Skip to main content

Compound-Specific Isotope Analysis

  • Reference work entry
  • First Online:
Encyclopedia of Geochemistry

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Definition

Compound-specific isotope analysis (CSIA), as opposed to bulk analysis, determines the isotopic signatures (for example, 13C/12C, D/H, 15N/14N, 18O/16O) at the molecular level. The separation and purification of organic compounds can be achieved by gas chromatography (GC) or liquid chromatography (LC). The analysis of stable isotopes requires an isotope ratio mass spectrometry (IRMS).

Analytical Methods: GC-IRMS

Traditionally, CSIA refers only to the stable isotope measurements of the molecules separated by GC. The system usually consists of a GC, a chemical reaction interface, and an IRMS (Sessions 2006; Summons 2000). Individual compounds are separated by the GC, followed by quantitative conversion at the interface, and continuous-flow isotopic analysis using the IRMS. The interface either diverts or removes the interfering compounds such as the solvents and H2O.

Early CSIA focused on stable carbon isotopes (Hayes et al. 1989; Matthews and Hayes 1978). Organic molecules...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Badger MPS, Schmidt DN, Mackensen A, Pancost RD (2013) High-resolution alkenone palaeobarometry indicates relatively stable pCO2 during the Pliocene (3.3–2.8 ma). Phil Trans R Soc A 371(2001):20130094

    Article  Google Scholar 

  • Bijl PK, Houben AJP, Schouten S, Bohaty S, Sluijs A, Reichart GJ, Damste JSS, Brinkhuis H (2010) Transient middle eocene atmospheric CO2 and temperature variations. Science 330:819–821

    Article  Google Scholar 

  • Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Cleseke A, Amann R, Jorgensen BB, Witte U, Pfannkuche O (2000) A marine microbial consurtium apparently mediating anaerobic oxidation of methane. Nature 407:623–626

    Article  Google Scholar 

  • Bolton CT, Hernandez-Sanchez MT, Fuertes M-A, Gonzalez-Lemos S, Abrevaya L, Mendez-Vicente A, Flores J-A, Probert I, Giosan L, Johnson J, Stoll HM (2016) Decrease in coccolithophore calcification and CO2 since the middle Miocene. Nat Commun 7:10284

    Article  Google Scholar 

  • Burgoyne TW, Hayes JM (1998) Quantitative production of H2 by pyropysis of gas chromatographic effluents. Anal Chem 70:5136–5141

    Article  Google Scholar 

  • Conte M, Volkman JK, Eglinton G (1994) Lipid biomarkers of the haptophyta. In: Green JC, Leadbeater BSC (eds) The haptophyte algae. Clarendon Press, Oxford, pp 351–377

    Google Scholar 

  • Eiler JM, Clog M, Magyar P, Piasecki A, Sessions AL, Stolper D, Deerberg M, Schlueter H-J, Schwieters J (2013) A high-resolution gas-source isotope ratio mass spectrometer. Int J Mass Spectrom 335:45–56

    Article  Google Scholar 

  • Farquhar GD, O’Leary MH, Berry JA (1982) On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Aust J Plant Physiol 9:121–137

    Article  Google Scholar 

  • Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 40:503–537

    Article  Google Scholar 

  • Freeman KH, Hayes JM, Trendel J-M, Albrecht P (1990) Evidence from carbon isotope measurements for diverse origins of sedimentary hydrocarbons. Nature 343:254–256

    Article  Google Scholar 

  • Hayes JM, Freeman KH, Popp BN, Hoham CH (1989) Compound-specific isotopic analyses: a novel tool for reconstruction of ancient biogeochemical processes. Org Geochem 16:1115–1128

    Article  Google Scholar 

  • Henderiks J, Pagani M (2007) Refining ancient carbon dioxide estimates: significance of coccolithophore cell size for alkenone-based pCO2 records. Paleoceanography 22:PA3202

    Article  Google Scholar 

  • Hinrichs KU, Hayes JM, Sylva SP, Brewer PG, DeLong EF (1999) Methane-consuming archaebacteria in marine sediments. Nature 398:802–805

    Article  Google Scholar 

  • Jasper JP, Hayes JM (1990) A carbon isotope record of CO2 levels during the late quaternary. Nature 347:462–464

    Article  Google Scholar 

  • Leckrone KJ, Hayes JM (1997) Efficiecy and temperature dependence of water removal by membrane dryers. Anal Chem 1997:911–918

    Article  Google Scholar 

  • Matthews DE, Hayes JM (1978) Isotope-ratio-monitoring gas chromatography mas spectrometry. Anal Chem 50:1465–1473

    Article  Google Scholar 

  • Merritt DA, Hayes JM (1994) Nitrogen isotopic analysis by isotope-ratio-monitoring gas chromatography-mass spectrometry. J Am Soc Mass Spectrom 5:387–397

