Encyclopedia of Geochemistry

2018 Edition
| Editors: William M. White

Copper Isotopes

  • Paul SavageEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-39312-4_282

Synonyms

Copper stable isotopes; Cu isotopes

Introduction

Copper has two stable isotopes, 63Cu and 65Cu, with relative abundances of 69.15% and 30.85%, respectively. A transition metal, Cu is moderately siderophile and strongly chalcophile (around 2/3 of Earth’s Cu is thought to be stored in its core). Copper is redox-sensitive and is present in three oxidation states in terrestrial environments: native Cu0, Cu+ and Cu2+. Copper is both economically important and an essential micronutrient. For all these reasons, isotopic variations of Cu have the potential to inform us of processes, sources, and phenomena in all disciplines of the geosciences. A more detailed review of the myriad applications of Cu isotopes is given by Moynier et al. (in press).

Analysis

As with many other stable isotope systems, accurate, precise, and routine measurement of Cu isotope ratio was made possible with the advent of Multi-collector Inductively-Coupled-Plasma Mass Spectrometry (MC-ICPMS) and precisions of...
This is a preview of subscription content, log in to check access.

References

  1. Albarède F (2015) Metal stable isotopes in the human body: a tribute of geochemistry to medicine. Elements 11:265–269CrossRefGoogle Scholar
  2. Bigalke M, Weyer S, Wilcke W (2011) Stable Cu isotope fractionation in soils during oxic weathering and podzolization. Geochim Cosmochim Acta 75:3119–3134CrossRefGoogle Scholar
  3. Bishop MC, Moynier F, Weinstein C, Fraboulet JG, Wang K, Foriel J (2012) The Cu isotopic composition of iron meteorites. Meteorit Planet Sci 47:268–276CrossRefGoogle Scholar
  4. Chen H, Moynier F, Humayun M, Bishop MC, Williams J (2016) Cosmogenic effects on Cu isotopes in IVB iron meteorites. Geochim Cosmochim Acta 182:145–154CrossRefGoogle Scholar
  5. Day JM, Moynier F (2014) Evaporative fractionation of volatile stable isotopes and their bearing on the origin of the Moon. Philos Transact A 372:20130259CrossRefGoogle Scholar
  6. Dong S, Weiss DJ, Strekopytov S, Kreissig K, Sun Y, Baker AR, Formenti P (2013) Stable isotope ratio measurements of Cu and Zn in mineral dust (bulk and size fractions) from the Taklimakan Desert and the Sahel and in aerosols from the eastern tropical North Atlantic Ocean. Talanta 114:103–109CrossRefGoogle Scholar
  7. Fernandez A, Borrok DM (2009) Fractionation of Cu, Fe and Zn isotopes during weathering of sulfide-rich rocks. Chem Geol 264:1–12CrossRefGoogle Scholar
  8. Fujii T, Moynier F, Abe M, Nemoto K, Albarède F (2013) Copper isotope fractionation between aqueous compounds relevant to low temperature geochemistry and biology. Geochim Cosmochim Acta 110:29–44CrossRefGoogle Scholar
  9. Herzog GF, Moynier F, Albarède F, Berezhnoy AA (2009) Isotopic and elemental abundances of copper and zinc in lunar samples, Zagami, Pele’s hairs, and a terrestrial basalt. Geochim Cosmochim Acta 73:5884–5904CrossRefGoogle Scholar
  10. Ikehata K, Hirata T (2013) Evaluation of UV-fs-LA-MC-ICP-MS for precise in situ copper isotopic microanalysis of cubanite. Anal Sci 29:1213–1217CrossRefGoogle Scholar
  11. Jouvin D, Weiss D, Mason T, Bravin M, Louvat P, Zhao F, Ferec F, Hinsinger P, Benedetti M (2012) Stable isotopes of Cu and Zn in higher plants: evidence for Cu reduction at the root surface and two conceptual models for isotopic fractionation processes. Environ Sci Technol 46:2652–2660CrossRefGoogle Scholar
  12. Kimball BE, Mathur R, Dohnalkova AC, Wall AJ, Runkel RL, Brantley SL (2009) Copper isotope fractionatin in acid mine drainage. Geochim Cosmochim Acta 73:1247–1263CrossRefGoogle Scholar
  13. Li W, Jackson S, Pearson NJ, Alard O, Chappell BW (2009) The Cu isotopic signature of granites from the Lachlan Fold Belt, SE Australia. Chem Geol 258:38–49CrossRefGoogle Scholar
  14. Little SH, Vance D, Walker-Brown C, Landing WM (2014) The oceanic mass balance of copper and zinc isotopes, investigated by analysis of their inputs, and outputs to ferromanganese oxide sediments. Geochim Cosmochim Acta 125:673–693CrossRefGoogle Scholar
  15. Liu S-A, Huang J, Liu J, Woerner G, Yang W, Tang Y-J, Chen Y, Tang L, Zheng J, Li S (2015) Copper isotopic composition of the silicate Earth. Earth Planet Sci Lett 427:95–103CrossRefGoogle Scholar
  16. Luck JM, Othman DB, Barrat JA, Albarède F (2003) Coupled 63Cu and 16O excesses in chondrites. Geochim Cosmochim Acta 67:143–151CrossRefGoogle Scholar
