Encyclopedia of Geochemistry

2018 Edition
| Editors: William M. White

Beryllium Isotopes

  • Paul R. BiermanEmail author
  • Eric W. Portenga
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-39312-4_81

Definition

Beryllium (atomic number 4) has twelve isotopes, but only three are routinely measured: 7Be, 9Be, and 10Be. 9Be is a stable isotope that is found naturally in geological materials typically at μg g−1 levels and is considered in the  Beryllium chapter. 7Be is a short-lived radionuclide (t1/2 = 53 days) and 10Be is a long-lived radionuclide (t1/2 = 1.38 Myr) produced both in the atmosphere and in earth materials by cosmic-ray interactions. 10Be produced in the atmosphere is termed “meteoric” (10Bem), whereas in situ10Be (10Bei) is produced within geological materials primarily within the uppermost few meters of Earth’s surface (Lal 1988). Although both 7Be and 10Be have been used in geological, geomorphological, and geographical studies, we focus here on 10Be. We consider both 10Bei and 10Bem; 10Bei has been used to solve many more problems in Earth Science than 10Bem, and our review reflects this.

7Be Production, Delivery, and Analysis

7Be is produced in the atmosphere by...

This is a preview of subscription content, log in to check access.

References

  1. Anderson RS, Repka JL, Dick GS (1996) Explicit treatment of inheritance in dating depositional surfaces using in situ 10Be and 26Al. Geology 24:47–51CrossRefGoogle Scholar
  2. Balco G, Purvance MD, Rood DH (2011) Exposure dating of precariously balanced rocks. Quat Geochronol 6(3–4):295–303CrossRefGoogle Scholar
  3. Barg E, Lal D, Pavich MJ, Caffee MW, Southon JR (1997) Beryllium geochemistry in soils: evaluation of 10Be/9Be ratios in authigenic minerals as a basis for age models. Chem Geol 140(3–4):237–258CrossRefGoogle Scholar
  4. Bierman PR, Coppersmith R, Hanson K, Neveling J, Portenga EW, Rood DH (2014) A cosmogenic view of erosion, relief generation, and the age of faulting in southern Africa. GSA Today 24(9):4–10CrossRefGoogle Scholar
  5. Bierman PR, Shakun JD, Corbett LB, Zimmerman SR, Rood DH (2016) A persistent and dynamic East Greenland Ice Sheet over the past 7.5 million years. Nature 540(7632):256–260CrossRefGoogle Scholar
  6. Borchers B, Marrero S, Balco G, Caffee M, Goehring B, Lifton N, Nishiizumi K, Phillips F, Schaefer J, Stone J (2016) Geological calibration of spallation production rates in the CRONUS-Earth project. Quat Geochronol 31:188–198CrossRefGoogle Scholar
  7. Briner JP, Goehring BM, Mangerud J, Svendsen JI (2016) The deep accumulation of 10Be at Utsira, southwestern Norway: implications for cosmogenic nuclide exposure dating in peripheral ice sheet landscapes. Geophys Res Lett 43:9121–9129CrossRefGoogle Scholar
  8. Brown L, Pavich MJ, Hickman RE, Klein J, Middleton R (1988) Erosion of the eastern United States observed with 10Be. Earth Surf Process Landf 13:441–457CrossRefGoogle Scholar
  9. Brown ET, Stallard RF, Larsen MC, Raisbeck GM, Yiou F (1995) Denudation rates determined from the accumulation of in situ-produced 10Be in the luquillo experimental forest, Puerto Rico. Earth Planet Sci Lett 129:193–202CrossRefGoogle Scholar
  10. Corbett LB, Bierman PR, Rood DH (2016) An approach for optimizing in situ cosmogenic 10Be sample preparation. Quat Geochronol 33:24–34CrossRefGoogle Scholar
  11. Gosse JC, Phillips FM (2001) Terrestrial in situ cosmogenic nuclides: theory and application. Quat Sci Rev 20(14):1475–1560CrossRefGoogle Scholar
  12. Graly JA, Reusser LJ, Bierman PR (2011) Short and long-term delivery rates of meteoric 10Be to terrestrial soils. Earth Planet Sci Lett 302(3):329–336CrossRefGoogle Scholar
  13. Heikkilä U, Beer J, Alfimov V (2008) Beryllium-10 and beryllium-7 in precipitation in Dubendorf (440 m) and at Jungfraujoch (3580 m), Switzerland (1998–2005). J Geophys Res Atmos 113(D11):D11104CrossRefGoogle Scholar
