Encyclopedia of Geochemistry

2018 Edition
| Editors: William M. White


  • William M. WhiteEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-39312-4_79

Element Data

Atomic Symbol: Ba

Atomic Number: 56

Atomic Weight: 132.9054 g/mol

Isotopes and Abundances: 130Ba 0.11%, 132Ba 0.10%, 134Ba 2.42%, 135Ba 6.59%, 136Ba 7.85%, 137Ba 11.23%, 138Ba 71.70%

1 Atm Melting Point: 727 °C

1 Atm Boiling Point: 1845 °C

Common Valences: 2+

Ionic Radii: 149 pm (6-fold)

Pauling Electronegativity: 0.89

First Ionization Energy: 502.9 kJ/mol

Chondritic (CI) Abundance: 2.42 ppm

Silicate Earth Abundance: 6.6 ppm

Crustal Abundance: 390 ppm

Seawater Abundance: 30 to 150 nmol/kg

Core Abundance: ~0


Barium derived its English name from the Greek barys, meaning heavy. It is the heaviest stable alkaline earth and unusually abundant for an element with such a high atomic number. Barium, Pb, and Te are the only elements heavier than Zr (atomic number 40) with CI chondritic abundances greater than 2 ppm (Palme (in press),  “Cosmic Elemental Abundances,” this volume). This is due in large part to the unusual abundance of 138Ba, which has a magic number of...

This is a preview of subscription content, log in to check access.


  1. Andreasen R, Sharma M (2007) Mixing and homogenization in the early solar system: clues from Sr, Ba, Nd, and Sm isotopes in meteorites. Astrophys J 665(1):874CrossRefGoogle Scholar
  2. Bishop JKB (1988) The barite-opal-organic carbon association in oceanic particulate matter. Nature 332:341–343.  https://doi.org/10.1038/332341a0CrossRefGoogle Scholar
  3. Cao Z, Siebert C, Hathorne EC, Dai M, Frank M (2016) Constraining the oceanic barium cycle with stable barium isotopes. Earth Planet Sci Lett 434:1–9.  https://doi.org/10.1016/j.epsl.2015.11.017CrossRefGoogle Scholar
  4. Carlson RW, Boyet M, Horan M (2007) Chondrite barium, neodymium, and samarium isotopic heterogeneity and early Earth differentiation. Science 316(5828):1175–1178.  https://doi.org/10.1126/science.1140189CrossRefGoogle Scholar
  5. Chan LH, Edmond JM, Stallard RF, Broecker WS, Chung YC, Weiss RF, Ku TL (1976) Radium and barium at GEOSECS stations in the Atlantic and Pacific. Earth Planet Sci Lett 32:258–267CrossRefGoogle Scholar
  6. Chan LH, Drummond D, Edmond JM, Grant B (1977) On the barium data from the Atlantic GEOSECS expedition. Deep-Sea Res 24:613–649CrossRefGoogle Scholar
  7. Choudhury H, Cary R (2001) Barium and barium compounds. World Health Organization concise international chemical assessment document 33. World Health Organization, Geneva. Retrieved from http://apps.who.int/iris/bitstream/10665/42398/1/9241530332.pdf
  8. Dymond J, Suess E, Lyle M (1992) Barium in deep-sea sediment: a geochemical proxy for paleoproductivity. Paleoceanography 7(2):163–181.  https://doi.org/10.1029/92PA00181CrossRefGoogle Scholar
  9. Horner TJ, Kinsley CW, Nielsen SG (2015) Barium-isotopic fractionation in seawater mediated by barite cycling and oceanic circulation. Earth Planet Sci Lett 430:511–522.  https://doi.org/10.1016/j.epsl.2015.07.027CrossRefGoogle Scholar
  10. Hsieh Y-T, Henderson GM (2017) Barium stable isotopes in the global ocean: tracer of Ba inputs and utilization. Earth Planet Sci Lett 473:269–278.  https://doi.org/10.1016/j.epsl.2017.06.024CrossRefGoogle Scholar
  11. Kay RW (1980) Volcanic arc magmas: implications of a melting-mixing model for element recycling in the crust-upper mantle system. J Geol 88(5):497–522.  https://doi.org/10.2307/30066081CrossRefGoogle Scholar
  12. LaVigne M, Grottoli AG, Palardy JE, Sherrell RM (2016) Multi-colony calibrations of coral Ba/Ca with a contemporaneous in situ seawater barium record. Geochim Cosmochim Acta 179:203–216.  https://doi.org/10.1016/j.gca.2015.12.038CrossRefGoogle Scholar
  13. Lea DW, Shen GT, Boyle EA (1989) Coralline barium records temporal variability in equatorial Pacific upwelling. Nature 340(6232):373–376CrossRefGoogle Scholar
  14. McManus J, Berelson WM, Klinkhammer GP, Johnson KS, Coale KH, Anderson RF, Kumar N, Burdige DJ, Hammond DE, Brumsack HJ, McCorkle DC, Rushdi A (1998) Geochemistry of barium in marine sediments: implications for its use as a paleoproxy. Geochim Cosmochim Acta 62(21):3453–3473.  https://doi.org/10.1016/S0016-7037(98)00248-8CrossRefGoogle Scholar
  15. Moynier F, Pringle EA, Bouvier A, Moureau J (2015) Barium stable isotope composition of the Earth, meteorites, and calcium–aluminum-rich inclusions. Chem Geol 413:1–6.  https://doi.org/10.1016/j.chemgeo.2015.08.002CrossRefGoogle Scholar
  16. Plank T (2014) The chemical composition of subducting sediments. In: Turekian KK, Holland HD (eds) Treatise on geochemistry, vol 4, 2nd edn. Elsevier, Oxford, pp 607–629.  https://doi.org/10.1016/B978-0-08-095975-7.00319-3CrossRefGoogle Scholar
  17. Siebert C, Munker C (2017) Barium isotope fractionation during subduction zone processes. Presented at 2017 Goldschmidt conference, ParisGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Earth and Atmospheric SciencesCornell UniversityIthacaUSA