Skip to main content

Carbonate Minerals and the CO2-Carbonic Acid System

  • Reference work entry
  • First Online:

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Definition

Carbonic acid, H2CO3, forms from the dissolution of CO2 in water and plays a key role in weathering, biological production, formation and deposition of sediments, and the carbon cycle. Carbonate minerals, primarily calcite, aragonite, and dolomite precipitating from these solutions, constitute the second most abundant class of sedimentary rocks.

Introduction

Carbonate rocks, consisting mainly of the minerals calcite (CaCO3) and dolomite [CaMg(CO3)2], are the second most abundant class of sedimentary rocks, after terrigenous clastics, on land and on the ocean floor. The widespread occurrence of carbonate rocks in the geologic record is attributable to the following factors:

  1. 1.

    CO2 gas has a relatively high solubility in water, higher than molecular oxygen and nitrogen.

  2. 2.

    CO2 hydrolyzes in water, making the bicarbonate and carbonate anions (discussed in more detail in section “CO2-Carbonic Acid-Carbonate System and Seawater”) that react with divalent and monovalent metals.

  3. 3.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Andersson AJ (2014) The oceanic CaCO3 cycle. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, vol 8. Elsevier, Oxford, pp 519–542

    Chapter  Google Scholar 

  • Anthony JW, Bideaux RA, Bladh KW, Nichols MC (2003) Handbook of mineralogy, Borates, Carbonates, Sulphates, vol 5. Mineralogical Society of America, Chantilly. http://www.handbookofmineralogy.org/

    Google Scholar 

  • Arvidson RS, Mackenzie FT (1997) Tentative kinetic model for dolomite precipitation rate and its application to dolomite distribution. Aquat Geochem 2:273–298

    Article  Google Scholar 

  • Arvidson RS, Mackenzie FT (1999) The dolomite problem: control of precipitation kinetics by temperature and saturation state. Am J Sci 299:257–288

    Article  Google Scholar 

  • Bass JD (1995) Elasticity of minerals, glasses, and melts. In: Mineral physics and crystallography: a handbook of physical constants. American Geophysical Union, Washington, DC, pp 45–63

    Chapter  Google Scholar 

  • Berner RA (2006) Carbon, sulfur and O2 across the Permian-Triassic boundary. J Geochem Explor 88:416–418

    Article  Google Scholar 

  • Berner RA, Maasch KA (1996) Chemical weathering and controls on atmospheric O2 and CO2: fundamental principles were enunciated by J. J. Ebelmen in 1845. Geochim Cosmochim Acta 60(9):1633–1637

    Article  Google Scholar 

  • Bertram MA, Mackenzie FT, Bishop FC, Bischoff WD (1991) Influence of temperature on the stability of magnesian calcites. Am Mineral 76:1889–1896

    Google Scholar 

  • Bertram MA, Mackenzie FT, Bishop FC, Bischoff WD (1991) Influence of temperature on the stability of magnesian calcites. Am Mineral 76:1889–1896

    Google Scholar 

  • Birch F (1966) Compressibility; elastic constants. In: Clark SP Jr (ed) Handbook of physical constants, Geological Society of America Memoir, vol 97. Geological Society of America, New York, pp 97–173

    Chapter  Google Scholar 

  • Bischoff WD, Mackenzie FT, Bishop FC (1987) Stabilities of synthetic magnesian calcites in aqueous solution: comparison with biogenic materials. Geochim Cosmochim Acta 51:1413–1423

    Article  Google Scholar 

  • Bischoff WD, Bertram MA, Mackenzie FT, Bishop FC (1993) Diagenetic stabilization pathways of magnesian calcites. Carbonates Evaporites 8:82–89

    Article  Google Scholar 

  • Böhm F, Gussone N, Eisenhauer A, Reynaud S, Paytan A, Bosellini F, Brachert T, Reitner J, Wörheide G, Dullo W-C (2006) Ca isotope fractionation of inorganic, biologically induced and biologically controlled calcium carbonates. Geophys Res Abstr 8:09686

