Skip to main content

Critical Zone

  • Reference work entry
  • First Online:

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Synonyms

Earth’s critical zone

Definition

The critical zone, the near-surface terrestrial environment from the bottom of circulating groundwater to the top of vegetation, hosts the complex interactions involving rock, soil, water, air, and living organisms that regulate life-sustaining resources.

Introduction

The term “critical zone” was first applied to the surface terrestrial environment by Dr. Gail Ashley (1998) in a presentation at the Geological Society of America. In her work, Dr. Ashley introduced the concept of the critical zone when she wrote that a “holistic approach is needed to understand the three-dimensional complex linkages involving physical, chemical, and biological processes” and a study of geologic and surface processes that are “crucial for life” (Ashley 1998). In 2001, the United States National Research Council’s Committee on Basic Research Opportunities in the Earth Sciences noted the future importance of the critical zone concept as integrative of disciplines...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ashley GM (1998) Where are we headed? “Soft” rock research into the new millennium. Geo Soc Am Ab/Pro 30:A-148

    Google Scholar 

  • Bales RC, Hopmans JW, O’Geen AT, Meadows M, Hartsough PC, Kirchner P, Hunsaker CT, Beaudette D (2011) Soil moisture response to snowmelt and rainfall in a Sierra Nevada mixed-conifer forest. Vadose Zone J 10:786–799

    Article  Google Scholar 

  • Brantley SL, Lebedeva M (2011) Learning to read the chemistry of regolith to understand the critical zone. Annu Rev Earth Planet Sci 39:387–416

    Article  Google Scholar 

  • Brantley SL, Goldhaber MB, Ragnarsdottir KV (2007) Crossing disciplines and scales to understand the critical zone. Elements 3:307–314

    Article  Google Scholar 

  • Brantley SL, Buss HL, Lebedeva M, Fletcher RC, Ma L (2011) Investigating the complex interface where bedrock transforms to regolith. Appl Geochem 26:S12–S15. https://doi.org/10.1016/j.apgeochem.2011.03.017

    Article  Google Scholar 

  • Brooks PD, Chorover J, Fan Y, Godsey SE, Maxwell RM, McNamara JP, Tague C (2015) Hydrological partitioning in the critical zone: recent advances and opportunities for developing transferable understanding of water cycle dynamics. Water Resour Res 51:6973–6987

    Article  Google Scholar 

  • Chen X, Kumar M, Wang R, Winstral A, Marks D (2016) Assessment of the timing of daily peak streamflow during the melt season in a snow-dominated watershed. J Hydrometeorol 17:2225–2244

    Article  Google Scholar 

  • Chorover J, Kretzschmar R, Garcia-Pichel F, Sparks DL (2007) Soil biogeochemical processes within the critical zone. Elements 3:321–326

    Article  Google Scholar 

  • Davis CA, Ward AS, Burgin AJ, Loecke TD, Riveros-Iregui DA, Schnoebelen DJ, Just CL, Thomas SA, Weber LJ, St. Clair MA (2014) Antecedent moisture controls on stream nitrate flux in an agricultural watershed. J Environ Qual 43:1494–1503. https://doi.org/10.2134/jeq2013.11.0438

    Article  Google Scholar 

  • Dralle DN, Boisramé G, Thompson SE (2014) Spatially variable water table recharge and the hillslope hydrologic response: analytical solutions to the linearized hillslope Boussinesq equation. Water Resour Res 50:8515–8530

    Article  Google Scholar 

  • Ebelmen JJ (1845) Sur les produits de la décomposition des espèces minérales de la famille des silicates. In Annales des Mines 7:66

    Google Scholar 

  • Foster MA, Anderson RS (2016) Assessing the effect of a major storm on 10 BE concentrations and inferred basin-averaged denudation rates. Quat Geochronol 34:58–68

    Article  Google Scholar 

  • Giardino JR, Houser C (2015) Introduction to the Critical zone. In: Principles and Dynamics of the Critical zone, vol 19, Elsevier, Amsterdam, Netherlands, pp 1–14

