Encyclopedia of Geochemistry

2018 Edition
| Editors: William M. White

Cosmogenic Nuclides

  • Rainer WielerEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-39312-4_332


Cosmogenic nuclides are produced when primary or secondary particles of the galactic (or in some cases also the solar) cosmic radiation interact with atomic nuclei in extraterrestrial or terrestrial material. Cosmogenic nuclides are observable mainly for noble gas isotopes and radioactive nuclides, whose abundances in the target materials are otherwise extremely low. In this article, we discuss production and applications of cosmogenic nuclides in meteorites and other extraterrestrial samples (Wieler 2002; Eugster et al. 2006; Herzog and Caffee 2014) as well as in terrestrial samples (Gosse and Phillips 2001; Dunai 2010; Granger et al. 2013). In solid matter, the cosmic-ray flux has a mean attenuation length of roughly 50 cm. Hence, cosmogenic nuclides in meteorites are primarily used to determine exposure ages, i.e., the time spent as meter sized or smaller body in interplanetary space before falling on Earth or in some cases also the residence time in the uppermost few...

This is a preview of subscription content, log in to check access.


  1. Balco G, Stone JO, Lifton NA, Dunai TJ (2008) A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements. Quat Geochronol 3:174–195CrossRefGoogle Scholar
  2. Balco G. (2011) Contributions and unrealized potential contributions of cosmogenic-nuclide exposure dating to glacier chronology, 1990–2010. Quaternary Science Reviews 30:3–27CrossRefGoogle Scholar
  3. Beer J, McCracken K, von Steiger R (2012) Cosmogenic radionuclides - theory and applications in the terrestrial and space environments. Springer, Berlin/HeidelbergGoogle Scholar
  4. Bogard DD, Nyquist LE, Bansal BM, Garrison DH, Wiesmann H, Herzog GF, Albrecht AA, Vogt S, Klein J (1995) Neutron-capture 36Cl, 41Ca, 36Ar, and 150Sm in large chondrites: evidence for high fluences of thermalized neutrons. J Geophys Res Planets 100:9401–9416CrossRefGoogle Scholar
  5. Bottke WF, Vokrouhlický D, Rubinkam DP, Broz M (2002) The effect of Yarkovsky thermal forces on the dynamical evolution of asteroids and meteoroids. In: Bottke WF et al (eds) Asteroids III. University of Arizona Press, Tucson, pp 395–408Google Scholar
  6. Charreau J, Blard PH, Puchol N, Avouac JP, Lallier-Vergès E, Bourlès, D, Braucher R, Gallaud, A, Finkel R, Jolivet M, Chen Y, Roy P (2011) Paleo-erosion rates in Central Asia since 9 Ma: A transient increase at the onset of Quaternary glaciations? Earth Planet Sci Lett 304:85–92CrossRefGoogle Scholar
  7. Christl M, Wieler R, Finkel RC (2014) Measuring one atom in a million billion with mass spectrometry. Elements 10:330–332Google Scholar
  8. Dunai TJ (2010) Cosmogenic nuclides – principles, concepts and applications in the earth surface sciences. Cambridge University Press, Cambridge, MA, 187ppGoogle Scholar
  9. Eugster O, Herzog GF, Marti K, Caffee MW (2006) Irradiation records, cosmic ray exposure ages, and transfer times of meteorites. In: auretta DS, McSween HY (eds) Meteorites and the early solar system II. University Arizona Press, Tucson, pp 829–851Google Scholar
  10. Farley KA et al (2014) In situ radiometric and exposure age dating of the Martian surface. Science 343:1247166CrossRefGoogle Scholar
  11. Frank M, Schwarz B, Baumann S, Kubik PW, Suter M, Mangini A (1997) A 200 kyr record of cosmogenic radionuclide production rate and geomagnetic field intensity from 10Be in globally stacked deep-sea sediments. Earth Planet Sci Lett 149:121–129CrossRefGoogle Scholar
  12. Gladman BJ, Migliorini F, Morbidelli A, Zappalà V, Michel P, Cellino A, Froeschlé C, Levison HF, Bailey M, Duncan M (1997) Dynamical lifetimes of objects injected into asteroid belt resonances. Science 277(5323):197–201CrossRefGoogle Scholar
