Lipid Response to Amino Acid Starvation in Fat Cells: Role of FGF21

  • Albert Pérez-Martí
  • Pedro F. Marrero
  • Diego Haro
  • Joana Relat
Living reference work entry


Adaptation to food shortage requires temporal homeostatic adaptive responses to a condition of energy deficiency. Mammals have developed a wide range of mechanisms to detect and respond to episodes of malnutrition and starvation, including the capacity to adjust fuel oxidation in function of nutrient availability. Nutrient deprivation or starvation often correlates with amino acid deficiency. This chapter will outline the changes in the metabolic patterns and molecular mechanisms driving these adaptive responses at the whole body level, and particularly in white and brown adipose tissue.


Starvation Aminoacidemia Essential amino acids Protein restriction ATF4 FGF21 White adipose tissue Brown adipose tissue Lipolysis Thermogenesis Energy expenditure 

List of Abbreviations


Amino-acid response


Activating transcription factor 4


Brown adipose tissue


Diet induced obesity


Iodothyronine deiodinase 2


Eukaryotic initiation factor 2


Extracellular regulated kinase


Fatty acids


Fatty acid synthase


Fibroblast growth factor


Fibroblast growth factor receptor


Fibroblast growth factor receptor substrate 2


General control nonderepressible 2


Glucose transporter 1


High carbohydrate diet


Hormone sensitive lipase


Ketogenic diet


Beta klotho


Low protein diet


Mammalian target of rapamicine


Nuclear respiratory factor


Protein kinase R-like endoplasmic reticulum kinase


PPAR gamma coactivator 1


Peroxisome proliferator activated receptor


Solute carrier family 6 member 19


Steroid response element binding protein


Tuberous sclerosis complex


Uncoupling protein 1


Untranslated region


White adipose tissue


  1. Ables GP et al (2012) Methionine-restricted C57BL/6J mice are resistant to diet-induced obesity and insulin resistance but have low bone density. PLoS One 7(12):e51357CrossRefPubMedPubMedCentralGoogle Scholar
  2. Anthony TG et al (2004) Preservation of liver protein synthesis during dietary leucine deprivation occurs at the expense of skeletal muscle mass in mice deleted for eIF2 kinase GCN2. J Biol Chem 279(35):36553–36561CrossRefPubMedGoogle Scholar
  3. Arner P et al (2008) FGF21 attenuates lipolysis in human adipocytes – a possible link to improved insulin sensitivity. FEBS Lett 582(12):1725–1730CrossRefPubMedGoogle Scholar
  4. Bernardo B et al (2015) FGF21 does not require interscapular brown adipose tissue and improves liver metabolic profile in animal models of obesity and insulin-resistance. Sci Rep 5:11382CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bielohuby M et al (2011) Induction of ketosis in rats fed low-carbohydrate, high-fat diets depends on the relative abundance of dietary fat and protein. Am J Physiol Endocrinol Metab 300(1):E65–E76CrossRefPubMedGoogle Scholar
  6. Camporez JP et al (2013) Cellular mechanisms by which FGF21 improves insulin sensitivity in male mice. Endocrinology 154(9):3099–3109CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chartoumpekis DV et al (2011) Brown adipose tissue responds to cold and adrenergic stimulation by induction of FGF21. Mol Med 17(7–8):736–740PubMedPubMedCentralGoogle Scholar
  8. Cheng Y et al (2010) Leucine deprivation decreases fat mass by stimulation of lipolysis in white adipose tissue and upregulation of uncoupling protein 1 (UCP1) in brown adipose tissue. Diabetes 59(1):17–25CrossRefPubMedGoogle Scholar
  9. Cornu M et al (2014) Hepatic mTORC1 controls locomotor activity, body temperature, and lipid metabolism through FGF21. Proc Natl Acad Sci U S A 111(32):11592–11599CrossRefPubMedPubMedCentralGoogle Scholar
  10. De Sousa-Coelho AL, Marrero PF, Haro D (2012) Activating transcription factor 4-dependent induction of FGF21 during amino acid deprivation. Biochem J 443(1):165–171CrossRefPubMedGoogle Scholar
