Encyclopedia of Geochemistry

2018 Edition
| Editors: William M. White

Carbonate Minerals and the CO2-Carbonic Acid System

  • Abraham LermanEmail author
  • Fred T. Mackenzie
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-39312-4_84


Carbonic acid, H2CO3, forms from the dissolution of CO2 in water and plays a key role in weathering, biological production, formation and deposition of sediments, and the carbon cycle. Carbonate minerals, primarily calcite, aragonite, and dolomite precipitating from these solutions, constitute the second most abundant class of sedimentary rocks.


Carbonate rocks, consisting mainly of the minerals calcite (CaCO 3) and dolomite [CaMg(CO 3) 2], are the second most abundant class of sedimentary rocks, after terrigenous clastics, on land and on the ocean floor. The widespread occurrence of carbonate rocks in the geologic record is attributable to the following factors:
  1. 1.

    CO2 gas has a relatively high solubility in water, higher than molecular oxygen and nitrogen.

  2. 2.

    CO2 hydrolyzes in water, making the bicarbonate and carbonate anions (discussed in more detail in section “CO2-Carbonic Acid-Carbonate System and Seawater”) that react with divalent and monovalent metals.

This is a preview of subscription content, log in to check access.



This work was supported by NOAA Hawaii Sea Grant, School of Earth and Ocean Science and Technology, University of Hawaii, and by Weinberg College of Arts and Sciences, Northwestern University. We thank Mr. Noah Howins, University of Hawaii, for help with the compilation of references cited.