    Google Scholar 

  • Broecker WS, Peng T-H (1982) Tracers in the sea. Lamont-Doherty Geological Observatory, Columbia University, Palisades

    Google Scholar 

  • Busenburg E, Plummer LN (1989) Thermodynamics of magnesian calcite solid-solutions at 25°C and 1 atm pressure. Geochimica et Coscochimica Acta 53:1189–1208

    Article  Google Scholar 

  • Carlson WD (1980) The calcite-aragonite equilibrium: effects of Sr substitution and anion orientational disorder. Am Mineral 65:1252–1262

    Google Scholar 

  • Chang VT-C, Williams RJP, Makishima A, Belshawl NS, O’Nion RK (2004) Mg and ca isotope fractionation during CaCO3 biomineralisation. Biochem Biophys Res Commun 323:79–85

    Article  Google Scholar 

  • Chapman R (2006) A sea water equation of state calculator. The Johns Hopkins Universisty. Applied Physics Laboratory, Laurel. http://fermi.jhuapl.edu/denscalc.html

    Google Scholar 

  • Chou L, Garrels RM, Wollast R (1989) Comparative study of the kinetics and mechanisms of dissolution of carbonate minerals. Chem Geol 78:269–282

    Article  Google Scholar 

  • Coplen TB (1995) Discontinuance of SMOW and PDB. Nature 375:285

    Article  Google Scholar 

  • Emrich K, Ehhalt DH, Vogel JC (1970) Carbon isotope fractionation during the precipitation of calcium carbonate. Earth Planet Sci Lett 8:363–371

    Article  Google Scholar 

  • Epstein S, Buchsbaum R, Lowenstam HA, Urey HC (1951) Carbonate-water isotopic temperature scale. Geol Soc Am Bull 62:417–426

    Article  Google Scholar 

  • Epstein S, Buchsbaum R, Lowenstam HA, Urey HC (1953) Revised carbonate-water isotopic temperature scale. Geol Soc Am Bull 64:1315–1326

    Article  Google Scholar 

  • Fantle MS, DePaolo DJ (2007) Ca isotopes in carbonate sediment and pore fluid from ODP site 807A: the Ca2+(aq)–calcite equilibrium fractionation factor and calcite recrystallization rates in Pleistocene sediments. Geochim Cosmochim Acta 71:2524–2546

    Article  Google Scholar 

  • Fantle MS, Tipper ET (2014) Calcium isotopes in the global biogeochemical ca cycle: implications for development of a ca isotope proxy. Earth-Sci Rev 129:148–177

    Article  Google Scholar 

  • Farkaš J, Chackrabati R, Jacobsen SB, Kump LR, Melezhik VA (2012) Chapter 7.10.3: Ca and Mg isotopes in sedimentary carbonates. In: Frontiers in Earth Sciences, vol 8. Springer, New York, pp 1467–1482

    Google Scholar 

  • Faure G, Mensing TM (2004) Isotopes: principles and applications, 3rd edn. Wiley, Hoboken. xxv+897 pp

    Google Scholar 

  • Fei Y (1995) Thermal expansion. In: Mineral physics and crystallography: a handbook of physical constants. American Geophysical Union, Washington, DC, pp 29–44

    Chapter  Google Scholar 

  • Goldsmith JR, Heard HC (1961) Subsolidus phase relations in the system CaCO3–MgCO3. J Geol 69:45–74

    Article  Google Scholar 

  • Gradstein FM, Ogg JG, Smith AG (2004) A Geologic Time Scale 2004. Cambridge University Press, New York

    Book  Google Scholar 

  • Graf DL, Goldsmith JR (1955) Dolomite-magnesian calcite relations at elevated temperatures and CO2 pressures. Geochim Cosmochim Acta 7:109–128

