium deficiency and anemia are associated with poor cognitive performance in preschool children from rural Ethiopia. Nutr J 15:38

    Article  Google Scholar 

  • Gassió R, Artuch R, Vilaseca MA et al (2008) Cognitive functions and the antioxidant system in phenylketonuric patients. Neuropsychology 2:426

    Article  Google Scholar 

  • Georgieff MK (2007) Nutrition and the developing brain: nutrient priorities and measurement. Am J Clin Nutr 85:614S–620S

    CAS  PubMed  Google Scholar 

  • Hall J, Edwards M, Barber R et al (2012) Higher groundwater selenium exposure is associated with better memory: a project FRONTIER study. Neurosci Med 3:18–25

    Article  CAS  Google Scholar 

  • Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97:1634–1658

    Article  CAS  Google Scholar 

  • Hawkes WC, Hornbostel L (1996) Effects of dietary selenium on mood in healthy men living in a metabolic research unit. Biol Psychiatry 39:121–128

    Article  CAS  Google Scholar 

  • Hill KE, Zhou J, McMahan WJ et al (2004) Neurological dysfunction occurs in mice with targeted deletion of the selenoprotein P gene. J Nutr 134:157–161

    Article  CAS  Google Scholar 

  • Hong LL, Tian DP, Su M et al (2006) Effect of selenium deficiency on the F344 inbred line offspring rats’ neuro-behavior, ability of learning and memory. Wei sheng yanjiu 35:54–58

    Google Scholar 

  • Imai H, Nakagawa Y (2003) Biological significance of phospholipid hydroperoxide glutathione peroxidase (PHGPx, GPx4) in mammalian cells. Free Radical Bio Med 34:145–169

    Article  CAS  Google Scholar 

  • Keller JN, Schmitt FA, Scheff SW et al (2005) Evidence of increased oxidative damage in subjects with mild cognitive impairment. Neurology 64:1152–1156

    Article  CAS  Google Scholar 

  • Kim HC, Jhoo WK, Shin EJ et al (2000) Selenium deficiency potentiates methamphetamine-induced nigral neuronal loss; comparison with MPTP model. Brain Res 862:247–252

    Article  CAS  Google Scholar 

  • Klein RZ, Sargent JD, Larsen PR et al (2001) Relation of severity of maternal hypothyroidism to cognitive development of offspring. J Med Screen 8:18–20

    Article  CAS  Google Scholar 

  • Kunwar A, Mishra B, Barik A et al (2007) 3, 3′-Diselenodipropionic acid, an efficient peroxyl radical scavenger and a GPx mimic, protects erythrocytes (RBCs) from AAPH-induced hemolysis. Chem Res Toxicol 20:1482–1487

    Article  CAS  Google Scholar 

  • Mecocci P, Polidori MC (2012) Antioxidant clinical trials in mild cognitive impairment and Alzheimer’s disease. BBA-Mol Basis Dis 1822:631–638

    Article  CAS  Google Scholar 

  • Mehdi Y, Hornick JL, Istasse L et al (2013) Selenium in the environment, metabolism and involvement in body functions. Molecules 18:3292–3311

    Article  CAS  Google Scholar 

  • Miller AH, Maletic V, Raison C (2009) Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry 65:732–741

    Article  CAS  Google Scholar 

  • Mineo TC, Sellitri F, Tacconi F et al (2014) Erythrocyte osmotic resistance recovery after lung volume reduction surgery. Eur J Cardiothorac Surg 45:870–875

    Article  Google Scholar 

  • Moreira PI, Nunomura A, Nakamura M et al (2008) Nucleic acid oxidation in Alzheimer disease. Free Radical Bio Med 44:1493–1505

    Article  CAS  Google Scholar 

  • Nakayama A, Hill KE, Austin LM et al (2007) All regions of mouse brain are dependent on selenoprotein P for maintenance of selenium. J Nutr 137:690–693

    Article  CAS  Google Scholar 

  • Navarro-Alarcon M, Cabrera-Vique C (2008) Selenium in food and the human body: a review. Sci Total Environ 400:115–141

    Article  CAS  Google Scholar 

  • Nishina A, Kimura H, Kozawa K et al (2011) A superoxide anion-scavenger, 1, 3-selenazolidin-4-one suppresses serum deprivation-induced apoptosis in PC12 cells by activating MAP kinase. Toxicol Appl Pharmacol 257:388–395

    Article  CAS  Google Scholar 

  • Pasco JA, Jacka FN, Williams LJ et al (2012) Dietary selenium and major depression: a nested case-control study. Complement Ther Med 20:119–123

    Article  Google Scholar 

  • Peters MM, Hill KE, Burk RF et al (2006) Altered hippocampus synaptic function in selenoprotein P deficient mice. Mol Neurodegener 1:12

    Article  Google Scholar 

  • Pol CJ, Muller A, Simonides WS (2010) Cardiomyocyte-specific inactivation of thyroid hormone in pathologic ventricular hypertrophy: an adaptative response or part of the problem? Heart Fail Rev 15:133–142

    Article  CAS  Google Scholar 

  • Polanska K, Krol A, Sobala W et al (2016) Selenium status during pregnancy and child psychomotor development – polish mother and child cohort study. Pediatr Res 79:863–869