  1. Andersson AJ (2014) The oceanic CaCO3 cycle. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, vol 8. Elsevier, Oxford, pp 519–542CrossRefGoogle Scholar
  2. Anthony JW, Bideaux RA, Bladh KW, Nichols MC (2003) Handbook of mineralogy, Borates, Carbonates, Sulphates, vol 5. Mineralogical Society of America, Chantilly. http://www.handbookofmineralogy.org/Google Scholar
  3. Arvidson RS, Mackenzie FT (1997) Tentative kinetic model for dolomite precipitation rate and its application to dolomite distribution. Aquat Geochem 2:273–298CrossRefGoogle Scholar
  4. Arvidson RS, Mackenzie FT (1999) The dolomite problem: control of precipitation kinetics by temperature and saturation state. Am J Sci 299:257–288CrossRefGoogle Scholar
  5. Bass JD (1995) Elasticity of minerals, glasses, and melts. In: Mineral physics and crystallography: a handbook of physical constants. American Geophysical Union, Washington, DC, pp 45–63CrossRefGoogle Scholar
  6. Berner RA (2006) Carbon, sulfur and O2 across the Permian-Triassic boundary. J Geochem Explor 88:416–418CrossRefGoogle Scholar
  7. Berner RA, Maasch KA (1996) Chemical weathering and controls on atmospheric O2 and CO2: fundamental principles were enunciated by J. J. Ebelmen in 1845. Geochim Cosmochim Acta 60(9):1633–1637CrossRefGoogle Scholar
  8. Bertram MA, Mackenzie FT, Bishop FC, Bischoff WD (1991) Influence of temperature on the stability of magnesian calcites. Am Mineral 76:1889–1896Google Scholar
  9. Bertram MA, Mackenzie FT, Bishop FC, Bischoff WD (1991) Influence of temperature on the stability of magnesian calcites. Am Mineral 76:1889–1896Google Scholar
  10. Birch F (1966) Compressibility; elastic constants. In: Clark SP Jr (ed) Handbook of physical constants, Geological Society of America Memoir, vol 97. Geological Society of America, New York, pp 97–173CrossRefGoogle Scholar
  11. Bischoff WD, Mackenzie FT, Bishop FC (1987) Stabilities of synthetic magnesian calcites in aqueous solution: comparison with biogenic materials. Geochim Cosmochim Acta 51:1413–1423CrossRefGoogle Scholar
  12. Bischoff WD, Bertram MA, Mackenzie FT, Bishop FC (1993) Diagenetic stabilization pathways of magnesian calcites. Carbonates Evaporites 8:82–89CrossRefGoogle Scholar
  13. Böhm F, Gussone N, Eisenhauer A, Reynaud S, Paytan A, Bosellini F, Brachert T, Reitner J, Wörheide G, Dullo W-C (2006) Ca isotope fractionation of inorganic, biologically induced and biologically controlled calcium carbonates. Geophys Res Abstr 8:09686Google Scholar
  14. Broecker WS, Peng T-H (1982) Tracers in the sea. Lamont-Doherty Geological Observatory, Columbia University, PalisadesGoogle Scholar
  15. Busenburg E, Plummer LN (1989) Thermodynamics of magnesian calcite solid-solutions at 25°C and 1 atm pressure. Geochimica et Coscochimica Acta 53:1189–1208CrossRefGoogle Scholar
  16. Carlson WD (1980) The calcite-aragonite equilibrium: effects of Sr substitution and anion orientational disorder. Am Mineral 65:1252–1262Google Scholar
  17. Chang VT-C, Williams RJP, Makishima A, Belshawl NS, O’Nion RK (2004) Mg and ca isotope fractionation during CaCO3 biomineralisation. Biochem Biophys Res Commun 323:79–85CrossRefGoogle Scholar
  18. Chapman R (2006) A sea water equation of state calculator. The Johns Hopkins Universisty. Applied Physics Laboratory, Laurel. http://fermi.jhuapl.edu/denscalc.htmlGoogle Scholar
  19. Chou L, Garrels RM, Wollast R (1989) Comparative study of the kinetics and mechanisms of dissolution of carbonate minerals. Chem Geol 78:269–282CrossRefGoogle Scholar
  20. Coplen TB (1995) Discontinuance of SMOW and PDB. Nature 375:285CrossRefGoogle Scholar
  21. Emrich K, Ehhalt DH, Vogel JC (1970) Carbon isotope fractionation during the precipitation of calcium carbonate. Earth Planet Sci Lett 8:363–371CrossRefGoogle Scholar
