Skip to main content

Diagenesis

Part of the Encyclopedia of Earth Sciences Series book series (EESS)

Synonyms

Diagenesis classified by setting and evolutionary stage ofsedimentary basins: Eogenetic or eodiagenesis (near surface and shallow burial), mesogenetic or mesodiagenesis (deeper burial), and telogenetic or telodiagenesis (uplifted succession) (Choquette and Pray 1970).

Diagenesis classified by process: Syndiagenesis (biogeochemical processes at the sediment-water interface through shallow burial), anadiagenesis (dominantly physicochemical processes under deeper burial or orogenic conditions), and epidiagenesis (biogeochemical processes associated with fluid flow during uplift) (Fairbridge 1967).

Catagenesis (late, deep-burial diagenesis, referred by some as “burial metamorphism” as it incorporates the earliest stage of metamorphism).

Definition

Diagenesis is the sum total of physical, chemical, and biological processes that occur in sediments and sedimentary rocks from immediately after deposition through to the metamorphic realm. No universal definition exists for diagenesis...

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-39312-4_35
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   549.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-39312-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   699.99
Price excludes VAT (USA)
Diagenesis, Fig. 1
Diagenesis, Fig. 2
Diagenesis, Fig. 3

References

  • Agar SM, Geiger S (2015) Fundamental controls on fluid flow in carbonates: current workflows to emerging technologies. In: Agar SM, Geige S (eds) Fundamental controls on fluid flow in carbonates: current workflows to emerging technologies. Geological Society of London, London, UK, no. 406. pp 1–59

    CrossRef  Google Scholar 

  • Ali SA, Clark WJ, Moore WR, Dribus JR (2010) Diagenesis and reservoir quality. Oilfield Rev 22(Summer Issue):1–27

    Google Scholar 

  • Banfield JF, Nealson KH (eds) (1997) Geomicrobiology: interactions between microbes and minerals. Reviews in mineralogy, 35. The Mineralogical Society of America, Washington, DC, 448 p

    Google Scholar 

  • Banner JL (2004) Radiogenic isotopes: systematics and applications to earth surface processes and chemical stratigraphy. Earth Sci Rev 65:141–194

    CrossRef  Google Scholar 

  • Berner RA (1980) Early diagenesis: a theoretical approach, vol 1. Princeton University Press, Princeton

    Google Scholar 

  • Bishop JW, Montañez IP, Gulbranson EL, Brenckle PL (2009) The onset of mid-Carboniferous glacio-eustasy: sedimentologic and diagenetic constraints, Arrow Canyon, NV. Palaeogeogr Palaeoclimatol Palaeoecol 276:217–243

    CrossRef  Google Scholar 

  • Brindley G, Brown G (1984) Chrystal structures of clay minerals and their X-ray identification. Mineral Soc Monogr 5:504 p

    Google Scholar 

  • Budd DA, Frost EL III, Huntington KW, Allwardt PF (2013) Syndepositional deformation features in high-relief carbonate platforms: long-lived conduits for diagenetic fluids. J Sediment Res 83:14–38

    CrossRef  Google Scholar 

  • Burley S, Kantorowicz JD, Waugh B (1985) Clastic diagenesis. Sedimentology 18:189–226

    Google Scholar 

  • Burton EA (1993) Controls on marine carbonate cement mineralogy: review and reassessment. Chem Geol 105:163–179

    CrossRef  Google Scholar 

  • Capezzuoli E, Gandin A, Pedley M (2014) Decoding tufa and travertine (fresh water carbonates) in the sedimentary record: the state of the art. Sedimentology 61:1–21

    CrossRef  Google Scholar 

  • Capo RC, Whipkey CE, Blachere JR, Chadwick O (2000) Pedogenic origin of dolomite in a basaltic weathering profile, Kohala Peninsula, Hawaii. Geology 28:271–274

    CrossRef  Google Scholar 

  • Choquette PW, Pray LC (1970) Geologic nomenclature and classification of porosity in sedimentary carbonates. Bull Am Assoc Pet Geol 54:207–250

    Google Scholar 

  • de Segonzac DG (1968) The birth and development of the concept of diagenesis (1866–1966). Earth Sci Rev 4:153–201