    Article  CAS  Google Scholar 

  • Rayman M, Thompson A, Warren-Perry M et al (2006) Impact of selenium on mood and quality of life: a randomized, controlled trial. Biol Psychiatry 59:147–154

    Article  CAS  Google Scholar 

  • Richwine AF, Godbout JP, Berg BM et al (2005) Improved psychomotor performance in aged mice fed diet high in antioxidants is associated with reduced ex vivo brain interleukin-6 production. Brain Behav Immun 19:512–520

    Article  CAS  Google Scholar 

  • Ryu JK, McLarnon JG (2009) A leaky blood–brain barrier, fibrinogen infiltration and microglial reactivity in inflamed Alzheimer’s disease brain. J Cell Mol Med 13:2911–2925

    Article  CAS  Google Scholar 

  • Skröder HM, Hamadani JD, Tofail F et al (2015) Selenium status in pregnancy influences children’s cognitive function at 1.5 years of age. Clin Nutr 34:923–930

    Article  Google Scholar 

  • Smorgon C, Mari E, Atti AR et al (2004) Trace elements and cognitive impairment: an elderly cohort study. Arch Gerontol Geriatr 38:393–402

    Article  Google Scholar 

  • Steinbrenner H, Alili L, Bilgic E et al (2006a) Involvement of selenoprotein P in protection of human astrocytes from oxidative damage. Free Radical Bio Med 40:1513–1523

    Article  CAS  Google Scholar 

  • Steinbrenner H, Bilgic E, Alili L et al (2006b) Selenoprotein P protects endothelial cells from oxidative damage by stimulation of glutathione peroxidase expression and activity. Free Radic Res 40:936–943

    Article  CAS  Google Scholar 

  • Steinbrenner H, Sies H (2009) Protection against reactive oxygen species by selenoproteins. BBA-Gen Subjects 1790:1478–1485

    Article  CAS  Google Scholar 

  • Takahashi H, Nishina A, Fukumoto RH et al (2005a) Selenocarbamates are effective superoxide anion scavengers in vitro. Eur J Pharm Sci 24:291–295

    Article  CAS  Google Scholar 

  • Takahashi H, Nishina A, Fukumoto RH et al (2005b) Selenoureas and thioureas are effective superoxide radical scavengers in vitro. Life Sci 76:2185–2192

    Article  CAS  Google Scholar 

  • Takahashi H, Nishina A, Kimura H et al (2004) Tertiary selenoamide compounds are useful superoxide radical scavengers in vitro. Eur J Pharm Sci 23:207–211

    Article  CAS  Google Scholar 

  • Takemoto AS, Berry MJ, Bellinger FP (2010) Role of selenoprotein P in Alzheimer’s disease. Ethn Dis 20:S1

    PubMed  PubMed Central  Google Scholar 

  • Traulsen H, Steinbrenner H, Buchczyk DP et al (2004) Selenoprotein P protects low-density lipoprotein against oxidation. Free Radic Res 38:123–128

    Article  CAS  Google Scholar 

  • Valentine WM, Abel TW, Hill KE et al (2008) Neurodegeneration in mice resulting from loss of functional selenoprotein P or its receptor apolipoprotein E receptor 2. J Neuropathol Exp Neurol 67:68–77

    Article  Google Scholar 

  • van Bakel MM, Printzen G, Wermuth B et al (2000) Antioxidant and thyroid hormone status in selenium-deficient phenylketonuric and hyperphenylalaninemic patients. Am J Clin Nutr 72:976–981

    Article  Google Scholar 

  • Weydert CJ, Cullen JJ (2010) Measurement of superoxide dismutase, catalase and glutathione peroxidase in cultured cells and tissue. Nat Protoc 5:51–66

    Article  CAS  Google Scholar 

  • World Health Organization (1996) Trace elements in human nutrition and health. World Health Organization, Geneva

    Google Scholar 

  • Xiong S, Markesbery WR, Shao C et al (2007) Seleno-L-methionine protects against β-amyloid and iron/hydrogen peroxide-mediated neuron death. Antioxid Redox Signal 9:457–467

    Article  CAS  Google Scholar 

  • Yang X, Yu X, Fu H et al (2013) Different levels of prenatal zinc and selenium had different effects on neonatal neurobehavioral development. Neurotoxicology 37:35–39

    Article  CAS  Google Scholar 

  • Zhou X, Smith AM, Failla ML et al (2012) Estrogen status alters tissue distribution and metabolism of selenium in female rats. J Nutr Biochem 23:532–538

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dawd Gashu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Gashu, D., Stoecker, B.J. (2017). Selenium and Cognition: Mechanism and Evidence. In: Preedy, V., Patel, V. (eds) Handbook of Famine, Starvation, and Nutrient Deprivation. Springer, Cham. https://doi.org/10.1007/978-3-319-40007-5_21-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40007-5_21-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40007-5

  • Online ISBN: 978-3-319-40007-5

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Selenium and Cognition: Mechanism and Evidence
    Published:
    07 September 2017

    DOI: https://doi.org/10.1007/978-3-319-40007-5_21-2

  2. Original

    Selenium and Cognition: Mechanism and Evidence
    Published:
    21 June 2017

    DOI: https://doi.org/10.1007/978-3-319-40007-5_21-1