  22. Epstein S, Buchsbaum R, Lowenstam HA, Urey HC (1951) Carbonate-water isotopic temperature scale. Geol Soc Am Bull 62:417–426CrossRefGoogle Scholar
  23. Epstein S, Buchsbaum R, Lowenstam HA, Urey HC (1953) Revised carbonate-water isotopic temperature scale. Geol Soc Am Bull 64:1315–1326CrossRefGoogle Scholar
  24. Fantle MS, DePaolo DJ (2007) Ca isotopes in carbonate sediment and pore fluid from ODP site 807A: the Ca2+(aq)–calcite equilibrium fractionation factor and calcite recrystallization rates in Pleistocene sediments. Geochim Cosmochim Acta 71:2524–2546CrossRefGoogle Scholar
  25. Fantle MS, Tipper ET (2014) Calcium isotopes in the global biogeochemical ca cycle: implications for development of a ca isotope proxy. Earth-Sci Rev 129:148–177CrossRefGoogle Scholar
  26. Farkaš J, Chackrabati R, Jacobsen SB, Kump LR, Melezhik VA (2012) Chapter 7.10.3: Ca and Mg isotopes in sedimentary carbonates. In: Frontiers in Earth Sciences, vol 8. Springer, New York, pp 1467–1482Google Scholar
  27. Faure G, Mensing TM (2004) Isotopes: principles and applications, 3rd edn. Wiley, Hoboken. xxv+897 ppGoogle Scholar
  28. Fei Y (1995) Thermal expansion. In: Mineral physics and crystallography: a handbook of physical constants. American Geophysical Union, Washington, DC, pp 29–44CrossRefGoogle Scholar
  29. Goldsmith JR, Heard HC (1961) Subsolidus phase relations in the system CaCO3–MgCO3. J Geol 69:45–74CrossRefGoogle Scholar
  30. Gradstein FM, Ogg JG, Smith AG (2004) A Geologic Time Scale 2004. Cambridge University Press, New YorkCrossRefGoogle Scholar
  31. Graf DL, Goldsmith JR (1955) Dolomite-magnesian calcite relations at elevated temperatures and CO2 pressures. Geochim Cosmochim Acta 7:109–128CrossRefGoogle Scholar
  32. Graf DL, Goldsmith JR (1958) The solid solubility of MgCO3 in CaCO3: a revision. Geochim Cosmochim Acta 13:218–219CrossRefGoogle Scholar
  33. Gussone N, Böhm F, Eisenhauer A, Dietzel M, Heuser A, Teichert BMA, Reitner J, Wörheide G, Dullo W-C (2005) Calcium isotope fractionation in calcite and aragonite. Geochim Cosmochim Acta 69(18):4485–4494CrossRefGoogle Scholar
  34. Hanks TC, Anderson DL (1969) The early thermal history of the earth. Phys Earth Planet Inter 2:19–29CrossRefGoogle Scholar
  35. Hardie LA (1987) Perspectives on dolomitization: a critical review of some current views. J Sediment Petrol 57:166–183CrossRefGoogle Scholar
  36. Harker RI, Tuttle OF (1955) Studies in the system CaO-MgO-CO2, part 2. Limits of solid solution along the join CaCO3–MgCO3. Am J Sci 253:274–282CrossRefGoogle Scholar
  37. Hay WW, Sloan JL II, Wold CN (1988) Mass/age distribution and composition of sediments on the ocean floor and the global rate of sediment subduction. J Geophys Res 93(B12):14,933–14,940CrossRefGoogle Scholar
  38. Henkes GA, Passey BH, Wanamaker AD Jr, Grossman EL, Ambrose WG Jr, Carroll ML (2013) Carbonate clumped isotope compositions of modern marine mollusk and brachiopod shells. Geochim Cosmochim Acta 106:307–325CrossRefGoogle Scholar
  39. Hippler D, Schmitt A-D, Gussone N, Heuser A, Stille P, Eisenhauer A, Nägler TF (2003) Calcium isotopic composition of various reference materials and seawater. Geostandards Newslett, Journal of Geostandards and Geoanalytical 27(1):13–19CrossRefGoogle Scholar
  40. Holmden C, Papanastassiou DA, Blanchon P, Evans S (2012) δ44/40Ca variability in shallow water carbonates and the impact of submarine groundwater discharge on ca-cycling in marine environments. Geochim Cosmochim Acta 83:179–184CrossRefGoogle Scholar
  41. Katz ME, Wright JD, Miller KG, Cramer BS, Fennel K, Falkowski PG (2005) Biological overprint of the geological carbon cycle. Mar Geol 217:323–338. (Falkowsi PG, Knoll AH (eds) Evolution of primary producers in the Sea, Chapter 18. Amsterdam, Elsevier, pp 405–430)CrossRefGoogle Scholar
