Encyclopedia of Geochemistry

2018 Edition
| Editors: William M. White


  • Cristiana L. CiobanuEmail author
  • Nigel J. CookEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-39312-4_82

Element Data

Atomic Symbol: Bi

Atomic Number: 83

Atomic Weight: 208.9804

Isotopes and Abundances: Bi209 (100%) – several other isotopes are short-lived intermediate products of U238 (Bi210 and Bi214), U235 (Bi211 and Bi213), and Th232 (Bi212) decay. Bi209 is a rare primordial isotope, discovered in 2003, that decays via α-decay with a half-life greater than a billion times the age of the universe.

1 Atm Melting Point: 544.52 °C

1 Atm Boiling Point: 1837 °C

Common Valences: +3 (0, +5)

Ionic Radii: 3+: 101 pm

Pauling Electronegativity: 2.02

First Ionization Potential: 703 kJ mol−1

Chondritic (CI) Abundance: 0.11 ppm

Silicate Earth Abundance: 0.003 ppm

Crustal Abundance: 0.025 ppm

Seawater Abundance: 0.015 μg/l

Core Abundance: ~0.03 ppm

Ahrens and Erlank (1969), Angino and Long (1979), Norman (1998), Palme and O’Neill (2014)


Bismuth is a brittle, diamagnetic, reddish white metal which tarnishes to a brassy color and is a poor conductor of heat and electricity. Chemically,...

This is a preview of subscription content, log in to check access.


  1. Ahrens L, Erlank AJ (1969) Bismuth. In: Wedepohl KH (ed) Handbook of geochemistry. Springer, New York, pp 83-A-1–83-O-1Google Scholar
  2. Angino EE, Long DT (eds) (1979) The geochemistry of bismuth. Dowden, Hutchinson and Ross, Stroudsberg. 689 ppGoogle Scholar
  3. Christy AG (2015) Causes of anomalous mineralogical diversity in the periodic table. Mineral Mag 79:33–49CrossRefGoogle Scholar
  4. Ciobanu CL, Pring A, Cook NJ, Self P, Jefferson D, Dima G, Melnikov V (2009a) Chemical-structural modularity in the tetradymite group: a HRTEM study. Am Mineral 94:517–534CrossRefGoogle Scholar
  5. Ciobanu CL, Cook NJ, Pring A, Brugger J, Danushevsky L, Shimizu M (2009b) ‘Invisible gold’ in bismuth chalcogenides. Geochim Cosmochim Acta 73:1970–1999CrossRefGoogle Scholar
  6. Cook NJ, Ciobanu CL, Wagner T, Stanley CJ (2007) Minerals of the system Bi-Te-Se-S related to the tetradymite archetype: review of classification and compositional variation. Can Mineral 45:665–708CrossRefGoogle Scholar
  7. Cook NJ, Ciobanu CL, Danyushevsky LV, Gilbert S (2011) Minor and trace elements in bornite and associated Cu–(Fe)-sulfides: a LA-ICP-MS study. Geochim Cosmochim Acta 75:6473–6496CrossRefGoogle Scholar
  8. Etschmann BE, Liu W, Pring A, Grundler PV, Tooth B, Borg S, Testemale D, Brewe D, Brugger J (2016) The role of Te(IV) and Bi(III) chloride complexes in hydrothermal mass transfer: an X-ray absorption spectroscopic study. Chem Geol 425:37–51CrossRefGoogle Scholar
  9. Lind H, Lidin S (2003) A general structure model for Bi-Se phases using a superspace formalism. Solid State Sci 5:47–57CrossRefGoogle Scholar
  10. Makovicky E (1997) Modular crystal chemistry of sulphosalts and other complex sulphides. EMU Notes Mineral 1:237–271Google Scholar
  11. Makovicky E (2006) Crystal structures of sulfides and other chalcogenides. Rev Mineral Geochem 61:7–125CrossRefGoogle Scholar
  12. Moëlo Y, Makovicky E, Mozgova NN, Jambor JL, Cook NJ, Pring A, Paar W, Nickel EH, Graeser G, Karup-Møller S, Balić-Žunić T, Mumme WG, Vurro V, Topa D, Bindi L, Bente K, Shimizu M (2008) Sulfosalt systematics: a review. Report of the sulfosalt sub-committee of the IMA Commission on Ore Mineralogy. Eur J Mineral 20:7–46CrossRefGoogle Scholar
  13. Norman NC (1998) Chemistry of arsenic, antimony, and bismuth. Springer, Netherlands. 484 pp, ISBN 978-0-7514-0389-3Google Scholar
  14. Palme H, O’Neill HSC (2014) 3.1 – Cosmochemical estimates of mantle composition. In: Turekian HDHK (ed) Treatise on geochemistry, 2nd edn. Elsevier, Oxford, pp 1–39Google Scholar
  15. Tooth B, Ciobanu CL, Green L, O’Neill B, Brugger J (2011) Bi-melt formation and gold scavenging from hydrothermal fluids: an experimental study. Geochim Cosmochim Acta 75:5423–5443CrossRefGoogle Scholar
  16. Tooth B, Etschmann E, Pokrovski GS, Testemal D, Hazemann J-L, Grundler PV, Brugger J (2013) Bismuth speciation in hydrothermal fluids: an X-ray absorption spectroscopy and solubility study. Geochim Cosmochim Acta 101:156–172CrossRefGoogle Scholar
  17. Yang N, Sun H (2011) Bismuth: environmental pollution and health effects. Encyclopedia of environmental health. Reference module in Earth systems and environmental sciences. Elsevier, pp 414–420. ISBN: 978-0-12-409548-9CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Chemical EngineeringThe University of AdelaideAdelaideAustralia