  13. Gosse JC, Phillips FM (2001) Terrestrial in situ cosmogenic nuclides: theory and application. Quaternary Sci Rev 20:1475–1560CrossRefGoogle Scholar
  14. Graf T, Marti K (1995) Collisional history of H chondrites. J Geophys Res Planets 100:21247–21263CrossRefGoogle Scholar
  15. Granger DE (2006) A review of burial dating methods using 26Al and 10Be. In: Siame LL, Bourlès DL, Brown ET (eds) In situ-produced cosmogenic nuclides and quantification of geological processes. Geological Society of America Special Paper 415:1–16Google Scholar
  16. Granger DE, Lifton NA, Willenbring JK (2013) A cosmic trip: 25 years of cosmogenic nuclides in geology. Geol Soc Am Bull 125:1379–1402CrossRefGoogle Scholar
  17. Herzog GF, Caffee MW (2014) Cosmic-ray exposure ages of meteorites. In: Davis AM (ed) Treatise in geochemistry, 2nd edn. Elsevier, Oxford, pp 419–454CrossRefGoogle Scholar
  18. Herzog GF, Caffee MW, Jull AJT, (2015) Cosmogenic nuclides in antarctic meteorites. In: Righter K, Corrigan CM, McCoy TJ, Harvey RP (eds) 35 seasons of U.S. Antarctic meteorites (1976–2010): a pictorial guide to the collection. American geophysical union, special publication series. Wiley, Hoboken, 320ppGoogle Scholar
  19. Hidaka H, Yoneda S (2007) Sm and Gd isotopic shifts of Apollo 16 and 17 drill stem samples and their implications for regolith history. Geochim Cosmochim Acta 71:1074–1086CrossRefGoogle Scholar
  20. Jull AJT (2006) Terrestrial ages of meteorites. In: Lauretta DS, McSween HY (eds) Meteorites and the early solar system II. University Arizona Press, Tucson, pp 889–905Google Scholar
  21. Kleine T, Touboul M, Bourdon B, Nimmo F, Mezger K, Palme H, Jacobsen SB, Yin QZ, Halliday AN (2009) Hf-W chronology of the accretion and early evolution of asteroids and terrestrial planets. Geochim Cosmochim Acta 73:5150–5188CrossRefGoogle Scholar
  22. Kohl CP, Nishiizumi K (1992) Chemical isolation of quartz for measurement of in-situ produced cosmogenic nuclides. Geochim Cosmochim Acta 56:3583–3587CrossRefGoogle Scholar
  23. Kovaltsov GA, Usoskin IG (2010) A new 3D numerical model of cosmogenic nuclide Be-10 production in the atmosphere. Earth Planet Sci Lett 291:182–188CrossRefGoogle Scholar
  24. Kruijer TS, Fischer-Gödde M, Kleine T, Sprung P, Leya I, Wieler R (2013) Neutron capture on Pt isotopes in iron meteorites and the Hf-W chronology of core formation in planetesimals. Earth Planet Sci Lett 361:162–172CrossRefGoogle Scholar
  25. Lal D (1991) Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models. Earth Planet Sci Lett 104:424–439CrossRefGoogle Scholar
  26. Leya I, Masarik J (2009) Cosmogenic nuclides in stony meteorites revisited. Meteoritics Planet Sci 44:1061–1086CrossRefGoogle Scholar
  27. Leya I, Wieler R, Halliday AN (2000) Cosmic-ray production of tungsten isotopes in lunar samples and meteorites and its implications for Hf-W cosmochemistry. Earth Planet Sci Lett 175:1–12CrossRefGoogle Scholar
  28. Leya I, Dalcher N, Vogel N, Wieler R, Caffee MW, Welten KC, Nishiizumi K (2015) Calibration of cosmogenic noble gas production based on 36Cl-36Arages. Part 2. The 81Kr-Kr dating technique. Meteorit Planet Sci 50:1863–1879CrossRefGoogle Scholar
  29. Lifton N, Sato T, Dunai TJ (2014) Scaling in situ cosmogenic nuclide production rates using analytical approximations to atmospheric cosmic-ray fluxes. Earth Planet Sci Lett 386:149–160CrossRefGoogle Scholar
  30. Marti K, Graf T (1992) Cosmic-ray exposure history of ordinary chondrites. Annu Rev Earth Planet Sci 20:221–243CrossRefGoogle Scholar
  31. Masarik J, Beer J (2009) An updated simulation of particle fluxes and cosmogenic nuclide production in the Earth’s atmosphere. J Geophys Res Atmos 114: Article Number D11103Google Scholar