  42. Katz ME, Fennel K, Falkowski PG (2007) Geochemical and biological consequences of phytoplankton evolution. In: Falkowski PG, Knoll A (eds) Evolution of aquatic photoautotrophs. Academic, pp 405–430CrossRefGoogle Scholar
  43. Land LS (1985) The origin of massive dolomite. J Geol 33:112–125Google Scholar
  44. Le Quere C, Moriarty R, Andrew RM et al (2015) Carbon budget 2014. Earth Syst Sci Data 7:47–85CrossRefGoogle Scholar
  45. Lerman A, Clauer N (2007) Stable isotopes in the sedimentary record. Treatise Geochem 7:1–55Google Scholar
  46. Lerman A, Guidry M, Andersson A, Mackenzie FT (2011) Coastal Ocean last glacial maximum to 2100 CO2-carbonic acid-carbonate system: a modeling approach. Aquat Geochem 17:749–773CrossRefGoogle Scholar
  47. Liu L-g, Chen C-c, Lin C-C, Yang Y-j (2005) Elasticity of single-crystal aragonite by Brillouin spectroscopy. Phys Chem Miner 32:97–102CrossRefGoogle Scholar
  48. Machel HG, Mountjoy EW (1986) Chemistry and environments of dolomitization – a reappraisal. Earth-Sci Rev 23:175–222CrossRefGoogle Scholar
  49. Mackenzie FT, Andersson AJ (2013) The marine carbon system and ocean acidification during Phanerozoic time. Geochem Perspect 2:1–227CrossRefGoogle Scholar
  50. Mackenzie FT, Lerman A (2006) Carbon in the geobiosphere – Earth’s outer Shell. Springer, Dordrecht. xxi+402 ppGoogle Scholar
  51. Mackenzie FT, Morse JW (1992) Sedimentary carbonates through Phanerozoic time. Geochim Cosmochim Acta 56:3281–3295CrossRefGoogle Scholar
  52. Mackenzie FT, Lerman A, DeCarlo EH (2011) Coupled C, N, P, and O biogeochemical cycling at the land-ocean interface. In: Middleburg J, Laane R (eds) Treatise on coastal and estuarine science, vol 5. Elsevier, New York, pp 317–342CrossRefGoogle Scholar
  53. McKenzie JA (1991) The dolomite problem: an outstanding controversy. In: Muller DW, McKenzie JA, Weissert H (eds) Controversies in modern geology: evolution of geological theories in sedimentology, earth history and tectonics. Academic, London, pp 37–54Google Scholar
  54. McKenzie JA, Vasconcelos C (2009) Dolomite Mountains and the origin of the dolomite rock of which they mainly consist: historical developments and new perspectives. Sedimentology 56(1):205–219CrossRefGoogle Scholar
  55. Millero F (2013) Chemical oceanography, 4th edn. CRC Press/Taylor & Francis Group, Boca Raton. 547 ppGoogle Scholar
  56. Mindat (1993–2016) http://www.mindat.org/
  57. Morse JW, Mackenzie FT (1990) Geochemistry of sedimentary carbonates. Elsevier, New York. xvi + 707 ppGoogle Scholar
  58. NIST (2016) Thermophysical properties of fluid systems. http://webbook.nist.gov/chemistry/fluid/
  59. O’Leary MH (1988) Carbon isotopes in photosynthesis. Bioscience 38:328–335CrossRefGoogle Scholar
  60. O’Neil JR, Clayton RN, Mayeda TK (1969) Oxygen isotope fractionation in divalent metal carbonates. J Chem Phys 51(12):5547–5558CrossRefGoogle Scholar
  61. Pickett M, Anderrson AJ (2015) Dissolution rates of biogenic carbonates in natural seawater at different pCO2 conditions: a laboratory study. Aquat Geochem 21(6):459–485CrossRefGoogle Scholar
  62. Plummer LN, Mackenzie FT (1974) Predicting mineral solubility from rate data: application to the dissolution of magnesian calcites. Am J Sci 274:61–83CrossRefGoogle Scholar
  63. Railsback LB (2002) Patterns in the compositions, properties, and geochemistry of carbonate minerals. Department of Geology, University of Georgia, Athens. http://www.gly.uga.edu/railsback/Fundamentals/FundamentalsCarbs.htmlGoogle Scholar
  64. Redfern SAT, Wood BJ, Henderson CMB (1993) Static compressibility of magnesite to 20 GPa: implications for MgCO3 in the lower mantle. Geophys Res Lett 20(19):2099–2012CrossRefGoogle Scholar
