Encyclopedia of Geochemistry

2018 Edition
| Editors: William M. White

Diffusion

  • Yan LiangEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-39312-4_336

Definition

Diffusion arises from random motions of particles in a fluid or solid. Here the particles can be neutral molecules or atoms, or charged cations or anions. The particle that diffuses through a medium or substance is called diffusant. Diffusion is a microscopic kinetic phenomenon that results in intermingling and homogenization of the chemical components in a substance. It is part of the mixing process that is not accounted for by the bulk flow or advection of the chemical system. The word “diffusion” originates from the Latin word “diffundere” which means to pour out or spread out.

Fick’s Laws of Diffusion

The spreading of diffusant in a medium can be quantified by applying the laws of diffusion which are established through observations of natural phenomenon and laboratory diffusion experiments. During diffusion, random motions of the particles in a chemically heterogeneous phase will redistribute its constituent from regions of high concentration to low concentration, which...
This is a preview of subscription content, log in to check access.

References

  1. Anderson AC (1981) Diffusion in electrolyte mixtures. Rev Mineral 8:211–260Google Scholar
  2. Barrer RM, Bartholomew RF, Rees LVC (1963) Ion exchange in porous crystals. Part II. The relationship between self- and exchange-diffusion coefficients. Phys Chem Solids 24:309–317CrossRefGoogle Scholar
  3. Béjina F, Jaoul O, Liebermann RC (2003) Diffusion in minerals at high pressure: a review. Phys Earth Planet Inter 139:3–20CrossRefGoogle Scholar
  4. Bloch E, Ganguly J, Hervig R, Cheng W (2015) 176Lu-176Hf geochronology of garnet I: experimental determination of diffusion kinetics of Lu3+ and Hf4+ in garnet, closure temperatures and geochronological implications. Contrib Mineral Petrol 169:12CrossRefGoogle Scholar
  5. Brady JB, Cherniak DJ (2010) Diffusion in minerals: an overview of published experimental diffusion data. In: Zhang Y, Cherniak DJ (eds) Diffusion in minerals and melts. Reviews in mineralogy and geochemistry. Mineralogical Society of America, Chantilly, Virginia, vol 72. pp 899–920CrossRefGoogle Scholar
  6. Carlson WD (2012) Rates and mechanism of Y, REE, and Cr diffusion in garnet. Am Mineral 97:1598–1618CrossRefGoogle Scholar
  7. Chakraborty S (2008) Diffusion in solid silicates: a tool to trace timescales of processes comes of age. Annu Rev Earth Planet Sci 36:153–190CrossRefGoogle Scholar
  8. Chakraborty S (2010) Diffusion coefficients in olivine, wadsleyite and ringwoodite. In: Zhang Y, Cherniak DJ (eds) Diffusion in minerals and melts. Reviews in mineralogy and geochemistry. Mineralogical Society of America, Chantilly, Virginia, vol 72. pp 603–640CrossRefGoogle Scholar
  9. Cherniak DJ (1995) Diffusion of lead in plagioclase and K-feldspar: an investigation using Rutherford backscattering and resonant nuclear reaction analysis. Contrib Mineral Petrol 120:358–371CrossRefGoogle Scholar
  10. Cherniak DJ (2003) REE diffusion in feldspar. Chem Geol 193:25–41CrossRefGoogle Scholar
  11. Cherniak DJ, Dimanov A (2010) Diffusion in pyroxene, mica and amphibole. In: Zhang Y, Cherniak DJ (eds) Diffusion in minerals and melts. Reviews in mineralogy and geochemistry. Mineralogical Society of America, Chantilly, Virginia, vol 72. pp 641–690CrossRefGoogle Scholar