    Google Scholar 

  • Gilbert GK (1909) The convexity of hilltops. J Geol 17:344–350

    Article  Google Scholar 

  • Goulden ML, Anderson RG, Bales RC, Kelly AE, Meadows M, Winston GC (2012) Evapotranspiration along an elevation gradient in California’s Sierra Nevada. J Geophys Res Biogeo 117(G3)

    Article  Google Scholar 

  • Hahm WJ, Riebe CS, Lukens CE, Araki S (2014). Bedrock composition regulates mountain ecosystems and landscape evolution. Proceedings of the National Academy of Sciences, 111:3338-3343

    Article  Google Scholar 

  • Holbrook WS, Riebe CS, Elwaseif M, Hayes JL, Basler-Reeder K, Harry DL, Malazian A, Dosseto A, Hartsough PC, Hopmans JW (2014) Geophysical constraints on deep weathering and water storage potential in the Southern Sierra Critical zone Observatory. Earth Surf Process Landf 39:366–380

    Article  Google Scholar 

  • Hooke RL, Martín-Duque JF, Pedraza J (2012) Land transformation by humans: a review. GSA Today 22:4–10

    Article  Google Scholar 

  • Jenny H (1941) Factors of soil formation: a system of quantitative pedology. McGraw-Hill Book Company, Inc., New York

    Google Scholar 

  • Kirchner PB, Bales RC, Molotch NP, Flanagan J, Guo Q (2014) LiDAR measurement of seasonal snow accumulation along an elevation gradient in the southern Sierra Nevada. California Hyd Earth Sys Sci 18:4261–4275. https://doi.org/10.5194/hess1842612014

    Article  Google Scholar 

  • Kraepiel AML, Dere AL, Herndon EM, Brantley SL (2015) Natural and anthropogenic processes contributing to metal enrichment in surface soils of central Pennsylvania. Biogeochemistry 123:265–283

    Article  Google Scholar 

  • Li L, Maher K, Navarre-Sitchler A, Druhan J, Meile C, Lawrence C, Moore J, Perdrial J, Sullivan P, Thompson A, Jin L, Bolton EW, Brantley SL, Dietrich WE, Mayer KU, Steefel CL, Valocci A, Zachara J, Kocar B, Mcintosh J, Tutolo BM, Kumar M, Sonnenthal E, Bao C, Beisman J (2017) Expanding the role of reactive transport models in critical zone processes. Earth Sci Rev 165:280–301

    Article  Google Scholar 

  • Ma L, Jin L, Brantley SL (2011) Geochemical behaviors of different element groups during shale weathering at the Susquehanna/Shale Hills Critical zone Observatory. Appl Geochem 26:S89–S93. https://doi.org/10.1016/j.apgeochem.2011.03.038

    Article  Google Scholar 

  • Ma L, Konter J, Herndon E, Jin L, Steinhoefel G, Sanchez D, Brantley S (2014) Quantifying an early signature of the industrial revolution from lead concentrations and isotopes in soils of Pennsylvania, USA. Anthropocene 7:16–29

    Article  Google Scholar 

  • Niu GY, Paniconi C, Troch PA, Zeng X, Durcik M, Huxman T (2014) An integrated modeling framework of catchment-scale ecohydrological processes: 1. Model description and tests over an energy-limited watershed. Ecohydrolog 7:427–439. https://doi.org/10.1002/eco.1362

    Article  Google Scholar 

  • NRC, National Research Council (2001) Basic research opportunities in earth sciences. National Academies Press, Washington, DC

    Google Scholar 

  • Pope GA (2015) Regolith and weathering (rock decay) in the critical zone. In: Principles and dynamics of the critical zone, vol 19, Elsevier, Amsterdam, Netherlands, pp 113–146

    Google Scholar 

  • Rasmussen C, Troch PA, Chorover J, Brooks PD, Pelletier JD, Huxman TE (2011) An open system framework for integrating critical zone structure and function. Biogeochemistry 102:15–29. https://doi.org/10.1007/s10533-010-9476-8