  14. Heimsath AM, Fink D, Hancock GR (2009) The “humped” soil production function: eroding Arnhem Land, Australia. Earth Surf Process Landf 34:1674–1684CrossRefGoogle Scholar
  15. Heisinger B, Niodermayer M, Hartmann FJ, Korschinek G, Nolte E, Morteani G, Neumaier S, Patitjean C, Kubik P, Synal A, Ivy-Ochs S (1997) In-situ production of radionuclides at great depths. Nucl Inst Methods Phys Res B 123:341–346CrossRefGoogle Scholar
  16. Hewawasam T, von Blackenburg F, Schaller M, Kubik P (2003) Increase of human over natural erosion rates in tropical highlands constrained by cosmogenic nuclides. Geology 31(7):597–600CrossRefGoogle Scholar
  17. Heyman J, Stroeven AP, Harbor JM, Caffee MW (2011) Too young or too old: evaluating cosmogenic exposure dating based on an analysis of compiled boulder exposure ages. Earth Planet Sci Lett 302(1-2):71–80CrossRefGoogle Scholar
  18. Jungers MC, Bierman PR, Matmon A, Nichols K, Larsen J, Finkel R (2009) Tracing hillslope sediment production and transport with in situ and meteoric 10Be. J Geophys Res Earth Surf 114(F04020):1–16Google Scholar
  19. Kaste JM, Norton SA, Hess CT (2002) Environmental chemistry of Beryllium-7. Rev Mineral Geochem 50(1):271–289CrossRefGoogle Scholar
  20. Kirchner JW, Finkel RC, Riebe CS, Granger DE, Clayton JL, King JG, Megahan WF (2001) Mountain erosion over 10 yr, 10 k.y., and 10 m.y. time scales. Geology 29(7):591–594CrossRefGoogle Scholar
  21. Kohl CP, Nishiizumi K (1992) Chemical isolation of quartz for measurement of in-situ -produced cosmogenic nuclides. Geochim Cosmochim Acta 56:3583–3587CrossRefGoogle Scholar
  22. Lal D (1988) In situ-produced cosmogenic isotopes in terrestrial rocks. Annu Rev Earth Planet Sci 16:355–388CrossRefGoogle Scholar
  23. Lal D (1991) Cosmic ray labeling of erosion surfaces; in situ nuclide production rates and erosion models. Earth Planet Sci Lett 104(2–4):424–439CrossRefGoogle Scholar
  24. Lal D, Peters B (1967) Cosmic ray produced radioactivity on the earth. In: Sitte K (ed) Handbuch der Physik. Springer, New York, pp 551–612Google Scholar
  25. Landis JD, Renshaw CE, Kaste JM (2012) Measurement of 7Be in soils and sediments by gamma spectroscopy. Chem Geol 91:175–185CrossRefGoogle Scholar
  26. Matmon A, Schwartz DP, Finkel R, Clemmens S, Hanks T (2005) Dating offset fans along the Mojave section of the San Andreas fault using cosmogenic 26Al and 10Be. Geol Soc Am Bull 117(5–6):795CrossRefGoogle Scholar
  27. McKean JA, Dietrich WE, Finkel RC, Southon JR, Caffee MW (1993) Quantification of soil production and downslope creep rates from cosmogenic 10Be accumulations on a hillslope profile. Geology 21(4):343–346CrossRefGoogle Scholar
  28. Monaghan MC, Krishnaswami S, Thomas JH (1983) 10Be concentrations and the long-term fate of particle-reactive nuclides in five soil profiles from California. Earth Planet Sci Lett 65:51–60CrossRefGoogle Scholar
  29. Morris J, Valentine R, Harrison T (2002) 10Be imaging of sedment accretion and subduction along the northeast Japan and Costa Rica convergent margins. Geology 30(1):59–62CrossRefGoogle Scholar
  30. Nelson AH, Bierman PR, Shakun JD, Rood DH (2014) Using in situ cosmogenic 10Be to identify the source of sediment leaving Greenland. Earth Surf Process Landf 39(8):1087–1100CrossRefGoogle Scholar
  31. Nichols KK, Bierman P, Matmon A (2007) Deconvolving semi-arid landscape histories: insights from cosmogenic nuclides. Quat Int 167–168(3):305Google Scholar
  32. Nishiizumi K, Imamura M, Caffee MW, Southon JR, Finkel RC, McAninch J (2007) Absolute calibration of 10Be AMS standards. Nucl Inst Methods Phys Res B 258(2):403–413CrossRefGoogle Scholar
  33. Olen S, Bookhagen B, Strecker MR (2016) Role of climate and vegetation density in modulating denudation rates in the Himalaya. Earth Planet Sci Lett 445:57–67CrossRefGoogle Scholar