    CrossRef  Google Scholar 

  • Fairbridge RW (1967) Phases of diagenesis and authigenesis. In: Larsen G, Chilinger GV (eds) Diagenesis in sediments. Elsevier, Amsterdam, pp 19–89

    CrossRef  Google Scholar 

  • Fantle MS, Maher KM, DePaolo DJ (2010) Isotopic approaches for quantifying the rates of marine burial diagenesis. Rev Geophys 48:1–48

    CrossRef  Google Scholar 

  • Ford ND, Pedley HM (1996) A review of tufa and travertine deposits of the world. Earth Sci Rev 41:117–175

    CrossRef  Google Scholar 

  • Gill BC, Lyons TW, Young SA, Kump LR, Knoll AH, Saltzman MR (2011) Geochemical evidence for widespread euxinia in the later Cambrian ocean. Nature 469:80–83

    CrossRef  Google Scholar 

  • Harrison W, Thyne G (1992) Predictions of diagenetic reactions in the presence of organic acids. Geochim Cosmochim Acta 56:565–586

    CrossRef  Google Scholar 

  • Humphries DW (1992) The preparation of thin sections of rocks, minerals, and ceramics. Oxford University Press, Oxford, 83 p

    Google Scholar 

  • Huntington KW, Budd DA, Wernicke BP, Eiler JM (2011) Use of clumped-isotope thermometry to constrain the crystallization temperature of diagenetic calcite. J Sediment Res 81:656–669

    CrossRef  Google Scholar 

  • James NP, Choquette PW (1990) Limestones – the meteoric diagenetic environment. In: McIlreath IA, Morrow DA (eds) Diagenesis reprint series 4. Geoscience Canada, Geological Association of Canada, St. John’s, NL A1B 3X5 Canada, pp 35–73

    Google Scholar 

  • Johnsson MJ (1993) The system controlling the composition of clastic sediments. Geol Soc Am Spec Pap 284:1–20

    Google Scholar 

  • Jones B, Manning DA (1994) Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chem Geol 111:111–129

    CrossRef  Google Scholar 

  • Larsen G, Chilingar GV (eds) (1983) Diagenesis in sediments and sedimentary rocks, 2. Developments in sedimentology 25B. Elsevier, Amsterdam, 563 p

    Google Scholar 

  • Lyons TW, Reinhard CT, Planavsky NJ (2014) The rise of oxygen in earth’s early ocean and atmosphere. Nature 506:307–315

    CrossRef  Google Scholar 

  • Machel HG (2004) Concepts and models of dolomitization: a critical reappraisal. In: Braithwaite CJR, Rizzi G, Darke G (eds) The geometry and petrogenesis of dolomite reservoirs. Geological Society of London, London, no. 235. pp 7–63

    Google Scholar 

  • Machel HG (2005) Investigations of burial diagenesis in carbonate hydrocarbon reservoir rocks. Geosci Can 32:103–128

    Google Scholar 

  • Montañez IP (1992) Controls of eustasy and associated diagenesis on reservoir heterogeneity in Lower ordovician, upper knox carbonates, appalachians. In: Candelaria MP, Reed CA (eds) Paleokarst, karst related diagenesis, and reservoir development: examples from ordovician-devonian age Strata of West Texas and the Mid-Continent, Permian basin section SEPM special publication, SEPM (Society for Sedimentary Geology), Tulsa, OK no. 92-33. pp 165–181

    Google Scholar 

  • Montañez IP (1994) Late diagenetic dolomitization of Lower Ordovician Upper Knox Carbonates: a record of the hydrodynamic evolution of the southern Appalachian Basin. Am Assoc Pet Geol Bull 78:1210–1239

    Google Scholar 

  • Montañez IP (1997) Secondary porosity and late diagenetic cements of the Upper Knox Group, central Tennessee region: a temporal and spatial history of fluid flow conduit development within the Knox regional aquifer. In: Montañez IP, Gregg JM, Shelton K (eds) Basinwide fluid flow and associated diagenetic patterns: integrated petrologic, geochemical and hydrologic considerations, SEPM special publication, no. 57. pp 101–117