  12. Cherniak DJ, Liang Y (2007) Rare earth element diffusion in natural enstatite. Geochim Cosmochim Acta 71:1324–1340CrossRefGoogle Scholar
  13. Cherniak DJ, Watson EB (1994) A study of strontium diffusion in plagioclase using Rutherford backscattering spectroscopy. Geochim Cosmochim Acta 58:5179–5190CrossRefGoogle Scholar
  14. Cherniak DJ, Watson EB (2010) Li diffusion in zircon. Contrib Mineral Petrol 160:383–390CrossRefGoogle Scholar
  15. Cherniak DJ, Hanchar JM, Watson EB (1997a) Diffusion of tetravalent cations in zircon. Contrib Mineral Petrol 127:383–390CrossRefGoogle Scholar
  16. Cherniak DJ, Hanchar JM, Watson EB (1997b) Rare-earth diffusion in zircon. Chem Geol 134:289–301CrossRefGoogle Scholar
  17. Cherniak DJ, Hervig R, Koepke J, Zhang Y, Zhan D (2010) Analytical methods in diffusion studies. In: Zhang Y, Cherniak DJ (eds) Diffusion in minerals and melts. Reviews in mineralogy and geochemistry. Mineralogical Society of America, Chantilly, Virginia, vol 72. pp 107–170CrossRefGoogle Scholar
  18. Chopra R, Richter FM, Watson EB, Scullard CR (2012) Magnesium isotope fractionation by chemical diffusion in natural settings and in laboratory analogues. Geochim Cosmochim Acta 88:1–18CrossRefGoogle Scholar
  19. Cooper AR (1965) Model for multi-component diffusion. Phys Chem Glasses 6:55–61Google Scholar
  20. Cooper AR (1968) The use and limitations of the concept of an effective binary diffusion coefficient for multi-component diffusion. In: Wachtman JB, Franklin AD (eds) Mass transport in oxides. NBS special publication. Mineralogical Society of America, Chantilly, Virginia, vol 296. pp 79–84Google Scholar
  21. Crank J (1975) The mathematics of diffusion. Clarendon, OxfordGoogle Scholar
  22. de Groot SR, Mazur P (1962) Non-equilibrium thermodynamics. Dover, New YorkGoogle Scholar
  23. de Koker N, Stixrude L (2010) Theoretical computation of diffusion in minerals and melts. In: Zhang Y, Cherniak DJ (eds) Diffusion in minerals and melts. Reviews in mineralogy and geochemistry. Mineralogical Society of America, Chantilly, Virginia, vol 72. pp 971–996Google Scholar
  24. Dodson MH (1973) Closure temperature in cooling geochronological and petrological systems. Contrib Mineral Petrol 40:259–274CrossRefGoogle Scholar
  25. Dodson MH (1986) Closure profiles in cooling systems. Mater Sci Forum 7:145–154CrossRefGoogle Scholar
  26. Dohmen R, Milke R (2010) Diffusion in polycrystalline materials: grain boundaries, mathematical models, and experimental data. In: Zhang Y, Cherniak DJ (eds) Diffusion in minerals and melts. Reviews in mineralogy and geochemistry. Mineralogical Society of America, Chantilly, Virginia, vol 72. pp 921–970CrossRefGoogle Scholar
  27. Dohmen R, Kasemann SA, Coogan L, Chakraborty S (2010) Diffusion of Li in olivine. Part I: experimental observations and a multi species diffusion model. Geochim Cosmochim Acta 74:274–292CrossRefGoogle Scholar
  28. Dohmen R, Faak K, Blundy JD (2017) Chronometry and speedometry of magmatic processes using chemical diffusion in olivine, plagioclase and pyroxene. In: Teng F-Z, Dauphas N, Watkins JM (eds) Non-traditional stable isotopes. Reviews in mineralogy and geochemistry. Mineralogical Society of America, Chantilly, Virginia, vol 82. pp 535–575Google Scholar
  29. Fisher JC (1951) Calculation of diffusion penetration curves for surface and grain boundary diffusion. J Appl Phys 22:74–77CrossRefGoogle Scholar
  30. Fujita H, Gosting LJ (1956) An exact solution of the equations for free diffusion in three-component systems with interacting flows, and its use in evaluation of the diffusion coefficients. J Am Chem Soc 78:1099–1106CrossRefGoogle Scholar
