Encyclopedia of Geochemistry

2018 Edition
| Editors: William M. White

Critical Zone

  • Justin B. RichardsonEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-39312-4_355


Earth’s critical zone


The critical zone, the near-surface terrestrial environment from the bottom of circulating groundwater to the top of vegetation, hosts the complex interactions involving rock, soil, water, air, and living organisms that regulate life-sustaining resources.


The term “critical zone” was first applied to the surface terrestrial environment by Dr. Gail Ashley ( 1998) in a presentation at the Geological Society of America. In her work, Dr. Ashley introduced the concept of the critical zone when she wrote that a “holistic approach is needed to understand the three-dimensional complex linkages involving physical, chemical, and biological processes” and a study of geologic and surface processes that are “crucial for life” (Ashley 1998). In 2001, the United States National Research Council’s Committee on Basic Research Opportunities in the Earth Sciences noted the future importance of the critical zone concept as integrative of disciplines...
This is a preview of subscription content, log in to check access.


  1. Ashley GM (1998) Where are we headed? “Soft” rock research into the new millennium. Geo Soc Am Ab/Pro 30:A-148Google Scholar
  2. Bales RC, Hopmans JW, O’Geen AT, Meadows M, Hartsough PC, Kirchner P, Hunsaker CT, Beaudette D (2011) Soil moisture response to snowmelt and rainfall in a Sierra Nevada mixed-conifer forest. Vadose Zone J 10:786–799CrossRefGoogle Scholar
  3. Brantley SL, Lebedeva M (2011) Learning to read the chemistry of regolith to understand the critical zone. Annu Rev Earth Planet Sci 39:387–416CrossRefGoogle Scholar
  4. Brantley SL, Goldhaber MB, Ragnarsdottir KV (2007) Crossing disciplines and scales to understand the critical zone. Elements 3:307–314CrossRefGoogle Scholar
  5. Brantley SL, Buss HL, Lebedeva M, Fletcher RC, Ma L (2011) Investigating the complex interface where bedrock transforms to regolith. Appl Geochem 26:S12–S15.  https://doi.org/10.1016/j.apgeochem.2011.03.017CrossRefGoogle Scholar
  6. Brooks PD, Chorover J, Fan Y, Godsey SE, Maxwell RM, McNamara JP, Tague C (2015) Hydrological partitioning in the critical zone: recent advances and opportunities for developing transferable understanding of water cycle dynamics. Water Resour Res 51:6973–6987CrossRefGoogle Scholar
  7. Chen X, Kumar M, Wang R, Winstral A, Marks D (2016) Assessment of the timing of daily peak streamflow during the melt season in a snow-dominated watershed. J Hydrometeorol 17:2225–2244CrossRefGoogle Scholar
  8. Chorover J, Kretzschmar R, Garcia-Pichel F, Sparks DL (2007) Soil biogeochemical processes within the critical zone. Elements 3:321–326CrossRefGoogle Scholar
  9. Davis CA, Ward AS, Burgin AJ, Loecke TD, Riveros-Iregui DA, Schnoebelen DJ, Just CL, Thomas SA, Weber LJ, St. Clair MA (2014) Antecedent moisture controls on stream nitrate flux in an agricultural watershed. J Environ Qual 43:1494–1503.  https://doi.org/10.2134/jeq2013.11.0438CrossRefGoogle Scholar
  10. Dralle DN, Boisramé G, Thompson SE (2014) Spatially variable water table recharge and the hillslope hydrologic response: analytical solutions to the linearized hillslope Boussinesq equation. Water Resour Res 50:8515–8530CrossRefGoogle Scholar
  11. Ebelmen JJ (1845) Sur les produits de la décomposition des espèces minérales de la famille des silicates. In Annales des Mines 7:66Google Scholar
