Skip to main content

Dolomite and Dolomitization

  • Reference work entry
  • First Online:
Encyclopedia of Geochemistry

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Definition

Dolomite is a trigonal–rhombohedral, ordered Ca, Mg carbonate mineral (CaMg (CO3)2) occurring primarily in sedimentary and metamorphic rocks. Dolomitization is the process in which Mg ions replace Ca ions in a calcium carbonate mineral.

Crystal Structure and Geochemistry

The crystal structure of dolomite is similar to calcite with Mg ions substituting for Ca in every other layer. To accommodate this substitution, due to differences in bond lengths between Ca–CO3 and Mg–CO3 (238 pm versus 208 pm, respectively), CO3 in the Mg layer is uniformly rotated about the threefold axis relative to calcite (Reeder and Wenk 1983).

Stoichiometric dolomite (50:50 CaCO3:MgCO3) is part of a solid solution between calcite (CaCO3), magnesite (MgCO3), and ankerite (FeCO3). Iron substitution as well as Mg substitution greater than ~10 mol% will lead to disordering and expansion of the unit cell (Antao et al. 2004; Carmichael and Ferry 2008). These disordered phases are thermodynamically...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Antao S, Mulder W, Hassan I, Crichton W, Parise J (2004) Cation disorder in dolomite, CaMg(CO3)2, and its influence on the aragonite + magnesite ↔ dolomite reaction boundary. Am Mineral 89:1142–1147

    Article  Google Scholar 

  • Arvidson R, MacKenzie F (1999) The dolomite problem: control of precipitation kinetics by temperature and saturation state. Am J Sci 299:257–288

    Article  Google Scholar 

  • Baker P, Kastner M (1981) Constraints on the formation of sedimentary dolomite. Science 213:214–216

    Article  Google Scholar 

  • Bontognali T, Vasconcelos C, Warthmann R, Dupraz C, Bernasconi S, McKenzie J (2008) Microbes produce nanobacteria-like structures, avoiding cell entombment. Geology 36:663–666

    Article  Google Scholar 

  • Bontognali T, Vasconcelos C, Warthmann R, Bernasconi S, Dupraz C, Strohmenger C, McKenzie J (2010) Dolomite formation within microbial mats in the coastal sabkha of Abu Dhabi (United Arab Emirates). Sedimentology 57:824–844

    Article  Google Scholar 

  • Brady P, Krumhans J, Papenguth J (1996) Surface complexation clues to dolomite growth. Geochim Cosmochim Acta 60:727–731

    Article  Google Scholar 

  • Braissant O, Decho W, Dupraz C, Glunk C, Przekop K, Visscher P (2007) Exopolymeric substances of sulfate-reducing bacteria: interactions with calcium at alkaline pH and implication for formation of carbonate minerals. Geobiology 5:401–411

    Article  Google Scholar 

  • Carmichael S, Ferry A (2008) Formation of replacement dolomite in the latemar carbonate buildup, dolomite, Northern Italy: part 2. Origin of the dolomitization fluid and the amount and duration of fluid flow. Am J Sci 308:885–904

    Article  Google Scholar 

  • de Dolomieu D (1791) Sur un genre de pierres calcaires trespeu effervescentes avec les acides et phosphorescentes par la collision. J Phys 39:3–10

    Google Scholar 

  • Gale J, Lander R, Reed F, Laubach S (2010) Modeling fracture porosity evolution in dolostone. J Struct Geol 32:1201–1211

    Article  Google Scholar 

  • Gregg J, Bish D, Kaczmarek S, Machel H (2015) Mineralogy, nucleation and growth of dolomite in the laboratory and sedimentary environment: a review. Sedimentology 62:1749–1769

    Article  Google Scholar 

  • Hardie L (1987) Dolomitization: a critical view of some current views. J Sediment Petrol 57:166–183

    Article  Google Scholar 

  • Kenward P, Goldstein R, González L, Roberts J (2009) Precipitation of low-temperature dolomite from an anaerobic microbial consortium: the role of methanogenic Archaea. Geobiology 7:556–565