  31. Ganguly J (2010) Cation diffusion kinetics in aluminosilicate garnets and geological applications. In: Zhang Y, Cherniak DJ (eds) Diffusion in minerals and melts. Reviews in mineralogy and geochemistry. Mineralogical Society of America, Chantilly, Virginia, vol 72. pp 559–601CrossRefGoogle Scholar
  32. Ganguly J, Tirone M (1999) Diffusion closure temperature and age of a mineral with arbitrary extent of diffusion theoretical formulation and applications. Earth Planet Sci Lett 170:131–140CrossRefGoogle Scholar
  33. Gardés M, Montel J-M (2009) Opening and resetting temperatures in heating geochronological systems. Contrib Mineral Petrol 158:185–195CrossRefGoogle Scholar
  34. Giletti BJ, Casserly JED (1994) Strontium diffusion kinetics in plagioclase feldspars. Geochim Cosmochim Acta 58:3785–3793CrossRefGoogle Scholar
  35. Giletti BJ, Yund RA (1984) Oxygen diffusion in quartz. J Geophys Res 89:4039–4046CrossRefGoogle Scholar
  36. Guo C, Zhang Y (2016) Multicomponent diffusion in silicate melts: SiO2-TiO2-Al2O3-MgO-Na2O-K2O system. Geochim Cosmochim Acta 195:126–141CrossRefGoogle Scholar
  37. Gupta PK, Cooper AR Jr (1971) The [D] matrix for multicomponent diffusion. Physica 54:39–59CrossRefGoogle Scholar
  38. Harrison LG (1961) Influence of dislocation on diffusion kinetics in solids with particular reference to the alkali halides. Trans Faraday Soc 57:1191–1199CrossRefGoogle Scholar
  39. Hart EW (1957) On the role of dislocations in bulk diffusion. Acta Metall 5:597–597CrossRefGoogle Scholar
  40. Hasse R (1969) Thermodynamics of irreversible processes. Dover, New YorkGoogle Scholar
  41. Helfferich F, Plesset MS (1958) Ion exchange kinetics. A nonlinear diffusion problem. J Chem Phys 28:418–424CrossRefGoogle Scholar
  42. Holzapfel C, Chakraborty S, Rubie DC, Frost DJ (2007) Effect of pressure on Fe-Mg, Ni and Mn diffusion in (FexMg1−x)2SiO4 olivine. Phys Earth Planet Inter 162:186–198CrossRefGoogle Scholar
  43. Joesten R (1991) Grain-boundary diffusion kinetics in silicate and oxide minerals. In: Gangule J (ed) Diffusion, atomic ordering, and mass transport. Springer, New York, pp 345–395CrossRefGoogle Scholar
  44. Liang Y, Richter FM, and Watson EB (1996) Diffusion in silicate melts: II. Multicomponent diffusion in CaO-Al2O3-SiO2 at 1500°C and 1 GPa. Geochim Cosmochim Acta 60, 5021-5035CrossRefGoogle Scholar
  45. Katchalsky A, Curran PF (1967) Nonequilibrium thermodynamics in biophysics. Harvard University Press, Cambridge, MAGoogle Scholar
  46. Kirkaldy JS (1958) Diffusion in multicomponent metallic systems: I. Phenomenological theory for substitutional solid solution alloys. Can J Phys 36:899–906CrossRefGoogle Scholar
  47. Kirkaldy JS, Young DJ (1987) Diffusion in condensed state. Wiley, New YorkGoogle Scholar
  48. Kondepudi D, Prigogine I (1998) Modern thermodynamics: from heat engines to dissipative structures. Wiley, New YorkGoogle Scholar
  49. Kushiro I (1983) Effect of pressure on the diffusivity of network-forming cations in melts of jadeitic compositions. Geochim Cosmochim Acta 47:1415–1422CrossRefGoogle Scholar
  50. Lasaga AC (1979) Multicomponent exchange and diffusion in silicates. Geochim Cosmochim Acta 43:455–469CrossRefGoogle Scholar
  51. Lasaga AC (1998) Kinetic theory in the Earth sciences. Princeton University Press, PrincetonCrossRefGoogle Scholar
  52. Le Claire AD (1963) The analysis of grain boundary diffusion measurments. Br J Appl Phys 14:351–356CrossRefGoogle Scholar