  32. Morris JD, Gosse J, Brachfeld S, Tera F (2002) Cosmogenic 10Be and the solid earth: studies in geomagnetism, subduction zone processes, and active tectonics. Rev Mineral Geochem 50:207–270CrossRefGoogle Scholar
  33. Niedermann S (2002) Cosmic-ray-produced noble gases in terrestrial rocks: dating tools for surface processes. Rev Min Geochem 47:731–784CrossRefGoogle Scholar
  34. Portenga EW, Bierman PR (2011) Understanding Earth’s eroding surface with 10Be. GSA Today 21: 4–10CrossRefGoogle Scholar
  35. Raisbeck GM, Yiou F, Cattani O, Jouzel J (2006) Be-10 evidence for the Matuyama-Brunhes geomagnetic reversal in the EPICA Dome C ice core. Nature 444:82–84CrossRefGoogle Scholar
  36. Roth ASG, Baur H, Heber VS, Reusser E, Wieler R (2011) Cosmogenic helium and neon in individual chondrules from Allende and Murchison: implications for the precompaction exposure history of chondrules. Meteoritics Planet Sci 46:989–1006CrossRefGoogle Scholar
  37. Russ GP, Burnett DS, Wasserburg GJ (1972) Lunar neutron stratigraphy. Earth Planet Sci Lett 15:172–186CrossRefGoogle Scholar
  38. Savi S, Norton KP, Picotti V, Akcar N, Delunel R, Brardinoni F, Kubik P, Schlunegger F (2014) Quantifying sediment supply at the end of the last glaciation: Dynamic reconstruction of an alpine debris-flow fan. Geol Soc Am Bull 126:773–790CrossRefGoogle Scholar
  39. Schaller M, von Blanckenburg F, Veldkamp A, Tebbens LA, Hovius N, Kubik PW (2002) A 30 000 yr record of erosion rates from cosmogenic 10Be in Middle European river terraces. Earth Planet Sci Lett 204:307–320CrossRefGoogle Scholar
  40. Steinhilber F, Abreu JA, Beer J, McCracken KG (2010) Interplanetary magnetic field during the past 9300 years inferred from cosmogenic radionuclides. J Geophys Res-Space Phys 115: Article Number A 01101CrossRefGoogle Scholar
  41. Stone J (2000) Air pressure and cosmogenic isotope production. J Geophys Res-Solid Earth 105:23753–23759CrossRefGoogle Scholar
  42. Vermeesch P (2007) CosmoCalc: an Excel add-in for cosmogenic nuclide calculations. Geochem Geophys Geosyst 8:Q08003CrossRefGoogle Scholar
  43. Von Blanckenburg F (2005) The control mechanisms of erosion and weathering at basin scale from cosmogenic nuclides in river sediment. Earth Planet Sci Lett 237:462–479Google Scholar
  44. von Blanckenburg F, Bouchez J, Wittmann H (2012) Earth surface erosion and weathering from the 10Be (meteoric)/9Be ratio. Earth Planet Sci Lett 351:295–305CrossRefGoogle Scholar
  45. Wieler R (2002) Cosmic-ray-produced noble gases in meteorites. Rev Mineral Geochem 47:125–170CrossRefGoogle Scholar
  46. Wieler R, Graf T (2001) Cosmic ray exposure history of meteorites. In: Peucker-Ehrenbrink B, Schmitz B (eds) Accretion of extraterrestrial matter throughout Earth’s history. Kluwer, New York, pp 221–240CrossRefGoogle Scholar
  47. Willenbring JK, von Blanckenburg F (2010a) Long-term stability of global erosion rates and weathering during late-Cenozoic cooling. Nature 465:211–214CrossRefGoogle Scholar
  48. Willenbring JK, von Blanckenburg F (2010b) Meteoric cosmogenic Beryllium-10 adsorbed to river sediment and soil: applications for earth-surface dynamics. Earth Sci Rev 98:105–122CrossRefGoogle Scholar
  49. Willenbring JK, Codilean AT, McElroy B (2013) Earth is (mostly) flat: Apportionment of the flux of continental sediment over millennial time scales. Geology 41:343–346CrossRefGoogle Scholar
  50. Wisdom J (1987) Chaotic dynamics in the solar system. Icarus 72:241–275CrossRefGoogle Scholar
  51. Woolum DS, Hohenberg C (1993) Energetic particle environment in the early solar system – extremely long pre-compaction meteoritic ages or an enhanced early particle flux. In: Levy EH, Lunine JI (eds) Protostars and planets III. University Arizona Press, Tucson, pp 903–919Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Earth Sciences, Institute of Geochemistry and PetrologyETH ZürichZürichSwitzerland