  65. Robie RA, Hemingway BS (1995) Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105Pascals) Pressure and at higher temperatures. USGS Bulletin 2131. iv+461 ppGoogle Scholar
  66. Ross NA (1997) The equation of state and high-pressure behavior of magnesite. Am Mineral 82:682–688CrossRefGoogle Scholar
  67. Runnels RT, Schleicher JA (1956) Chemical composition of Eastern Kansas limestone. Kans Geol Surv Bull 119(3):1–18Google Scholar
  68. Sabine CL, Feely RA, Gruber N, Key RM et al (2004) The oceanic sink for anthropogenic CO2. Science 305(5862):367–371CrossRefGoogle Scholar
  69. Saulnier S, Rollion-Bard C, Vigier N, Chaussidon M (2012) Mg isotope fractionation during calcite precipitation: an experimental study. Geochim Cosmochim Acta 91:75–91CrossRefGoogle Scholar
  70. Skinner BJ (1966) Thermal expansion. In: Clark SP Jr (ed) Handbook of physical constants, Geological Society of America Memoir, vol 97. Geological Society of America, New York, pp 75–96CrossRefGoogle Scholar
  71. Speer JA (1983) Crystal chemistry and phase relations of orthorhombic carbonates. Rev Mineral 11:145–189Google Scholar
  72. Thorstenson DC, Plummer LN (1977) Equilibrium criteria for two component solids reacting with fixed composition in an aqueous phase – example: the magnesian calcites. Am J Sci 277:1203–1223CrossRefGoogle Scholar
  73. Tuthorn M, Zech M, Ruppenthal M, Oelmann Y, Kahmen A, del Valle HF, Wilcke W, Glaser B (2014) Oxygen isotope ratios (18O/16O) of hemicellulose-derived sugar biomarkers in plants, soils and sediments as paleoclimate proxy II: insight from a climate transect study. Geochim Cosmochim Acta 126:624–634CrossRefGoogle Scholar
  74. Urey HC (1952) The planets: their origin and development. Yale University Press, New Haven. xvii+245 ppGoogle Scholar
  75. Veizer J, Ala D, Azmy K, Bruckschen P, Buhl D, Bruhn F, Carden GAF, Diener A, Ebneth S, Goddéris Y, Jasper T, Korte C, Pawellek F, Podlaha OG, Strauss H (1999) 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chem Geol 161:59–88CrossRefGoogle Scholar
  76. Walter LM, Morse JW (1984) Reactive surface area of skeletal carbonate during dissolution: effect of grain size. J Sediment Petrol 54:1081–1090Google Scholar
  77. Walter LM, Morse JW (1985) The dissolution kinetics of shallow marine carbonates in seawater: a laboratory study. Geochim Cosmochim Acta 49:1503–1513CrossRefGoogle Scholar
  78. Weatherill GW (1966) Radioactive decay constants and energies. In: Clark SP Jr (ed) Handbook of physical constants, Geological Society of America Memoir, vol 97. Geological Society of America, New York, pp 513–519CrossRefGoogle Scholar
  79. Wood BJ, Walter MJ, Wade J (2006) Accretion of the Earth and segregation of its core. Nature 441:825–833CrossRefGoogle Scholar
  80. Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292(5517):686–693CrossRefGoogle Scholar
  81. Zeebe RE, Wolf-Gladrow D (2001) CO2 in seawater: equilibrium, kinetics, isotopes. Elsevier, Amsterdam. xiii+346 ppGoogle Scholar
  82. Zhang J, Reeder RJ (1999) Comparative compressibilities of calcite-structure carbonates: deviations from empirical relations. Am Mineral 84:861–870CrossRefGoogle Scholar
  83. Zhong S, Mucci A (1989) Calcite and aragonite precipitation from seawater solutions of various salinities: precipitation rates and overgrowth compositions. Chem Geol 78(3):283–299CrossRefGoogle Scholar
  84. Zhu P, Macdougall JD (1998) Calcium isotopes in the marine environment and the oceanic calcium cycle. Geochim Cosmochim Acta 62(10):1691–1698CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Earth and Planetary SciencesNorthwestern UniversityEvanstonUSA
  2. 2.Department of Oceanography, School of Ocean and Earth Science and TechnologyUniversity of Hawai‘i at ManoaHonoluluUSA