  53. Lesher CE (1986) Effects of silicate liquid composition on mineral-liquid element partitioning from Soret diffusion studies. J Geophys Res 91:6123–6141CrossRefGoogle Scholar
  54. Lesher CE (2010) Self-diffusion in silicate melts: theory, observations and applications to magmatic systems. In: Zhang Y, Cherniak DJ (eds) Diffusion in minerals and melts. Reviews in mineralogy and geochemistry. Mineralogical Society of America, Chantilly, Virginia, vol 72. pp 269–309CrossRefGoogle Scholar
  55. Liang Y (2010) Multicomponent diffusion in molten silicates: theory, experiments, and geological applications. In: Zhang Y, Cherniak DJ (eds) Diffusion in minerals and melts. Reviews in mineralogy and geochemistry. Mineralogical Society of America, Chantilly, Virginia, vol 72. pp 409–446CrossRefGoogle Scholar
  56. Liang Y (2015) Simple models for closure temperature of a trace element in cooling bi-mineralic systems. Geochim Cosmochim Acta 165:35–43CrossRefGoogle Scholar
  57. Liang Y (2017) Effect of pressure on closure temperature of a trace element in cooling petrological systems. Contrib Mineral Petrol 172:8CrossRefGoogle Scholar
  58. Liang Y, Richter FM, Chamberlin L (1997) Diffusion in silicate melts: III. Empirical models for multicomponent diffusion. Geochim Cosmochim Acta 61:5295–5312CrossRefGoogle Scholar
  59. Miller DG, Vitagliano V, Sartorio R (1986) Some comments on multicomponent diffusion: negative main term diffusion coefficients, second law constrains, solvent choices, and reference frame. J Phys Chem 90:1509–1519CrossRefGoogle Scholar
  60. Mishin Y, Herzig C, Bernardini J, Gust W (1997) Grain boundary diffusion: fundamentals to recent developments. Int Mater Rev 42:155–178CrossRefGoogle Scholar
  61. Mueller T, Watson EB, Harrison TM (2010) Applications of diffusion data to high-temperature earth systems. In: Zhang Y, Cherniak DJ (eds) Diffusion in minerals and melts. Reviews in mineralogy and geochemistry. Mineralogical Society of America, Chantilly, Virginia, vol 72. pp 997–1038CrossRefGoogle Scholar
  62. Narasimhan TN (2004) Fick’s insights on liquid diffusion. Eos 85:499–501CrossRefGoogle Scholar
  63. Nye JF (1985) Physical properties of crystals. Clarendon, OxfordGoogle Scholar
  64. Onsager L (1945) Theories and problems of liquid diffusion. Ann N Y Acad Sci 46:241–265CrossRefGoogle Scholar
  65. Poe BT, McMillan PF, Rubie DC, Chakraborty S, Yarger J, Diefenbacher J (1997) Silicon and oxygen self-diffusivities in silicate liquids measured to 15 Gigapascals and 2800 Kelvin. Science 276:1245–1248CrossRefGoogle Scholar
  66. Powell R, White L (1995) Diffusive equilibration between minerals during cooling: an analytical extension to Dodson’s equation for closure in one dimension. Geol J 30:297–305CrossRefGoogle Scholar
  67. Richter FM (1993) A method for determining activity-composition relations using chemical diffusion in silicate melts. Geochim Cosmochim Acta 57:2019–2032CrossRefGoogle Scholar
  68. Richter FM, Liang Y, Minarik WG (1998) Multicomponent diffusion and convection in molten MgO-Al2O3-SiO2. Geochim Cosmochim Acta 62:1985–1991CrossRefGoogle Scholar
  69. Richter FM, Liang Y, and Davis AM (1999) Isotope fractionation by diffusion in molten oxides. Geochim Cosmochim Acta 63, 2853–2861CrossRefGoogle Scholar
  70. Richter FM, Davis AM, DePaolo DJ, Watson EB (2003) Isotope fractionation by chemical diffusion between molten basalts and rhyolite. Geochim Cosmochim Acta 67:3905–3923CrossRefGoogle Scholar