    Article  Google Scholar 

  • Graf DL, Goldsmith JR (1958) The solid solubility of MgCO3 in CaCO3: a revision. Geochim Cosmochim Acta 13:218–219

    Article  Google Scholar 

  • Gussone N, Böhm F, Eisenhauer A, Dietzel M, Heuser A, Teichert BMA, Reitner J, Wörheide G, Dullo W-C (2005) Calcium isotope fractionation in calcite and aragonite. Geochim Cosmochim Acta 69(18):4485–4494

    Article  Google Scholar 

  • Hanks TC, Anderson DL (1969) The early thermal history of the earth. Phys Earth Planet Inter 2:19–29

    Article  Google Scholar 

  • Hardie LA (1987) Perspectives on dolomitization: a critical review of some current views. J Sediment Petrol 57:166–183

    Article  Google Scholar 

  • Harker RI, Tuttle OF (1955) Studies in the system CaO-MgO-CO2, part 2. Limits of solid solution along the join CaCO3–MgCO3. Am J Sci 253:274–282

    Article  Google Scholar 

  • Hay WW, Sloan JL II, Wold CN (1988) Mass/age distribution and composition of sediments on the ocean floor and the global rate of sediment subduction. J Geophys Res 93(B12):14,933–14,940

    Article  Google Scholar 

  • Henkes GA, Passey BH, Wanamaker AD Jr, Grossman EL, Ambrose WG Jr, Carroll ML (2013) Carbonate clumped isotope compositions of modern marine mollusk and brachiopod shells. Geochim Cosmochim Acta 106:307–325

    Article  Google Scholar 

  • Hippler D, Schmitt A-D, Gussone N, Heuser A, Stille P, Eisenhauer A, Nägler TF (2003) Calcium isotopic composition of various reference materials and seawater. Geostandards Newslett, Journal of Geostandards and Geoanalytical 27(1):13–19

    Article  Google Scholar 

  • Holmden C, Papanastassiou DA, Blanchon P, Evans S (2012) δ44/40Ca variability in shallow water carbonates and the impact of submarine groundwater discharge on ca-cycling in marine environments. Geochim Cosmochim Acta 83:179–184

    Article  Google Scholar 

  • Katz ME, Wright JD, Miller KG, Cramer BS, Fennel K, Falkowski PG (2005) Biological overprint of the geological carbon cycle. Mar Geol 217:323–338. (Falkowsi PG, Knoll AH (eds) Evolution of primary producers in the Sea, Chapter 18. Amsterdam, Elsevier, pp 405–430)

    Article  Google Scholar 

  • Katz ME, Fennel K, Falkowski PG (2007) Geochemical and biological consequences of phytoplankton evolution. In: Falkowski PG, Knoll A (eds) Evolution of aquatic photoautotrophs. Academic, pp 405–430

    Chapter  Google Scholar 

  • Land LS (1985) The origin of massive dolomite. J Geol 33:112–125

    Google Scholar 

  • Le Quere C, Moriarty R, Andrew RM et al (2015) Carbon budget 2014. Earth Syst Sci Data 7:47–85

    Article  Google Scholar 

  • Lerman A, Clauer N (2007) Stable isotopes in the sedimentary record. Treatise Geochem 7:1–55

    Google Scholar 

  • Lerman A, Guidry M, Andersson A, Mackenzie FT (2011) Coastal Ocean last glacial maximum to 2100 CO2-carbonic acid-carbonate system: a modeling approach. Aquat Geochem 17:749–773

    Article  Google Scholar 

  • Liu L-g, Chen C-c, Lin C-C, Yang Y-j (2005) Elasticity of single-crystal aragonite by Brillouin spectroscopy. Phys Chem Miner 32:97–102

    Article  Google Scholar 

  • Machel HG, Mountjoy EW (1986) Chemistry and environments of dolomitization – a reappraisal. Earth-Sci Rev 23:175–222