  11. De Sousa-Coelho AL et al (2013) FGF21 mediates the lipid metabolism response to amino acid starvation. J Lipid Res 54(7):1786–1797CrossRefPubMedPubMedCentralGoogle Scholar
  12. Ding X et al (2012) βKlotho is required for fibroblast growth factor 21 effects on growth and metabolism. Cell Metab 16(3):387–393CrossRefPubMedPubMedCentralGoogle Scholar
  13. Domouzoglou EM, Maratos-Flier E (2011) Fibroblast growth factor 21 is a metabolic regulator that plays a role in the adaptation to ketosis. Am J Clin Nutr 93(4):901S–9015CrossRefPubMedPubMedCentralGoogle Scholar
  14. Dutchak PA et al (2012) Fibroblast growth factor-21 regulates PPARγ activity and the antidiabetic actions of Thiazolidinediones. Cell 148(3):556–567CrossRefPubMedPubMedCentralGoogle Scholar
  15. Fisher FM, Maratos-Flier E (2016) Understanding the physiology of FGF21. Annu Rev Physiol 78:223–241CrossRefPubMedGoogle Scholar
  16. Fisher FM et al (2012) FGF21 regulates PGC-1α and browning of white adipose tissues in adaptive thermogenesis. Genes Dev 26(3):271–281CrossRefPubMedPubMedCentralGoogle Scholar
  17. Guo F, Cavener DR (2007) The GCN2 eIF2alpha kinase regulates fatty-acid homeostasis in the liver during deprivation of an essential amino acid. Cell Metab 5(2):103–114CrossRefPubMedGoogle Scholar
  18. Hao S et al (2005) Uncharged tRNA and sensing of amino acid deficiency in mammalian piriform cortex. Science 307(5716):1776–1778CrossRefPubMedGoogle Scholar
  19. Holland WL et al (2013) An FGF21-adiponectin-ceramide axis controls energy expenditure and insulin action in mice. Cell Metab 17(5):790–797CrossRefPubMedPubMedCentralGoogle Scholar
  20. Hondares E et al (2010) Hepatic FGF21 expression is induced at birth via PPARalpha in response to milk intake and contributes to thermogenic activation of neonatal brown fat. Cell Metab 11(3):206–212CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hondares E et al (2011) Thermogenic activation induces FGF21 expression and release in brown adipose tissue. J Biol Chem 286(15):12983–12990CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hotta Y et al (2009) Fibroblast growth factor 21 regulates lipolysis in white adipose tissue but is not required for ketogenesis and triglyceride clearance in liver. Endocrinology 150(10):4625–4633CrossRefPubMedGoogle Scholar
  23. Inagaki T et al (2007) Endocrine regulation of the fasting response by PPARalphaMediated induction of fibroblast growth factor 21. Cell Metab 5(6):415–425CrossRefPubMedGoogle Scholar
  24. Jiang Y et al (2015) Mice lacking neutral amino acid transporter B(0)AT1 (Slc6a19) have elevated levels of FGF21 and GLP-1 and improved glycaemic control. Mol Metab 4(5):406–417CrossRefPubMedPubMedCentralGoogle Scholar
  25. Kharitonenkov A et al (2005) FGF-21 as a novel metabolic regulator. J Clin Invest 115(6):1627–1635CrossRefPubMedPubMedCentralGoogle Scholar
  26. Kilberg MS, Shan J, Su N (2009) ATF4-dependent transcription mediates signaling of amino acid limitation. Trends Endocrinol Metab TEM 20(9):436–443CrossRefPubMedGoogle Scholar
  27. Laeger T et al (2014) FGF21 is an endocrine signal of protein restriction. J Clin Invest 124(9):3913–3922CrossRefPubMedPubMedCentralGoogle Scholar
  28. Laeger T et al (2016) Metabolic responses to dietary protein restriction require an increase in FGF21 that is delayed by the absence of GCN2. Cell Rep 16(3):707–716CrossRefPubMedPubMedCentralGoogle Scholar
  29. Lees EK et al (2014) Methionine restriction restores a younger metabolic phenotype in adult mice with alterations in fibroblast growth factor 21. Aging Cell 13(5):817–827CrossRefPubMedPubMedCentralGoogle Scholar
  30. Li X et al (2009) Inhibition of lipolysis may contribute to the acute regulation of plasma FFA and glucose by FGF21 in ob/ob mice. FEBS Lett 583(19):3230–3234CrossRefPubMedGoogle Scholar
  31. Lin Z et al (2013) Adiponectin mediates the metabolic effects of FGF21 on glucose homeostasis and insulin sensitivity in mice. Cell Metab 17(5):779–789CrossRefPubMedGoogle Scholar