  71. Richter FM, Mendybaev RA, Christensen JN, Hutcheon ID, Williams RW, Sturchio NC, Beloso Jr AD (2006) Kinetic isotope fractionation during diffusion of ionic species in water. Geochim. Cosmochim. Acta, 70:277–289CrossRefGoogle Scholar
  72. Richter FM, Watson EB, Mendybaev RA, Dauphas N, Geory B, Watkins J, Valley J (2009) Isotope fractionation of the major elements of molten basalt by chemical and thermal diffusion. Geochim Cosmochim Acta 73:4250–4263CrossRefGoogle Scholar
  73. Richter FM, Watson EB, Chaussidon M, Mendybaev RA, Ruscitto D (2014) Lithium isotope fractionation by diffusion in minerals. Part 1: pyroxenes. Geochim Cosmochim Acta 126:352–370CrossRefGoogle Scholar
  74. Richter FM, Chaussidon M, Mendybaev RA, Kite E (2016) Reassessing the cooling rate and geologic setting of Martian meteorites MIL 03346 and NWA 817. Geochim Cosmochim Acta 182:1–23CrossRefGoogle Scholar
  75. Ryerson FJ (1987) Diffusion measurements: experimental methods. Methods Exp Phys 24A:89–130CrossRefGoogle Scholar
  76. Shea T, Costa F, Krimer D, Hammer JE (2015) Accuracy of timescales retrieved from diffusion modeling in olivine: a 3D perspective. Am Mineral 100:2026–2042CrossRefGoogle Scholar
  77. Sio CK, Dauphas N, Teng F-Z, Chaussidon M, Helz RT, Roskosz M (2013) Discerning crystal growth from diffusion profiles in zoned olivine by in situ Mg-Fe isotopic analyses. Geochim Cosmochim Acta 123:302–321CrossRefGoogle Scholar
  78. Suzuoka T (1961) Lattice and grain boundary diffusion in polycrystals. Trans Jpn Inst Met 2:25–32CrossRefGoogle Scholar
  79. Teng F-Z, McDonough WF, Rudnick RL, Walker RJ (2006) Diffusion-driven extreme lithium isotopic fractionation in country rocks of the Tin Mountain pegmatite. Earth Planet Sci Lett 243:701–710CrossRefGoogle Scholar
  80. Toor HL (1964) Solution of the linearized equation of multicomponent mass transfer: I. AIChE J 10:448–455CrossRefGoogle Scholar
  81. Trail D, Cherniak DJ, Watson EB, Harrison TM, Weiss BP, Szumila I (2016) Li zoning in zircon as a potential geospeedometer and peak temperature indicator. Contrib Mineral Petrol 171:25CrossRefGoogle Scholar
  82. Tyrrell HJV (1964) The origin and present status of Fick’s diffusion law. J Chem Educ 41:397–400CrossRefGoogle Scholar
  83. Tyrrell HJV, Harris KR (1984) Diffusion in liquids. Butterworths, LondonGoogle Scholar
  84. Van Orman JA, Crispin KL (2010) Diffusion in oxides. In: Zhang Y, Cherniak DJ (eds) Diffusion in minerals and melts. Reviews in mineralogy and geochemistry. Mineralogical Society of America, Chantilly, Virginia, vol 72. pp 757–825Google Scholar
  85. Van Orman JA, Grove TL, Shimizu N (2001) Rare earth element diffusion in diopside: influence of temperature, pressure, and ionic radius, and an elastic model for diffusion in silicates. Contrib Mineral Petrol 141:687–703CrossRefGoogle Scholar
  86. Van Orman JA, Grove TL, Shimizu N, Layne GD (2002) Rare earth element diffusion in a natural pyrope single crystal at 2.8 GPa. Contrib Mineral Petrol 142:416–424CrossRefGoogle Scholar
  87. Van Orman JA, Cherniak DJ, Kita N (2014) Magesium diffusion in plagioclase: dependence on composition, and implications for thermal resetting of the 26Al-26Mg early solar system chronometer. Earth Planet Sci Lett 385:79–88CrossRefGoogle Scholar
  88. Walker D, Lesher CE, Hays JF (1981) Soret separation of lunar liquid. Proc Lunar Planet Sci 12B:991–999Google Scholar
  89. Wark DA, Watson EB (2004) Interdiffusion of H2O and CO2 in metamorphic fluids at ~490 to 690 °C and 1 GPa. Geochim Cosmochim Acta 68:2693–2698CrossRefGoogle Scholar