  34. Pavich MJ, Brown L, Klein J, Middleton R (1984) 10Be accumulation in a soil chronosequence. Earth Planet Sci Lett 68:198–204CrossRefGoogle Scholar
  35. Portenga EW, Bierman PR (2011) Understanding Earth’s eroding surface with 10Be. GSA Today 21(8):4–10CrossRefGoogle Scholar
  36. Perg LA, Anderson RS, Finkel RC (2003) Use of cosmogenic radionuclides as a sediment tracer in the Santa Cruz littoral cell, California, USA. Geology 31:299–302CrossRefGoogle Scholar
  37. Portenga EW, Bierman PR, Duncan C, Corbett LB, Kehrwald NM, Rood DH (2015) Erosion rates of the Bhutanese Himalaya determined using in situ-produced 10Be. Geomorphology 233:112–126CrossRefGoogle Scholar
  38. Portenga EW, Rood DH, Bishop P, Bierman PR (2016) A late Holocene onset of Aboriginal burning in southeastern Australia. Geology 44(2):131–134CrossRefGoogle Scholar
  39. Portenga EW, Bishop P, Rood DH, Bierman PR (2017) Combining bulk sediment OSL and meteoric 10Be fingerprinting techniques to identify gully initiation sites and erosion depths. J Geophys Res Earth Surf 122:513CrossRefGoogle Scholar
  40. Reusser LJ, Bierman PR (2010) Using meteoric 10Be to track fluvial sand through the Waipaoa River basin, New Zealand. Geology 38(1):47–50CrossRefGoogle Scholar
  41. Reusser L, Bierman P, Pavich M, Larsen J, Finkel R (2006) An episode of rapid bedrock channel incision during the last glacial cycle, measured with 10Be. Am J Sci 306(2):69–102CrossRefGoogle Scholar
  42. Reusser L, Graly J, Bierman P, Rood D (2010) Calibrating a long-term meteoric 10Be accumulation rate in soil. Geophys Res Lett 37(19)CrossRefGoogle Scholar
  43. Reusser L, Bierman P, Rood D (2015) Quantifying human impacts on rates of erosion and sediment transport at a landscape scale. Geology 43(2):171–174CrossRefGoogle Scholar
  44. Rinat Y, Matmon A, Arnold M, Aumaître G, Bourlès D, Keddadouche K, Porat N, Morin E, Finkel RC (2014) Holocene rockfalls in the southern Negev Desert, Israel and their relation to Dead Sea fault earthquakes. Quat Res 81(2):260–273CrossRefGoogle Scholar
  45. Schaller M, von Blanckenburg F, Hovius N, Veldkamp A, van den Berg MW, Kubik PW (2004) Paleoerosion rates from cosmogenic Be-10 in a 1.3 Ma terrace sequence: Response of the river Meuse to changes in climate and rock uplift. J Geol 112(2):127–144CrossRefGoogle Scholar
  46. Stone J (1998) A rapid fusion method for separation of beryllium-10 from soils and silicates. Geochim Cosmochim Acta 62(3):555–561CrossRefGoogle Scholar
  47. Stone JO (2000) Air pressure and cosmogenic isotope production. J Geophys Res Solid Earth 105(B10):23753–23759CrossRefGoogle Scholar
  48. Vanacker V, von Blackenburg F, Hewawasam T, Kubik PW (2007) Constraining landscape development of the Sri Lankan escarpment with cosmogenic nuclides in river sediment. Earth Planet Sci Lett 253:402–414CrossRefGoogle Scholar
  49. von Blackenburg F, Bouchez J (2014) River fluxes to the sea from the ocean’s 10Be/9Be ratio. Earth Planet Sci Lett 387:34–43CrossRefGoogle Scholar
  50. von Blackenburg F, Bouchez J, Wittmann H (2012) Earth surface erosion and weathering from the 10Be (meteoric)/9Be ratio. Earth Planet Sci Lett 351–352:295–305CrossRefGoogle Scholar
  51. Wallbrink PJ, Murray AS (1993) Use of fallout radionuclides as indicators of erosion processes. Hydrol Process 7(3):297–304CrossRefGoogle Scholar
  52. West N, Kirby E, Bierman P, Slingerland R, Ma L, Rood D, Brantley S (2013) Regolith production and transport at the Susquehanna Shale Hills Critical Zone Observatory, part 2: insights from meteoric 10Be. J Geophys Res Earth Surf 118(3):1877–1896CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of GeologyUniversity of VermontBurlingtonUSA
  2. 2.Department of Geography and GeologyEastern Michigan UniversityYpsilantiUSA