    CrossRef  Google Scholar 

  • Montañez IP, Read JF (1992a) Eustatic control on early dolomitization of cyclic peritidal carbonates: evidence from the early ordovician upper knox group. Appalachians Geol Soc Amer Bull 104:872–886

    CrossRef  Google Scholar 

  • Montañez IP, Read JF (1992b) Fluid-rock interaction history during stabilization of early dolomites of the upper knox group (early ordovician). Appalachians J Sediment Petrol 62:753–778

    Google Scholar 

  • Moore CH (1989) Carbonate diagenesis; porosity evolution and diagenesis in a sequence stratigraphic framework, Developments in sedimentology, vol 46. Elsevier, Amsterdam, 321 p

    Google Scholar 

  • Moore DM, Reynolds RC (1989) X-ray diffraction and the identification and analysis of clay minerals 378. Oxford University Press, Oxford

    Google Scholar 

  • Nelson WA, Read JF (1990) Updip to downdip cementation and dolomitization patterns in a Mississippian aquifer. Appalachians J Sediment Petrol 60:379–396

    Google Scholar 

  • Newman ACD (1987) Chemistry of clays and clay minerals, Mineralogical society monograph, vol 6. Wiley, New York, 480 p

    Google Scholar 

  • Niemann JC, Read JF (1988) Regional cementation from unconformity-recharged aquifer and burial fluids, Mississippian Newman Limestone, Kentucky. J Sediment Petrol 58:688–705

    Google Scholar 

  • Rasbury ET, Hemming S, Riggs N (2012) Mineralogical and geochemical approaches to provenance. Geological Society of America special paper 487

    Google Scholar 

  • Read JF, Horbury AD (1993) Eustatic and tectonic controls on porosity evolution beneath sequence-bounding unconformities and parasequence disconformities on carbonate platforms. In: Horbury AD, Robinson AG (eds) Diagenesis and basin development: studies in geology, vol #36. American Association of Petroleum Geologists, Tulsa, pp 155–197

    Google Scholar 

  • Sharp Z (2007) Principles of stable isotope geochemistry. Pearson Education, Upper Saddle River, 344 p

    Google Scholar 

  • Stern RA (2009) Introduction to secondary ion mass spectrometry (SIMS) in geology. In: Fayek M (ed) Secondary ion mass spectrometry in the earth sciences, Mineral. Association of Canada, Short Course Series, 41, pp 1–18

    Google Scholar 

  • Surdam RC, Crossey LC (1987) Integrated diagenetic modeling: a process-oriented approach for clastic systems. Annual Rev Earth Planet Sci 15:141–170

    CrossRef  Google Scholar 

  • Surdam RC, Crossey LJ, Hagen ES, Heasler HP (1989) Organic-inorganic interactions and sandstone diagenesis. Amer Assoc Petrol Geol Bull 73:1–23

    Google Scholar 

  • Swart PK (2015) The geochemistry of carbonate diagenesis: the past, present and future. Sedimentology 62:1233–1304

    CrossRef  Google Scholar 

  • Tribovillard N, Algeo TJ, Lyons T, Riboulleau A (2006) Trace metals as paleoredox and paleoproductivity proxies: an update. Chem Geol 232:12–32

    CrossRef  Google Scholar 

  • Vasconcelos C, McKenzie JA, Bernasconi S, Grujic D, Tien AJ (1995) Microbial mediation as a possible mechanism for natural dolomite formation at low temperatures. Nature 377:220–222

    CrossRef  Google Scholar 

  • Walter LM (1985) Relative reactivity of skeletal carbonates during dissolution: implications for diagenesis. In: Schneidermann N, Harris PM (eds) Carbonate cements. SEPM special publication, no. 36. Tulsa, pp 3–16

    CrossRef  Google Scholar 

  • Whitaker FF, Felce GP, Benson GS, Amour F, Mutti M, Smart PL (2014) Simulating flow through forward sediment model stratigraphies: insights into climatic control of reservoir quality in isolated carbonate platforms. Pet Geosci 20:27–40

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel P. Montañez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Verify currency and authenticity via CrossMark

Cite this entry

Montañez, I.P., Crossey, L.J. (2018). Diagenesis. In: White, W.M. (eds) Encyclopedia of Geochemistry. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-319-39312-4_35

Download citation