Skip to main content

Clay Minerals

  • Reference work entry
  • First Online:

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Definition

Clay minerals are a diverse group of minerals that are fine grained and crystalline and ultimately form from the aqueous alteration of primary igneous minerals at or near the surface of the Earth. They have a layered structure, commonly consisting of repeating sheets of Si tetrahedra and Al octahedra. The wide diversity of clay minerals stems from the way that these sheets stack together and the identity of ions that commonly substitute into the clay mineral structure. Due to their unique layered structure and their effectiveness as ion exchangers, the formation of clay minerals can have a significant impact over the chemical and isotopic compositions of solid and fluid phases during weathering.

Introduction

Clay minerals are a highly diverse and abundant group of minerals that derive from the interaction of water with rock in the Earth’s crust. Because clay minerals are often found in the clay-size fraction of sediments and soils (i.e., below 2 μm), the terms “clay” and...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Angove MJ, Johnson BB, Wells JD (1997) Adsorption of cadmium (II) on kaolinite. Colloids Surf A Physicochem Eng Asp 126(2):137–147

    Article  Google Scholar 

  • Aoyagi K, Kazama T (1980) Transformational changes of clay minerals, zeolites and silica minerals during diagenesis. Sedimentology 27(2):179–188

    Article  Google Scholar 

  • Appelo CAJ, Postma D (2005) Geochemistry, groundwater and pollution. CRC Press, Leiden

    Book  Google Scholar 

  • Bailey SW (1972) Determination of chlorite compositions by X-ray spacings and intensities. Clay Clay Miner 20(6):381–388

    Article  Google Scholar 

  • Bigeleisen J, Mayer MG (1947) Calculation of equilibrium constants for isotopic exchange reactions. J Chem Phys 15(5):261–267

    Article  Google Scholar 

  • Bolland MDA, Posner AM, Quirk JP (1976) Surface charge on kaolinites in aqueous suspension. Soil Res 14(2):197–216

    Article  Google Scholar 

  • Chamley H (2013) Clay sedimentology. Springer Science & Business Media, Berlin

    Google Scholar 

  • Clauer N, Srodon J, Francu J, Sucha V (1997) K-Ar dating of illite fundamental particles separated from illite-smectite. Clay Miner 32(2):181–196

    Article  Google Scholar 

  • Dixon JB (1989) Kaolin and serpentine group minerals. In: Minerals in soil environments, SSSA Book series, vol 1. SSSA, Madison. 2:467–526

    Google Scholar 

  • Drever JI (1988) The geochemistry of natural waters, vol 437. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Eberl DD, Farmer VC, Barrer RM (1984) Clay mineral formation and transformation in rocks and soils [and discussion]. Philos Trans R Soc Lond A 311(1517):241–257

    Article  Google Scholar 

  • Ehlmann BL, Mustard JF, Fassett CI, Schon SC, Head JW III, Des Marais DJ, … Murchie SL (2008) Clay minerals in delta deposits and organic preservation potential on Mars. Nat Geosci, 1(6):355–358

    Article  Google Scholar 

  • Ehlmann BL, Mustard JF, Murchie SL, Bibring JP, Meunier A, Fraeman AA, Langevin Y (2011) Subsurface water and clay mineral formation during the early history of Mars. Nature 479(7371):53–60

    Article  Google Scholar 

  • Fogg AM, O’Hare D (1999) Study of the intercalation of lithium salt in gibbsite using time-resolved in situ X-ray diffraction. Chem Mater 11(7):1771–1775

    Article  Google Scholar 

  • Galan E, Ferrell RE (2013) Genesis of clay minerals. In: Handbook of clay science, vol 5. Elsevier, Amsterdam, p 83

    Chapter  Google Scholar 

  • Gislason SR, Arnorsson S, Armannsson H (1996) Chemical weathering of basalt in Southwest Iceland; effects of runoff, age of rocks and vegetative/glacial cover. Am J Sci 296(8):837–907

    Article  Google Scholar 

  • Grotzinger JP, Sumner DY, Kah LC, Stack K, Gupta S, Edgar L, … Milliken R (2014) A habitable fluvio-lacustrine environment at Yellowknife Bay, Gale Crater, Mars. Science 343(6169):1242777

    Google Scholar 

  • Grotzinger JP, Gupta S, Malin MC, Rubin DM, Schieber J, Siebach K, … Calef F (2015) Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars. Science 350(6257):aac7575

    Article  Google Scholar 

  • Kelley S (2002) K-Ar and Ar-Ar dating. Rev Mineral Geochem 47(1):785–818

    Article  Google Scholar 

  • Kerr PF (1955) Hydrothermal alteration and weathering. Geol Soc Am Spec Pap 62:525–546

    Google Scholar 

  • Krauskopf KB, Bird DK (1967) Introduction to geochemistry, vol 721. McGraw-Hill, New York

    Google Scholar 

  • Ma C, Eggleton RA (1999) Cation exchange capacity of kaolinite. Clay Clay Miner 47(2):174–180