  90. Watkins JM, DePaolo DJ, Ryerson FJ, Peterson BT (2011) Influence of liquid structure on diffusive isotope separation in molten silicates and aqueous solutions. Geochim Cosmochim Acta 75:3103–3118CrossRefGoogle Scholar
  91. Watkins JM, Liang Y, Richter FM, Ryerson FJ, DePaolo DJ (2014) Diffusion of multi-isotopic chemical species in molten silicates. Geochim Cosmochim Acta 139:313–326CrossRefGoogle Scholar
  92. Watkins JM, DePaolo DJ, Watson EB (2017) Kinetic fraction of non-traditional stable isotopes by diffusion and crystal growth reaction. In: Teng F-Z, Dauphas N, Watkins JM (eds) Non-traditional stable isotopes. Reviews in mineralogy and geochemistry. Mineralogical Society of America, Chantilly, Virginia, vol 82. pp 85–125Google Scholar
  93. Watson EB, Baker DR (1991) Chemical diffusion in magmas: an overview of experimental results and geochemical applications. In: Perchuk LL, Kushiro I (eds) Physical chemistry of magmas. Springer, New York, pp 120–151CrossRefGoogle Scholar
  94. Watson EB, Baxter EF (2007) Diffusion in solid-Earth systems. Earth Planet Sci Lett 253:307–327CrossRefGoogle Scholar
  95. Watson EB, Cherniak DJ (2013) Simple equations for diffusion in response to heating. Chem Geol 335:93–104CrossRefGoogle Scholar
  96. Watson EB, Dohmen R (2010) Non-traditional and emerging methods for characterizing diffusion in minerals and minerals aggregates. In: Zhang Y, Cherniak DJ (eds) Diffusion in minerals and melts. Reviews in mineralogy and geochemistry. Mineralogical Society of America, Chantilly, Virginia, vol 72. pp 61–105CrossRefGoogle Scholar
  97. Watson EB, Wark DA (1997) Diffusion of dissolved SiO2 in H2O at 1 GPa, with implications for mass transport in the crust and upper mantle. Contrib Mineral Petrol 130:66–80CrossRefGoogle Scholar
  98. Watson HC, Richter FM, Liu A, Huss GR (2016) Iron and nickel isotope fractionation by diffusion, with applications to iron meteorites. Earth Planet Sci Lett 451:159–167CrossRefGoogle Scholar
  99. Whipple RTP (1954) Concentration contours in grain boundary diffusion. Philos Mag 45:1225–1236CrossRefGoogle Scholar
  100. Zhang Y (1993) A modified effective binary diffusion model. J Geophys Res 98:11901–11920CrossRefGoogle Scholar
  101. Zhang Y (2010) Diffusion in minerals and melts: theoretical background. In: Zhang Y, Cherniak DJ (eds) Diffusion in minerals and melts. Reviews in mineralogy and geochemistry. Mineralogical Society of America, Chantilly, Virginia, vol 72. pp 5–59CrossRefGoogle Scholar
  102. Zhang Y, Cherniak DJ (2010) Diffusion in minerals and melts. Reviews in mineralogy and geochemistry, vol 72. Mineralogical Society of America, ChantillyGoogle Scholar
  103. Zhang Y, Ni H (2010) Diffusion of H, C, and O components in silicate melts. In: Zhang Y, Cherniak DJ (eds) Diffusion in minerals and melts. Reviews in mineralogy and geochemistry. Mineralogical Society of America, Chantilly, Virginia, vol 72. pp 171–225CrossRefGoogle Scholar
  104. Zhang Y, Walker D, Lesher CE (1989) Diffusive crystal dissolution. Contrib Mineral Petrol 102:492–513CrossRefGoogle Scholar
  105. Zhang Y, Ni H, Chen Y (2010) Diffusion data in silicate melts. In: Zhang Y, Cherniak DJ (eds) Diffusion in minerals and melts. Reviews in mineralogy and geochemistry. Mineralogical Society of America, Chantilly, Virginia, vol 72. pp 311–408CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Earth, Environmental and Planetary SciencesBrown UniversityProvidenceUSA