    Article  Google Scholar 

  • Kenward P, Goldstein R, González L, Fowle D, Ueshima M, Roberts J (2013) Ordered, low-temperature dolomite mediated by carboxyl-group density of microbial cell walls. AAPG Bull 97:2113–2125

    Article  Google Scholar 

  • Krause S, Liebtrau V, Gorb S, Sanchez-Roman M, McKenzie M, Treude T (2012) Microbial nucleation of Mg-rich dolomite in exopolymeric substances under anoxic modern seawater salinity: new insight into an old enigma. Geology 40:587–590

    Article  Google Scholar 

  • Land L (1998) Failure to precipitate dolomite at 25°C from dilute solution despite 1000-fold oversaturation after 32 years. Aquat Geochem 4:361–368

    Article  Google Scholar 

  • Li W, Beard BL, Li C, Xu H, Johnson C (2015) Experimental calibration of Mg isotope fractionation between dolomite and aqueous solution and its geological implications. Geochim Cosmochim Acta 157:164–181

    Article  Google Scholar 

  • Machel H (2004) Concepts and models of dolomitization: a critical reappraisal. Geol Soc Lond, Spec Publ 235:7–63

    Article  Google Scholar 

  • Mazullo S (2000) Organogenic dolomitization in peritidal to deep sea sediments. J Sediment Res 70:10–23

    Article  Google Scholar 

  • McKenzie J, Vasconcelos C (2009) Dolomite Mountains and the origin of the dolomite rock of which they mainly consist: historical developments and new perspectives. Sedimentology 56:205–219

    Article  Google Scholar 

  • Meister P, McKenzie J, Vasconcelos C, Bernasconi S, Frank M, Guthjahrs M, Schrag M (2007) Dolomite formation in the dynamic deep biosphere: results from the Peru margin. Sedimentology 54:1007–1031

    Article  Google Scholar 

  • Moreira N, Walter W, Vasconcelos C, McKenzie J, McCall P (2004) Role of sulfide oxidation in dolomitization: sediment and pore-water geochemistry of a modern hypersaline lagoon system. Geology 32:701–704

    Article  Google Scholar 

  • Petrash D, Lalonde S, Gonzalez-Arismendi G, Gordon R, Gingras M, Konhauser K (2015) Can Mn-S cycling drive sedimentary dolomite formation? A hypothesis. Chem Geol 404:27–40

    Article  Google Scholar 

  • Reeder R, Wenk H (1983) Structure refinements of some thermally disordered dolomites. Am Mineral 68:769–776

    Google Scholar 

  • Roberts J, Bennett P, Macpherson G, González L, Milliken K (2004) Microbial precipitation of dolomite in groundwater: field and laboratory experiments. Geology 32:277–280

    Article  Google Scholar 

  • Roberts J, Kenward P, Fowle D, González L, Goldstein R, Moore D (2013) Surface chemistry allows for precipitation of dolomite at low temperature. PNAS 110:14540–14545

    Article  Google Scholar 

  • Rodriguez-Blanco J, Shaw S, Benning L (2015) A route for the direct crystallization of dolomite. Am Mineral 100:1172–1181

    Article  Google Scholar 

  • Sánchez-Román M, Vasconcelos C, Schmid T, Dittrich M, McKenzie J, Zenobi R, Rivadeneyra M (2008) Aerobic microbial dolomite at the nanometer scale: implications for the geologic record. Geology 36:879–882

    Article  Google Scholar 

  • Sánchez-Román M, McKenzie J, de Luca Rebello Wagner A, Rivadeneyra M, Vasconcelos C (2009) Presence of sulfate does not inhibit low-temperature dolomite precipitation. Earth Planet Sci Lett 285:131–139

    Article  Google Scholar 

  • Schmoker J, Halley R (1982) Carbonate porosity versus depth: a predictable relation for South Florida. AAPG Bull 66:2561–2570