  12. Foster MA, Anderson RS (2016) Assessing the effect of a major storm on 10 BE concentrations and inferred basin-averaged denudation rates. Quat Geochronol 34:58–68CrossRefGoogle Scholar
  13. Giardino JR, Houser C (2015) Introduction to the Critical zone. In: Principles and Dynamics of the Critical zone, vol 19, Elsevier, Amsterdam, Netherlands, pp 1–14Google Scholar
  14. Gilbert GK (1909) The convexity of hilltops. J Geol 17:344–350CrossRefGoogle Scholar
  15. Goulden ML, Anderson RG, Bales RC, Kelly AE, Meadows M, Winston GC (2012) Evapotranspiration along an elevation gradient in California’s Sierra Nevada. J Geophys Res Biogeo 117(G3)CrossRefGoogle Scholar
  16. Hahm WJ, Riebe CS, Lukens CE, Araki S (2014). Bedrock composition regulates mountain ecosystems and landscape evolution. Proceedings of the National Academy of Sciences, 111:3338-3343CrossRefGoogle Scholar
  17. Holbrook WS, Riebe CS, Elwaseif M, Hayes JL, Basler-Reeder K, Harry DL, Malazian A, Dosseto A, Hartsough PC, Hopmans JW (2014) Geophysical constraints on deep weathering and water storage potential in the Southern Sierra Critical zone Observatory. Earth Surf Process Landf 39:366–380CrossRefGoogle Scholar
  18. Hooke RL, Martín-Duque JF, Pedraza J (2012) Land transformation by humans: a review. GSA Today 22:4–10CrossRefGoogle Scholar
  19. Jenny H (1941) Factors of soil formation: a system of quantitative pedology. McGraw-Hill Book Company, Inc., New YorkGoogle Scholar
  20. Kirchner PB, Bales RC, Molotch NP, Flanagan J, Guo Q (2014) LiDAR measurement of seasonal snow accumulation along an elevation gradient in the southern Sierra Nevada. California Hyd Earth Sys Sci 18:4261–4275.  https://doi.org/10.5194/hess1842612014CrossRefGoogle Scholar
  21. Kraepiel AML, Dere AL, Herndon EM, Brantley SL (2015) Natural and anthropogenic processes contributing to metal enrichment in surface soils of central Pennsylvania. Biogeochemistry 123:265–283CrossRefGoogle Scholar
  22. Li L, Maher K, Navarre-Sitchler A, Druhan J, Meile C, Lawrence C, Moore J, Perdrial J, Sullivan P, Thompson A, Jin L, Bolton EW, Brantley SL, Dietrich WE, Mayer KU, Steefel CL, Valocci A, Zachara J, Kocar B, Mcintosh J, Tutolo BM, Kumar M, Sonnenthal E, Bao C, Beisman J (2017) Expanding the role of reactive transport models in critical zone processes. Earth Sci Rev 165:280–301CrossRefGoogle Scholar
  23. Ma L, Jin L, Brantley SL (2011) Geochemical behaviors of different element groups during shale weathering at the Susquehanna/Shale Hills Critical zone Observatory. Appl Geochem 26:S89–S93.  https://doi.org/10.1016/j.apgeochem.2011.03.038CrossRefGoogle Scholar
  24. Ma L, Konter J, Herndon E, Jin L, Steinhoefel G, Sanchez D, Brantley S (2014) Quantifying an early signature of the industrial revolution from lead concentrations and isotopes in soils of Pennsylvania, USA. Anthropocene 7:16–29CrossRefGoogle Scholar
  25. Niu GY, Paniconi C, Troch PA, Zeng X, Durcik M, Huxman T (2014) An integrated modeling framework of catchment-scale ecohydrological processes: 1. Model description and tests over an energy-limited watershed. Ecohydrolog 7:427–439.  https://doi.org/10.1002/eco.1362CrossRefGoogle Scholar
  26. NRC, National Research Council (2001) Basic research opportunities in earth sciences. National Academies Press, Washington, DCGoogle Scholar
  27. Pope GA (2015) Regolith and weathering (rock decay) in the critical zone. In: Principles and dynamics of the critical zone, vol 19, Elsevier, Amsterdam, Netherlands, pp 113–146Google Scholar