  32. Morrison CD, Laeger T (2015) Protein-dependent regulation of feeding and metabolism. Trends Endocrinol Metab 26(5):256–262CrossRefPubMedPubMedCentralGoogle Scholar
  33. Muise ES et al (2008) Adipose fibroblast growth factor 21 is up-regulated by peroxisome proliferator-activated receptor gamma and altered metabolic states. Mol Pharmacol 74(2):403–412CrossRefPubMedGoogle Scholar
  34. Ozaki Y et al (2015) Rapid increase in fibroblast growth factor 21 in protein malnutrition and its impact on growth and lipid metabolism. Br J Nutr 114(9):1410–1418CrossRefPubMedGoogle Scholar
  35. Pérez-Martí A et al (2017) A low-protein diet induces body weight loss and browning of subcutaneous white adipose tissue through enhanced expression of hepatic fibroblast growth factor 21 (FGF21). Mol Nutr Food Res 61(8)Google Scholar
  36. Pezeshki A et al (2016) Low protein diets produce divergent effects on energy balance. Sci Rep 6:25145CrossRefPubMedPubMedCentralGoogle Scholar
  37. Qiu H et al (2001) The tRNA-binding moiety in GCN2 contains a dimerization domain that interacts with the kinase domain and is required for tRNA binding and kinase activation. EMBO J 20(6):1425–1438CrossRefPubMedPubMedCentralGoogle Scholar
  38. Reitman ML (2007) FGF21: a missing link in the biology of fasting. Cell Metab 5(6):405–407CrossRefPubMedGoogle Scholar
  39. Samms RJ et al (2015) Discrete aspects of FGF21 in vivo pharmacology do not require UCP1. Cell Rep 11(7):991–999CrossRefPubMedGoogle Scholar
  40. Shan J et al (2009) Elevated ATF4 expression, in the absence of other signals, is sufficient for transcriptional induction via CCAAT enhancer-binding protein-activating transcription factor response elements. J Biol Chem 284(32):21241–21248CrossRefPubMedPubMedCentralGoogle Scholar
  41. Shimizu N et al (2015) A muscle-liver-fat signalling axis is essential for central control of adaptive adipose remodelling. Nat Commun 6:6693CrossRefPubMedPubMedCentralGoogle Scholar
  42. Stone KP et al (2014) Mechanisms of increased in vivo insulin sensitivity by dietary methionine restriction in mice. Diabetes 63(11):3721–3733CrossRefPubMedPubMedCentralGoogle Scholar
  43. Véniant MM et al (2015) Pharmacologic effects of FGF21 are independent of the “browning” of white adipose tissue. Cell Metab 21(5):731–738CrossRefPubMedGoogle Scholar
  44. Wanders D et al (2016) Role of GCN2-independent signaling through a Noncanonical PERK/NRF2 pathway in the physiological responses to dietary methionine restriction. Diabetes 65(6):1499–1510CrossRefPubMedPubMedCentralGoogle Scholar
  45. Wanders D et al (2017) FGF21 mediates the thermogenic and insulin-sensitizing effects of dietary methionine restriction but not its effects on hepatic lipid metabolism. Diabetes 66(4):858-867Google Scholar
  46. Wilson GJ et al (2015) GCN2 is required to increase fibroblast growth factor 21 and maintain hepatic triglyceride homeostasis during asparaginase treatment. Am J Physiol Endocrinol Metab 308(4):E283–E293CrossRefPubMedGoogle Scholar
  47. Yang C et al (2012) Differential specificity of endocrine FGF19 and FGF21 to FGFR1 and FGFR4 in complex with KLB. PLoS One 7(3)Google Scholar
  48. Zhang Y et al (2011) The link between fibroblast growth factor 21 and sterol regulatory element binding protein 1c during lipogenesis in hepatocytes. Mol Cell Endocrinol 342(1–2):41–47CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Albert Pérez-Martí
    • 1
    • 2
  • Pedro F. Marrero
    • 1
    • 2
  • Diego Haro
    • 1
    • 2
  • Joana Relat
    • 1
    • 3
  1. 1.Department of Nutrition, Food Sciences and GastronomySchool of Pharmacy and Food Sciences. Torribera Food Campus. University of BarcelonaSanta Coloma de Gramenet, BarcelonaSpain
  2. 2.Institute of Biomedicine of the University of Barcelona (IBUB)BarcelonaSpain
  3. 3.Institute of Nutrition and Food Safety of the University of Barcelona (INSA-UB)Santa Coloma de GramenetBarcelonaSpain

Personalised recommendations