  17. Luck JM, Othman DB, Albarède F (2005) Zn and Cu isotopic variations in chondrites and iron meteorites: early solar nebula reservoirs and parent-body processes. Geochim Cosmochim Acta 69:5351–5363CrossRefGoogle Scholar
  18. Maréchal C, Télouk P, Albarède F (1999) Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry. Chem Geol 156:251–273CrossRefGoogle Scholar
  19. Mathur R, Titley S, Barra F, Brantley S, Wilson M, Phillips A, Munizaga F, Maksaev V, Vervoort J, Hart G (2009) Exploration potential of Cu isotope fractionation in porphyry copper deposits. J Geochem Explor 102:1–6CrossRefGoogle Scholar
  20. Mathur R, Jin L, Prush V, Paul J, Ebersole C, Fornadel A, Williams JZ, Brantley S (2012) Cu isotopes and concentrations during weathering of black shale of the Marcellus formation, Huntingdon County, Pennsylvania (USA). Chem Geol 304:175–184CrossRefGoogle Scholar
  21. Moeller K, Schoenberg R, Pedersen R-B, Weiss D, Dong S (2012) Calibration of the new certified reference materials ERM-AE633 and ERM-AE647 for copper and IRMM-3702 for zinc isotope amount ratio determinations. Geostand Geoanal Res 36(2):177–199CrossRefGoogle Scholar
  22. Moynier F, Albarede F, Herzog GF (2006) Isotopic composition of zinc, copper and iron in lunar samples. Geochim Cosmochim Acta 70:6103–6117CrossRefGoogle Scholar
  23. Moynier F, Koeberl C, Beck P, Jourdan F, Telouk P (2010) Isotopic fractionation of Cu in tektites. Geochim Cosmochim Acta 74:799–807CrossRefGoogle Scholar
  24. Moynier F, Vance D, Fujii T, Savage PS (2017) The isotope geochemistry of zinc and copper. In: Teng F-Z, Watkins J, Dauphas N (eds), Reviews in mineralogy and geochemistry, vol 82, Non-traditional stable isotopes, pp 543–600.  https://doi.org/10.2138/rmg.2017.82.13
  25. Pokrovsky OS, Viers J, Emnova EE, Kompantseva EI, Freydier R (2008) Copper isotope fractionation during its interaction with soil and aquatic microorganisms and metal oxy(hyd)oxides: possible structural control. Geochim Cosmochim Acta 72:1742–1757CrossRefGoogle Scholar
  26. Rodovská Z, Magna T, Kato C, Savage PS, Moynier F, Žák K (2015) Zinc and copper isotopes in central European tektites and sediments from the Ries impact area – implications for material sources and loss of volatile elements during tektite formation. In: 46th lunar and planetary science conference, vol 1832, p 1951Google Scholar
  27. Ryan BM, Kirby JK, Degryse F, Harris H, McLaughlin MJ, Scheiderich K (2013) Copper speciation and isotopic fractionation in plants: uptake and translocation mechanisms. New Phytol 199:367–378CrossRefGoogle Scholar
  28. Ryan BM, Kirby JK, Degryse F, Scheiderich K, McLaughlin MJ (2014) Copper isotope fractionation during equilibration with natural and synthetic ligands. Environ Sci Technol 48:862–866CrossRefGoogle Scholar
  29. Savage P, Moynier F, Chen H, Shofner G, Siebert J, Badro J, Puchtel IS (2015a) Copper isotope evidence for large-scale sulphide fractionation during Earth’s differentiation. Geochem Perspect Lett 1:53–64CrossRefGoogle Scholar
  30. Savage P, Moynier F, Harvey J, Burton K (2015b) The behavior of copper isotopes during igneous processes. In: AGU conference, San FranciscoGoogle Scholar
  31. Schonbachler M, Carlson RW, Horan MF, Mock TD, Hauri EH (2010) Heterogeneous accretion and the moderately volatile element budget of Earth. Science 328:884–887CrossRefGoogle Scholar
  32. Sherman DM (2013) Equilibrium isotopic fractionation of copper during oxidation/reduction, aqueous complexation and ore-forming processes: predictions from hybrid density functional theory. Geochim Cosmochim Acta 118:85–97CrossRefGoogle Scholar
  33. Telouk P, Puisieux A, Fujii T, Balter V, Bondanese VP, Morel A-P, Clapisson G, Lamboux A, Albarède F (2015) Copper isotope effect in serum of cancer patients. A pilot study. Metallomics 7:299–308CrossRefGoogle Scholar
  34. Vance D, Archer C, Bermin J, Perkins J, Statham PJ, Lohan MC, Ellwood MJ, Mills RA (2008) The copper isotope geochemistry of rivers and the oceans. Earth Planet Sci Lett 274:204–213CrossRefGoogle Scholar
  35. Vance D, Teagle DAH, Foster GL (2009) Variable quaternary chemical weathering fluxes and imbalances in marine geochemical budgets. Nature 458:493–496CrossRefGoogle Scholar
  36. Weinstein C, Moynier F, Wang K, Paniello R, Foriel J, Catalano J, Foriel J (2011) Cu isotopic fractionation in plants. Chem Geol 286:266–271Google Scholar
  37. Williams HM, Archer C (2011) Copper stable isotopes as tracers of metal-sulphide segregation and fractional crystallisation processes on iron meteorite parent bodies. Geochim Cosmochim Acta 75:3166–3178CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Earth and Environmental SciencesUniversity of St AndrewsSt AndrewsUK