    Article  Google Scholar 

  • Raymo ME (1989) Geochemical evidence supporting T.C. Chamberlin’s theory of glaciation. Geology 19(4):344–347

    Article  Google Scholar 

  • Richter DD, Billings SA (2015) ‘One physical system’: Tansley’s ecosystem as Earth’s critical zone. New Phytol 206:900–912

    Article  Google Scholar 

  • Richter DD, Markewitz D, Heine PR, Jin V, Raikes J, Tian K, Wells CG (2000) Legacies of agriculture and forest regrowth in the nitrogen of old-field soils. For Ecol Manag 138:233–248

    Article  Google Scholar 

  • Riggins SG, Anderson RS, Anderson SP, Tye AM (2011) Solving a conundrum of a steady-state hillslope with variable soil depths and production rates, Bodmin Moor, UK. Geomorphology 128:73–84. https://doi.org/10.1016/j.geomorph.2010.12.023

    Article  Google Scholar 

  • Shi Y, Davis KJ, Duffy CJ, Yu X (2013) Development of a coupled land surface hydrologic model and evaluation at a critical zone observatory. J Hydrometeorology 14:1401–1420

    Article  Google Scholar 

  • St. Clair J, Moon S, Holbrook WS, Perron JT, Riebe CS, Martel SJ, Carr B, Harman C, Singha K, Richter DD (2015) Geophysical imaging reveals topographic stress control of bedrock weathering. Science 350:534–538. https://doi.org/10.1126/science.aab2210

    Article  Google Scholar 

  • Stielstra CM, Lohse KA, Chorover J, McIntosh JC, Barron-Gafford GA, Perdrial JN, Litvak M, Barnard HR, Brooks PD (2015) Climatic and landscape influences on soil moisture are primary determinants of soil carbon fluxes in seasonally snow-covered forest ecosystems. Biogeochemistry 123:447–465. https://doi.org/10.1007/s10533-015-0078-3

    Article  Google Scholar 

  • Thomas EM, Lin H, Duffy CJ, Sullivan PL, Holmes GH, Brantley SL, Jin L (2013) Spatiotemporal patterns of water stable isotope compositions at the Shale Hills Critical zone Observatory: Linkages to subsurface hydrologic processes. Vadose Zone J 12:1–16

    Article  Google Scholar 

  • Trostle KD, Ray Runyon J, Pohlmann MA, Redfield SE, Pelletier J, McIntosh J, Chorover J (2016) Colloids and organic matter complexation control trace metal concentration-discharge relationships in Marshall Gulch stream waters. Water Resour Res 52:7931–7944

    Article  Google Scholar 

  • Vico G, Thompson SE, Manzoni S, Molini A, Albertson JD, Almeida-Cortez JS, Fay PA, Feng X, Guswa AJ, Liu H, Wilson TG (2015) Climatic, ecophysiological, and phenological controls on plant ecohydrological strategies in seasonally dry ecosystems. Ecohydrology 8:660–681

    Article  Google Scholar 

  • White T, Sharkey S (2016) Critical zone Oxford bibliography. Oxford Bibliographies. https://doi.org/10.1093/OBO/9780199363445-0055

    Article  Google Scholar 

  • White T, Brantley S, Banwart S, Chorover J, Dietrich W, Derry L, Lohse K, Anderson S, Aufdendkampe A, Bales R, Kumar P (2015) The role of critical zone observatories in critical zone science. Dev Earth Sur Proc 19:15–78

    Google Scholar 

  • Wilson CG, Wacha KM, Papanicolaou AN, Sander HA, Freudenberg VB, Abban BK, Zhao C (2016) Dynamic assessment of current management in an intensively managed agroecosystem. J Contemp Water Res Edu 158:148–171

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin B. Richardson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Richardson, J.B. (2018). Critical Zone. In: White, W.M. (eds) Encyclopedia of Geochemistry. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-319-39312-4_355

Download citation

Publish with us

Policies and ethics