    Article  Google Scholar 

  • Mackenzie FT, Andersson AJ (2013) The marine carbon system and ocean acidification during Phanerozoic time. Geochem Perspect 2:1–227

    Article  Google Scholar 

  • Mackenzie FT, Lerman A (2006) Carbon in the geobiosphere – Earth’s outer Shell. Springer, Dordrecht. xxi+402 pp

    Google Scholar 

  • Mackenzie FT, Morse JW (1992) Sedimentary carbonates through Phanerozoic time. Geochim Cosmochim Acta 56:3281–3295

    Article  Google Scholar 

  • Mackenzie FT, Lerman A, DeCarlo EH (2011) Coupled C, N, P, and O biogeochemical cycling at the land-ocean interface. In: Middleburg J, Laane R (eds) Treatise on coastal and estuarine science, vol 5. Elsevier, New York, pp 317–342

    Chapter  Google Scholar 

  • McKenzie JA (1991) The dolomite problem: an outstanding controversy. In: Muller DW, McKenzie JA, Weissert H (eds) Controversies in modern geology: evolution of geological theories in sedimentology, earth history and tectonics. Academic, London, pp 37–54

    Google Scholar 

  • McKenzie JA, Vasconcelos C (2009) Dolomite Mountains and the origin of the dolomite rock of which they mainly consist: historical developments and new perspectives. Sedimentology 56(1):205–219

    Article  Google Scholar 

  • Millero F (2013) Chemical oceanography, 4th edn. CRC Press/Taylor & Francis Group, Boca Raton. 547 pp

    Google Scholar 

  • Mindat (1993–2016) http://www.mindat.org/

  • Morse JW, Mackenzie FT (1990) Geochemistry of sedimentary carbonates. Elsevier, New York. xvi + 707 pp

    Google Scholar 

  • NIST (2016) Thermophysical properties of fluid systems. http://webbook.nist.gov/chemistry/fluid/

  • O’Leary MH (1988) Carbon isotopes in photosynthesis. Bioscience 38:328–335

    Article  Google Scholar 

  • O’Neil JR, Clayton RN, Mayeda TK (1969) Oxygen isotope fractionation in divalent metal carbonates. J Chem Phys 51(12):5547–5558

    Article  Google Scholar 

  • Pickett M, Anderrson AJ (2015) Dissolution rates of biogenic carbonates in natural seawater at different pCO2 conditions: a laboratory study. Aquat Geochem 21(6):459–485

    Article  Google Scholar 

  • Plummer LN, Mackenzie FT (1974) Predicting mineral solubility from rate data: application to the dissolution of magnesian calcites. Am J Sci 274:61–83

    Article  Google Scholar 

  • Railsback LB (2002) Patterns in the compositions, properties, and geochemistry of carbonate minerals. Department of Geology, University of Georgia, Athens. http://www.gly.uga.edu/railsback/Fundamentals/FundamentalsCarbs.html

    Google Scholar 

  • Redfern SAT, Wood BJ, Henderson CMB (1993) Static compressibility of magnesite to 20 GPa: implications for MgCO3 in the lower mantle. Geophys Res Lett 20(19):2099–2012

    Article  Google Scholar 

  • Robie RA, Hemingway BS (1995) Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105Pascals) Pressure and at higher temperatures. USGS Bulletin 2131. iv+461 pp

    Google Scholar 

  • Ross NA (1997) The equation of state and high-pressure behavior of magnesite. Am Mineral 82:682–688

    Article  Google Scholar 

  • Runnels RT, Schleicher JA (1956) Chemical composition of Eastern Kansas limestone. Kans Geol Surv Bull 119(3):1–18

    Google Scholar 

  • Sabine CL, Feely RA, Gruber N, Key RM et al (2004) The oceanic sink for anthropogenic CO2. Science 305(5862):367–371