  28. Rasmussen C, Troch PA, Chorover J, Brooks PD, Pelletier JD, Huxman TE (2011) An open system framework for integrating critical zone structure and function. Biogeochemistry 102:15–29.  https://doi.org/10.1007/s10533-010-9476-8CrossRefGoogle Scholar
  29. Raymo ME (1989) Geochemical evidence supporting T.C. Chamberlin’s theory of glaciation. Geology 19(4):344–347CrossRefGoogle Scholar
  30. Richter DD, Billings SA (2015) ‘One physical system’: Tansley’s ecosystem as Earth’s critical zone. New Phytol 206:900–912CrossRefGoogle Scholar
  31. Richter DD, Markewitz D, Heine PR, Jin V, Raikes J, Tian K, Wells CG (2000) Legacies of agriculture and forest regrowth in the nitrogen of old-field soils. For Ecol Manag 138:233–248CrossRefGoogle Scholar
  32. Riggins SG, Anderson RS, Anderson SP, Tye AM (2011) Solving a conundrum of a steady-state hillslope with variable soil depths and production rates, Bodmin Moor, UK. Geomorphology 128:73–84.  https://doi.org/10.1016/j.geomorph.2010.12.023CrossRefGoogle Scholar
  33. Shi Y, Davis KJ, Duffy CJ, Yu X (2013) Development of a coupled land surface hydrologic model and evaluation at a critical zone observatory. J Hydrometeorology 14:1401–1420CrossRefGoogle Scholar
  34. St. Clair J, Moon S, Holbrook WS, Perron JT, Riebe CS, Martel SJ, Carr B, Harman C, Singha K, Richter DD (2015) Geophysical imaging reveals topographic stress control of bedrock weathering. Science 350:534–538.  https://doi.org/10.1126/science.aab2210CrossRefGoogle Scholar
  35. Stielstra CM, Lohse KA, Chorover J, McIntosh JC, Barron-Gafford GA, Perdrial JN, Litvak M, Barnard HR, Brooks PD (2015) Climatic and landscape influences on soil moisture are primary determinants of soil carbon fluxes in seasonally snow-covered forest ecosystems. Biogeochemistry 123:447–465.  https://doi.org/10.1007/s10533-015-0078-3CrossRefGoogle Scholar
  36. Thomas EM, Lin H, Duffy CJ, Sullivan PL, Holmes GH, Brantley SL, Jin L (2013) Spatiotemporal patterns of water stable isotope compositions at the Shale Hills Critical zone Observatory: Linkages to subsurface hydrologic processes. Vadose Zone J 12:1–16CrossRefGoogle Scholar
  37. Trostle KD, Ray Runyon J, Pohlmann MA, Redfield SE, Pelletier J, McIntosh J, Chorover J (2016) Colloids and organic matter complexation control trace metal concentration-discharge relationships in Marshall Gulch stream waters. Water Resour Res 52:7931–7944CrossRefGoogle Scholar
  38. Vico G, Thompson SE, Manzoni S, Molini A, Albertson JD, Almeida-Cortez JS, Fay PA, Feng X, Guswa AJ, Liu H, Wilson TG (2015) Climatic, ecophysiological, and phenological controls on plant ecohydrological strategies in seasonally dry ecosystems. Ecohydrology 8:660–681CrossRefGoogle Scholar
  39. White T, Sharkey S (2016) Critical zone Oxford bibliography. Oxford Bibliographies.  https://doi.org/10.1093/OBO/9780199363445-0055CrossRefGoogle Scholar
  40. White T, Brantley S, Banwart S, Chorover J, Dietrich W, Derry L, Lohse K, Anderson S, Aufdendkampe A, Bales R, Kumar P (2015) The role of critical zone observatories in critical zone science. Dev Earth Sur Proc 19:15–78Google Scholar
  41. Wilson CG, Wacha KM, Papanicolaou AN, Sander HA, Freudenberg VB, Abban BK, Zhao C (2016) Dynamic assessment of current management in an intensively managed agroecosystem. J Contemp Water Res Edu 158:148–171CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dept. of Earth and Atmospheric SciencesCornell UniversityIthacaUSA