    Google Scholar 

  • Sibley D, Dedoes R, Bartlett T (1987) The kinetics of dolomitization. Geology 15:1112–1114

    Article  Google Scholar 

  • Slaughter M, Hill R (1991) The influence of organic matter in organogenic dolomitization. J Sediment Petrol 61:296–303

    Article  Google Scholar 

  • Sun S (1995) Dolomite reservoirs: porosity evolution and reservoir characteristics. AAPG Bull 79:186–204

    Google Scholar 

  • Sun J, Wu Z, Cheng H, Zhang Z, Frost R (2014) A Raman spectroscopic comparison of calcite and dolomite. Spectrochim Acta A Mol Biomol Spectrosc 117:158–162

    Article  Google Scholar 

  • van Lith Y, Warthmann R, Vasconcelos C, McKenzie J (2003) Sulfate-reducing bacteria induce low-temperature Ca dolomite and high-Mg calcite formation. Geobiology 1:71–79

    Article  Google Scholar 

  • Vasconcelos C, McKenzie J (1997) Microbial mediation of modern dolomite precipitation and diagenesis under anoxic conditions (Lagoa Vermelha, Rio de Janeiro, Brazil). J Sediment Res 67:378–390

    Google Scholar 

  • Vasconcelos C, McKenzie J, Bernasconi S, Grujic D, Tien A (1995) Microbial mediation as a possible mechanism for natural dolomite formation at low temperatures. Nature 377:220–222

    Article  Google Scholar 

  • Warthmann R, van Lith Y, Vasconcelos C, McKenzie J, Karpoff A (2000) Bacterially induced dolomite precipitation in anoxic culture experiments. Geology 28:1091–1094

    Article  Google Scholar 

  • Wilkinson B, Given K (1986) Secular variation in abiotic marine carbonates: constraints on Phanerozoic atmospheric carbon dioxide contents and oceanic Mg/Ca ratios. J Geol 94:21–33

    Article  Google Scholar 

  • Wright D, Wacey D (2004) Sedimentary dolomite: a reality check. In: Braithwaite C, Rizzi G, Darke G (eds) The geometry and petrogenesis of dolomite hydrocarbon reservoirs, Special publication, vol 235. Geological Society, pp 65–74

    Google Scholar 

  • Wright D, Wacey D (2005) Precipitation of dolomite using sulfate-reducing bacteria from the Coorong region, South Australia: significance and implications. Sedimentology 28:987–1008

    Article  Google Scholar 

  • Zenger D, Bourrouilh-Le Jan F, Carozzi A (1994) Dolomieu and the first description of dolomite. In: Purser B, Tucker M, Zenger D (eds) Dolomites: a volume in honour of dolomieu, IAS special publication, vol 21, New York, pp 21–28

    Google Scholar 

  • Zhang F, Xu H, Konishi H, Roden E (2010) A relationship between d104 value and composition in the calcite-disordered dolomite solid-solution series. Am Mineral 95:1650–1656

    Article  Google Scholar 

  • Zhang F, Xu H, Konishi H, Shelobolina E, Roden E (2012a) Polysaccharide-catalyzed nucleation and growth of disordered dolomite: a potential precursor of sedimentary dolomite. Am Mineral 97:556–567

    Article  Google Scholar 

  • Zhang F, Xu H, Konishi H, Kemp J, Roden E (2012b) Dissolved sulfide-catalyzed crystallization of Ca-Mg carbonates and implications for the formation mechanism of sedimentary dolomite. Geochim Cosmochim Acta 97:148–165

    Article  Google Scholar 

  • Zhong S, Mucci A (1989) Calcite and aragonite precipitation from seawater solutions of various salinities: precipitation rates and overgrowth compositions. Chem Geol 78:283–299

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer A. Roberts .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Roberts, J.A. (2018). Dolomite and Dolomitization. In: White, W.M. (eds) Encyclopedia of Geochemistry. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-319-39312-4_93

Download citation

Publish with us

Policies and ethics