    Article  Google Scholar 

  • Saulnier S, Rollion-Bard C, Vigier N, Chaussidon M (2012) Mg isotope fractionation during calcite precipitation: an experimental study. Geochim Cosmochim Acta 91:75–91

    Article  Google Scholar 

  • Skinner BJ (1966) Thermal expansion. In: Clark SP Jr (ed) Handbook of physical constants, Geological Society of America Memoir, vol 97. Geological Society of America, New York, pp 75–96

    Chapter  Google Scholar 

  • Speer JA (1983) Crystal chemistry and phase relations of orthorhombic carbonates. Rev Mineral 11:145–189

    Google Scholar 

  • Thorstenson DC, Plummer LN (1977) Equilibrium criteria for two component solids reacting with fixed composition in an aqueous phase – example: the magnesian calcites. Am J Sci 277:1203–1223

    Article  Google Scholar 

  • Tuthorn M, Zech M, Ruppenthal M, Oelmann Y, Kahmen A, del Valle HF, Wilcke W, Glaser B (2014) Oxygen isotope ratios (18O/16O) of hemicellulose-derived sugar biomarkers in plants, soils and sediments as paleoclimate proxy II: insight from a climate transect study. Geochim Cosmochim Acta 126:624–634

    Article  Google Scholar 

  • Urey HC (1952) The planets: their origin and development. Yale University Press, New Haven. xvii+245 pp

    Google Scholar 

  • Veizer J, Ala D, Azmy K, Bruckschen P, Buhl D, Bruhn F, Carden GAF, Diener A, Ebneth S, Goddéris Y, Jasper T, Korte C, Pawellek F, Podlaha OG, Strauss H (1999) 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chem Geol 161:59–88

    Article  Google Scholar 

  • Walter LM, Morse JW (1984) Reactive surface area of skeletal carbonate during dissolution: effect of grain size. J Sediment Petrol 54:1081–1090

    Google Scholar 

  • Walter LM, Morse JW (1985) The dissolution kinetics of shallow marine carbonates in seawater: a laboratory study. Geochim Cosmochim Acta 49:1503–1513

    Article  Google Scholar 

  • Weatherill GW (1966) Radioactive decay constants and energies. In: Clark SP Jr (ed) Handbook of physical constants, Geological Society of America Memoir, vol 97. Geological Society of America, New York, pp 513–519

    Chapter  Google Scholar 

  • Wood BJ, Walter MJ, Wade J (2006) Accretion of the Earth and segregation of its core. Nature 441:825–833

    Article  Google Scholar 

  • Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292(5517):686–693

    Article  Google Scholar 

  • Zeebe RE, Wolf-Gladrow D (2001) CO2 in seawater: equilibrium, kinetics, isotopes. Elsevier, Amsterdam. xiii+346 pp

    Google Scholar 

  • Zhang J, Reeder RJ (1999) Comparative compressibilities of calcite-structure carbonates: deviations from empirical relations. Am Mineral 84:861–870

    Article  Google Scholar 

  • Zhong S, Mucci A (1989) Calcite and aragonite precipitation from seawater solutions of various salinities: precipitation rates and overgrowth compositions. Chem Geol 78(3):283–299

    Article  Google Scholar 

  • Zhu P, Macdougall JD (1998) Calcium isotopes in the marine environment and the oceanic calcium cycle. Geochim Cosmochim Acta 62(10):1691–1698

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by NOAA Hawaii Sea Grant, School of Earth and Ocean Science and Technology, University of Hawaii, and by Weinberg College of Arts and Sciences, Northwestern University. We thank Mr. Noah Howins, University of Hawaii, for help with the compilation of references cited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abraham Lerman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Lerman, A., Mackenzie, F.T. (2018). Carbonate Minerals and the CO2-Carbonic Acid System. In: White, W.M. (eds) Encyclopedia of Geochemistry. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-319-39312-4_84

Download citation

Publish with us

Policies and ethics