    Article  Google Scholar 

  • Merkel BJ, Planer-Friedrich B, Nordstrom D (2005) Groundwater geochemistry. In: A practical guide to Modeling of natural and contaminated aquatic systems, vol 2. Springer, Berlin

    Google Scholar 

  • Mermut AR, Cano AF (2001) Baseline studies of the clay minerals society source clays: chemical analyses of major elements. Clay Clay Miner 49(5):381–386

    Article  Google Scholar 

  • Milliken KL (2003) Late diagenesis and mass transfer in sandstone shale sequences. In: Treatise on geochemistry, vol 7. Elsevier, Amsterdam, pp 159–190

    Chapter  Google Scholar 

  • Murray HH (1991) Overview – clay mineral applications. Appl Clay Sci 5(5):379–395

    Article  Google Scholar 

  • Murray HH (2000) Traditional and new applications for kaolin, smectite, and palygorskite: a general overview. Appl Clay Sci 17(5):207–221

    Article  Google Scholar 

  • Nesbitt HW, Fedo CM, Young GM (1997) Quartz and feldspar stability, steady and non-steady-state weathering, and petrogenesis of siliciclastic sands and muds. J Geol 105(2):173–192

    Article  Google Scholar 

  • Odom IE (1984) Smectite clay minerals: properties and uses. Philos Trans R Soc Lond A 311(1517):391–409

    Article  Google Scholar 

  • Papelis C, Hayes KF (1996) Distinguishing between interlayer and external sorption sites of clay minerals using X-ray absorption spectroscopy. Colloids Surf A Physicochem Eng Asp 107:89–96

    Article  Google Scholar 

  • Peacock CL, Sherman DM (2005) Surface complexation model for multisite adsorption of copper (II) onto kaolinite. Geochim Cosmochim Acta 69(15):3733–3745

    Article  Google Scholar 

  • Perry E, Hower J (1970) Burial diagenesis in Gulf Coast pelitic sediments. Clay Clay Miner 18(3):165–177

    Article  Google Scholar 

  • Savin SM, Epstein S (1970) The oxygen and hydrogen isotope geochemistry of clay minerals. Geochim Cosmochim Acta 34(1):25–42

    Article  Google Scholar 

  • Segonzac GD (1970) The transformation of clay minerals during diagenesis and low-grade metamorphism: a review. Sedimentology 15(3–4):281–346

    Article  Google Scholar 

  • Sheppard SMF, Gilg HA (1996) Stable isotope geochemistry of clay minerals. Clay Miner 31(1):1–24

    Article  Google Scholar 

  • Singer A (1980) The paleoclimatic interpretation of clay minerals in soils and weathering profiles. Earth Sci Rev 15(4):303–326

    Article  Google Scholar 

  • Slaughter M, Milne I (2013) The formation of chlorite-like structures from montmorillonite. Clay Clay Miner 1960:114–124

    Article  Google Scholar 

  • Sposito G, Skipper NT, Sutton R, Park SH, Soper AK, Greathouse JA (1999) Surface geochemistry of the clay minerals. Proc Natl Acad Sci 96(7):3358–3364

    Article  Google Scholar 

  • Strawn DG, Sparks DL (1999) The use of XAFS to distinguish between inner-and outer-sphere lead adsorption complexes on montmorillonite. J Colloid Interface Sci 216(2):257–269

    Article  Google Scholar 

  • Strawn DG, Palmer NE, Furnare LJ, Goodell C, Amonette JE, Kukkadapu RK (2004) Copper sorption mechanisms on smectites. Clay Clay Miner 52(3):321–333

    Article  Google Scholar 

  • Tan D, Yuan P, Annabi-Bergaya F, Dong F, Liu D, He H (2015) A comparative study of tubular halloysite and platy kaolinite as carriers for the loading and release of the herbicide amitrole. Appl Clay Sci 114:190–196

    Article  Google Scholar 

  • Thiry M (2000) Palaeoclimatic interpretation of clay minerals in marine deposits: an outlook from the continental origin. Earth Sci Rev 49(1):201–221

    Article  Google Scholar 

  • Urey HC (1947) The thermodynamic properties of isotopic substances. J Chem Soc (Resumed). 562–581

    Google Scholar 

  • Velde BB, Meunier A (2008) The origin of clay minerals in soils and weathered rocks: with 23 tables. Springer Science & Business Media, Berlin

    Book  Google Scholar 

  • Virta RL (2013) Common clay and shale. Min Eng 2013(July):36–37

    Google Scholar 

  • Wilson MJ (1999) The origin and formation of clay minerals in soils: past, present and future perspectives. Clay Miner 34(1):7

    Article  Google Scholar 

  • Wimpenny J, Colla CA, Yu P, Yin QZ, Rustad JR, Casey WH (2015) Lithium isotope fractionation during uptake by gibbsite. Geochim Cosmochim Acta 168:133–150

    Article  Google Scholar 

Download references

Acknowledgments

Prepared by LLNL under Contract DE-AC52-07NA27344.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josh Wimpenny .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Wimpenny, J. (2018). Clay Minerals. In: White, W.M. (eds) Encyclopedia of Geochemistry. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-319-39312-4_51

Download citation

Publish with us

Policies and ethics