    Article  Google Scholar 

  • Merritt DA, Freeman KH, Ricci MP, Studley SA, Hayes JM (1995) Performance and optimization of a combustion interface for isotope ratio monitoring gas chromatography/mass spectrometry. Anal Chem 67:2461–2473

    Article  Google Scholar 

  • Ono S, Wang DT, Gruen DS, Sherwood Lollar B, Zahniser MS, McManus BJ, Nelson DD (2014) Measurement of a doubly substituted methane isotopologue, 13CH 3D, by tunable infrared laser direct absorption spectroscopy. Anal Chem 86:6487–6494

    Article  Google Scholar 

  • Pagani M, Zachos JC, Freeman KH, Tipple B, Bohaty S (2005) Marked decline in atmospheric carbon dioxide concentrations during the Paleogene. Science 309:600–603

    Article  Google Scholar 

  • Pagani M, Huber M, Liu ZH, Bohaty S, Henderiks J, Sijp W, Krishnan S, DeConto R (2011) The role of carbon dioxide during the onset of Antarctic glaciation. Science 334:1261–1264

    Article  Google Scholar 

  • Palmer MR, Brummer GJ, Cooper MJ, Elderfield H, Greaves MJ, Reichart GJ, Schouten S, Yu JM (2010) Multi-proxy reconstruction of surface water pCO2 in the northern Arabian Sea since 29 ka. Earth Planet Sci Lett 295:49–57

    Article  Google Scholar 

  • Pearson A, Hurley S, Shah Walter SR, Kusch S, Lichtin S, Zhang YG (2016) Stable carbon isotope ratios of intact GDGTs indicate heterogeneous sources to marine sediments. Geochim Cosmochim Acta 181:18–35

    Article  Google Scholar 

  • Piasecki A, Sessions AL, Lawson M, Ferreira AA, Santos Neto EV, Eiler JM (2016) Analysis of the site-specific carbon isotope composition of propane by gas source isotope ratio mass spectrometer. Geochim Cosmochim Acta 188:58–72

    Article  Google Scholar 

  • Polissar PJ, Fulton JM, Junium CK, Turich CC, Freeman KH (2009) Measurement of 13C and 15N isotopic composition on nanomolar quantities of C and N. Anal Chem 81:755–763

    Article  Google Scholar 

  • Popp BN, Takigiku R, Hayes JM, Louda JW, Baker EW (1989) The post-Paleozoic chronology and mechanism of 13C depletion in primary marine organic matter. Am J Sci 289:436–454

    Article  Google Scholar 

  • Reeburgh WS (1976) Methane comsumption in Cariaco trench waters and sediments. Earth Planet Sci Lett 28:337–344

    Article  Google Scholar 

  • Sessions AL (2006) Isotope-ratio detection for gas chromatography. J Sep Sci 29:1946–1961

    Article  Google Scholar 

  • Sessions AL, Burgoyne TW, Hayes JM (2001) Correction of H3+ contributions in hydrogen isotope ratio monitoring mass spectrometry. Anal Chem 73:192–199

    Article  Google Scholar 

  • Sessions AL, Sylva SP, Hayes JM (2005) Moving-wire device for carbon isotopic analyses of nanogram quantities of nonvolatile organic carbon. Anal Chem 77:6519–6527

    Article  Google Scholar 

  • Sigman DM, Casciotti KL, Andreani M, Barford C, Galanter M, Bohlke JK (2001) A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater. Anal Chem 73:4145–4153

    Article  Google Scholar 

  • Summons R (2000) Compound-specific isotope analysis. In: Marshall CP, Fairbridge RW (eds) Encyclopedia of geochemistry. Springer, Amsterdam, Netherlands, p 100

    Google Scholar 

  • Sutton PA, Rowland SJ (2012) High temperature gas chromatography-time-of-flight-mass spectrometry (HTGC-ToF-MS) for high-bioling compounds. J Chromatogr A 1243:69–80

    Article  Google Scholar 

  • Webb M, Wang Y, Braams BJ, Bowman JM, Miller TF III (2013) Equilibrium clumped-isotope effects in doubly substituted isotopologues of ethane. Geochimi Cosmochimi Acta 197:14–26

    Article  Google Scholar 

  • Zhang YG, Pagani M, Liu Z, Bohaty SM, DeConto R (2013) A 40-million-year history of atmospheric CO2. Phil Trans R Soc A 371:20130096

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Ge Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Zhang, Y.G. (2018). Compound-Specific Isotope Analysis. In: White, W.M. (eds) Encyclopedia of Geochemistry. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-319-39312-4_92

Download citation

Publish with us

Policies and ethics